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Effect of the σ-cut potential on the properties of neutron stars with or without a hyperonic core
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Motivated by the recent observation of high-mass pulsars (M ≈ 2M�), we employ the σ -cut potential on
the equation of state (EOS) of high-density matter and the properties of neutron stars within the relativistic
mean-field model using TM1∗ parameter set. The σ -cut potential is known to reduce the contributions of the
σ field, resulting in a stiffer EOS at high densities and hence leading to larger neutron star masses without
affecting the properties of nuclear matter at normal saturation density. We also analyzed the effect of the same
on pure neutron matter and also on the neutron star matter with and without hyperonic core and compared it with
the available theoretical, experimental, and observational data. The corresponding tidal deformability (�1.4) is
also calculated. With the choice of meson-hyperon coupling fixed to hypernuclear potentials, we obtain ≈10%
increase in mass by employing the σ -cut potential for fs = 0.6. Our results are in good agreement with various
experimental constraints and observational data, particularly with the GW170817 data.
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I. INTRODUCTION

Neutron stars (NSs) are one of the densest objects that exist
in the universe [1–3]. All four fundamental forces play an im-
portant role in determining the global properties of these stars.
The study of their global properties provides a crucial link
between nuclear, particle, and astrophysics [4–6]. The neutron
star matter is likely to be composed of ions and electrons in
the outer crust region, i.e., near the surface, and neutron-rich
nuclei and some free neutrons appear in the inner crust region.
In the core densities, it may have free neutrons along with
fewer protons and electrons. As we go deeper to the core of
the star, i.e., with an increase of density towards the center
of the star, exotic components of NS matter, viz., hyperons,
heavier nonstrange baryons, boson condensates, and even de-
confined quarks may appear [7]. The global properties of the
neutron star are the imprints of a particular equation of state
(EOS). Energetically, the hyperons start appearing via weak
interaction around 2–3 times nuclear saturation density ρ0.
The presence of hyperons makes EOS softer and consequently
predicts a mass lower than when they are not included and
has an effect on the radius too. In addition, Softer EOS at
higher density may also be achieved by considering cross
couplings among the σ , ω, and ρ mesons within the relativistic
mean-field approach [8,9].

A comprehensive idea regarding the σ -cut scheme was
convened by studying its effects on neutron star prop-
erties such as maximum mass, compactness, and tidal
deformability. Recently, two different groups of Neutron
Star Interior Composition Explorer (NICER) x-ray telescopes
provided simultaneously neutron star’s mass and radius for
PSR J0030+0451 with R(1.44+0.15

−0.14) = 13.02+1.24
−1.06km [10]
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and R(1.34+0.15
−0.16) = 12.71+1.14

−1.19km [11] and for J0740+6620
with R(2.08 ± 0.07) = 13.7+2.6

−1.5km [12] and R(2.072+0.067
−0.066) =

12.39+1.30
−0.98km [13]. Due to the model dependence of the exper-

imental analyses, differences between these estimates came
out. By combining the NICER results with the limits on the
NS maximum mass as well as the tidal deformability from
GW170817 [14] leads to constraints on the β-equilibrated
EOS for densities in the range 1.5ρ0 � ρB � 3ρ0 [12,15],
which can limit NS mass and radii [10–13,15,16].

Observation of neutron star’s mass around 2M� [17,18]
and the corresponding radius estimates around 11.9 ± 1.4 km
[19,20], respectively, disfavors the possibility of softer EOS.
On the contrary, results obtained from transport models
predict a soft EOS [21,22] at high densities. Such ap-
parent contradictions in the EOS from experimental and
observational data motivate one to probe the different as-
pects of an EOS and emphasize the importance to constrain
them [23].

A σ -cut scheme [24] was developed to make EOS stiffer at
high densities without compromising the properties of nuclear
matter around saturation density ρ0. In the σ -cut scheme, a
σ -potential term is included in the Lagrangian of the RMF
model to reduce the contribution of the scalar field at high
density thereby making EOS stiffer resulting in larger masses
for neutron stars. In one of recent works [25], a plethora of
RMF models were analyzed to test the range of resulting
neutron star masses, where 14 of them could result in masses
within the range (1.93–2.05)M�, of which only two of the
models could satisfy the mass constraint when hyperons were
included. To increase the masses further, in accordance with
recent observations, one of the ways out is to include the
σ -cut scheme and analyze the effect on the EOS as well as
the star masses. Recently, the σ -cut scheme is implemented to
study the properties of finite nuclei and hyperon-rich matter
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using TM1 parameter set [26] and also to kaon condensate in
neutron stars [27] using FSUGold parameter set.

In the present work, we implement the σ -cut scheme using
TM1∗ [28] interaction. The improved TM1∗ parameter has ex-
tra cross couplings compared to TM1. These extra couplings
have no effect on the properties of finite nuclei and nuclear
matter around saturation density but these cross couplings
seem to be instrumental in making EOS softer at high den-
sities. We choose TM1∗ for the present analysis and use the
same strength of σ -cut potential as given in Ref. [26].

The paper is organized as follows: In Sec. II, we briefly
describe the RMF model with σ -cut potential and stellar equa-
tions for a neutron star. In Sec. III, we present and discuss the
role of σ -cut potential on the properties of nuclear matter and
neutron stars with hyperons. The summary and conclusions of
the present work are given in Sec. IV.

II. FORMALISM

We apply the well-known RMF model to describe the EOS
at higher densities relevant to the neutron stars. The details
of the model and derivation of EOS with nucleon and with
nucleon and hyperon both can be found in the Ref. [29]. We
include the σ -cut potential Ucut (σ ) in RMF Lagrangian as
in the Refs. [24,26]. The Lagrangian density with Ucut (σ ) is
given by,

L =
∑

B
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The Ucut (σ ) has logarithmic form as Ref. [24], which only
influence the σ field at high density and is given by,

Ucut (σ ) = α ln[1 + exp{β(gσNσ/MN − fs)}], (2)

where α = m4
π and β = 120 [24]. The factor fs is a free

parameter and we take fs = 0.6 [26] for our calculation. The
field equations for σ , ω, and ρ mesons obtained from Eq. (1)
are given by,
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where I3B is the third component of nucleon isospin operator
and the derivative of Ucut (σ ) is given by,

U ′
cut (σ ) = αβgσN

MN

1

[1 + exp{−β(gσNσ/MN − fs)}] . (6)

The EOS for hyperon-rich matter satisfies the conservation
of the total baryon number and charge neutrality condition,
which is given by,∑

B

QBρB +
∑

L

QLρL = 0, (7)

where ρB and ρL are the baryon and the lepton (e, μ) number
densities with QB and QL as their respective electric charge.

The energy density E and pressure P for charge-neutral β-
equilibrated neutron star matter with a lowest-lying octet of
baryons is given by,

E =
∑

B

2

(2π )3

∫ kB

0
d3kE∗

B (k) + 1

8
ζ0g2

ωNω4
0 + Ucut (σ )

+ 1

2

(
1 + η1gσN

MN
σ0 + η2g2

σN

2M2
N

σ 2
0

)
m2

ωω2
0

+ m2
σ σ0

2

(
1

2
+ κ3gσNσ0

3!MN
+ κ4g2

σNσ 2
0

4!M2
N

)

+ 1

2

(
1 + ηρ

gσNσ0

MN

)
m2

ρρ0
2 +

∑
L

EL (8)

P =
∑

B

2

3(2π )3

∫ kB

0
d3k

k2

E∗
B (k)

+ 1

4!
ζ0g2

ωNω4
0 − Ucut (σ )

+ 1

2

(
1 + η1gσN

MN
σ0 + η2g2

σN

2M2
N

σ 2
0

)
m2

ωω2
0

− m2
σ σ0

2

(
1

2
+ κ3gσNσ0

3!MN
+ κ4g2

σNσ 2
0

4!M2
N

)

+ 1

2

(
1 + ηρ

gσNσ0

MN

)
m2

ρρ0
2 +

∑
L

PL. (9)

Here the subscripts B, N , and L represent the low-lying octet
of baryons, nucleons, and leptons, respectively. The EL and PL

are the energy density and pressure of the leptons.
The mass-radius relation for a neutron star is obtained by

Tolman, Oppenheimer, and Volkoff (TOV) equation [30,31],
which is given by,

dP

dr
= −G

r

[ε + P][M + 4πr3P]

(r − 2GM )
, (10)

dM

dr
= 4πr2ε, (11)

Here we adopt the natural units, i.e., c = 1, and the terms
G, P(r), and M(r) are the universal gravitational constant, the
pressure of neutron star, and the enclosed gravitational mass
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FIG. 1. Pressure as a function of number density ρ for (a) sym-
metric nuclear matter and (b) pure neutron matter with original
TM1∗ and the TM1∗ with σ -cut potential ( fs = 0.6) along with
other microscopic EOSs. The orange polygon and green polygon in
Fig. 1(a) describe the transverse flow data [34] and KaoS experimen-
tal data [35], respectively.

inside a sphere of radius (r), respectively. The Eqs. (10) and
(11) are solved to obtain the structural properties of a static
neutron star with neutral hyperonic matter [32,33].

III. RESULTS AND DISCUSSION

We choose TM1∗ parameter set [28] for our present analy-
sis. As already mentioned, the motivation to choose TM1∗ is
to examine how the σ -cut potential influence the EOS with
cross couplings of σ field and consequently the structural
properties of a neutron star. In σ -cut scheme with TM1∗ we
took α = m4

π and β = 120 as given in Ref. [24] except the
value of factor fs. In Ref. [24] the value of fs was taken as
0.36, 0.44, and 0.52 unlike Ref. [26]. In one of the earlier
works, for finite nuclei results including σ -cut potential are
found to be identical with the original TM1 parameter set
for the value of fs larger than 0.55 [26]. In the finite nuclear
domain, there is almost no difference between TM1 and TM1∗
[28] and we choose fs = 0.6 for our present analysis.

In the present analysis, we used several microscopic
Brueckner-Hartree-Fock (BHF) EOS based on different
nucleon-nucleon potential namely Bonn B (BOB) [36,37], the
Nijmegen 93 (N93) [38,39], Argonne V18 (V18) [40] as well as
phenomenological Urbana model (UIX), Dirac-BHF method
(DBHF) [41], APR EOS [42], and well-known phenomeno-
logical EOS SFHO [43] for symmetric nuclear matter, pure
neutron matter, and symmetry energy for comparison along
with available experimental data.

In Fig. 1, we plot and compare all the microscopic EOSs
along with the original TM1∗ and TM1∗ with σ -cut potential

( fs = 0.6) for symmetric nuclear matter and pure neutron
matter. In Fig. 1(a), the orange and green shaded regions
represent the flow data by the FOPI collaboration [34] and
data from KaoS collaboration [35] for symmetric nuclear
matter, respectively. From Fig. 1(a), we see that most of the
microscopic EOSs are compatible with the experimental data
[34,35] except for BOB, V18, and DBHF EOS, which are
stiff at high densities. It is to be noted that the original TM1∗
results are consistent with experimental data at all the values
of number density ρ. On the other hand, the TM1∗ EOS with
σ -cut potential gives the stiffest EOS for symmetric nuclear
matter compared to other EOSs. The EOS with σ -cut potential
becomes stiffer at ρ = 0.28 f m−3 compared to original TM1∗
EOS for symmetric nuclear matter. For completeness, we plot
all considered EOSs for pure neutron matter in Fig. 1(b). We
find that the original TM1∗ and EOS with σ -cut potential is
stiffer compared to other microscopic EOSs for pure neutron
matter. The TM1∗ EOS with σ -cut potential becomes stiffer
at ρ = 0.32 f m−3 compare to original TM1∗ EOS for pure
neutron matter. One can conclude from Fig. 1 that the effect
of σ -cut potential is more in symmetric nuclear matter com-
pared to pure neutron matter. The reason for this discrepancy
is that the σ -cut potential reduces the magnitude of σ -field
contribution in symmetric nuclear matter and ω field remains
unaffected by σ -cut potential resulting in stiffer EOS stiffer
at high densities. On the other hand, the contribution of σ

field is smaller in pure neutron matter is smaller compared
to symmetric nuclear matter. As σ -cut potential is isospin
independent and equally effect σ field in symmetric nuclear
and pure neutron matter. The contribution of σ field is smaller
in pure neutron matter compared to the symmetric nuclear
matter at certain densities without σ -cut potential. So, the
effect of σ -cut potential is less prominent in neutron matter
as compared to the symmetric nuclear matter.

The symmetry energy Esym and its density dependence play
an important role in finite nuclei and neutron star properties.
A lot of experimental efforts have been put into constraining
high-density behavior of Esym using various probes in heavy-
ion collisions (HICs) at relativistic energies. In Fig. 2, we
display some constraints obtained for the density dependence
of Esym from FOPY-LAND (green band) [44], ASY-EOS
(indigo band) [45], IAS-EOS (orange band) [46], and HIC
(Sn + Sn) (brown band) [47], respectively. We also plot all
the microscopic EOSs along with the original TM1∗ and the
TM1∗σ -cut potential. We observe that all the experimental
data increase monotonically with the density. We also found
that all microscopic EOSs are compatible with the experimen-
tal data. Although Esym obtained from original TM1∗ and the
TM1∗ with σ -cut potential follow the trend similar to other
microscopic EOSs but both predict high value of Esym, around
5 MeV more compare to other EOSs after ρ = 0.1 f m−3.
There is no difference in the value of Esym between original
TM1∗ and the TM1∗ with σ -cut potential up to 0.3 f m−3. We
also found that Esym is softer at higher densities, i.e., higher
than 0.4 f m−3 in TM1∗ with σ -cut potential compared to
original TM1∗. Such behavior of Esym occurs because TM1∗
with σ -cut potential ( fs = 0.6) have a larger effective mass
and in RMF models symmetry energy inversely depend on
effective mass [26].
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FIG. 2. Symmetry energy Esym as a function of number density ρ

for all microscopic EOS as well as with original TM1∗ and the TM1∗

with σ -cut potential along with experimental data. The inset plot
shows Esym for the original TM1∗ and the TM1∗ with σ -cut potential
at high densities.

In the present analysis, we consider the pure nucleonic
as well as hyperon-rich neutron star matter. Meson-Hyperon
couplings are fixed by reproducing the hyperon potentials
at normal density as indicated by hypernuclei experiments.
We fix the scalar xσH = gσH/gσN and vector xωH = gωH/gσN

coupling constants by fixing the hyperon potential depths
(B/A)H |ρ0 as in Ref. [48] and is given by

(B/A)H |ρ0 = xωHUV |ρ0 + xσHUS|ρ0 , (12)

where US = gσNσ0 and UV = gωNω0, respectively. We repro-
duce the hyperon potential depths (B/A)H at saturation density
ρ0 equal to −28 MeV, +30 MeV, and −18 MeV for �, �, and
� respectively. We take xρH = xωH in the present analysis. As
suggested [49], the value of xσH should be smaller than 0.72.
In the present work, we take two values of xσH = 0.6 and
0.7 and keep it the same for all hyperons. The corresponding
vector coupling is taken by fixing xσH and the aforementioned
hyperon potentials at normal nuclear matter density.

In Fig. 3(a), we display the pressure as a function of baryon
number density ρB of neutron star matter. As we are consid-
ering only nucleonic matter, the baryon number density ρB is
equal to ρ like Fig. 1 and Fig. 2. The combined data from mul-
timessenger neutron star observations and HIC (Astro+HIC)
[50] shown as an orange polygon in both Fig. 3(a) and
3(b). The light and dark shade of the orange polygon corre-
sponds to the 95% and 68% credible intervals, respectively.
From Fig. 3(a), one can conclude that the original TM1∗ and
the TM1∗ with σ -cut potential ( fs = 0.6) along with other
microscopic EOSs are consistent with observational and ex-
perimental constraints for pure nucleonic neutron star matter.
In Fig. 3(b), we plot the pressure as a function of baryon
number density ρB of neutron star matter with nucleonic and
nucleonic plus hyperon-rich matter for xσH = 0.6 and 0.7. We
found that all the EOSs are similar up to ρB = 0.3 f m−3 and
the effect of σ -cut potential and different xσH starts appearing
thereafter. Our results for all EOSs in Fig. 3(b) are consistent

FIG. 3. Pressure as a function of baryon number density ρB for
with or without σ -cut potential in neutron star matter for (a) only
nucleonic neutron star matter along with other microscopic EOSs.
and (b) neutron star matter including hyperons with original TM1∗

and the TM1∗ with σ -cut potential ( fs = 0.6) for scalar coupling con-
stants xσH = 0.6 and 0.7. The combined data from multimessenger
neutron star observations and HIC (Astro+HIC) shown as an orange
polygon is also shown. The shading corresponds to 95% and 68%
credible intervals (lightest to darkest).

with the dark shade area of combined data of observational
and experimental constraints.

To analyze the effect of σ -cut potential on particle fractions
Yi = ρi/ρB, we plot the particle fraction of TM1∗ with σ -cut
potential ( fs = 0.6) for xσH = 0.6, 0.7 in Fig. 4(a) and 4(b),

FIG. 4. The particle fractions Yi as function of baryon number
density ρB in neutron star TM1∗ with σ -cut potential ( fs = 0.6) for
(a) xσH = 0.6, (b) xσH = 0.7.
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FIG. 5. The mass radius relation of neutron star with original
TM1∗ and TM1∗ with σ -cut potential for nucleonic and nucleonic
plus hyperon rich matter with xσH = 0.6 and 0.7 along with other
available observational data.

respectively. From Figs. 4(a) and 4(b), we find that σ -cut
potential has no effect on the neutron, proton, and lepton
fractions (electron and muon) in the entire density range. In
the hyperonic sector, it is interesting to see that the σ -cut
potential has a slight effect on the appearance of �0 and
�−. �0 starts to nucleate at around 0.34 f m−3 for both the
values of xσH . �− appears at 0.47 f m−3 for xσH = 0.6 and
at 0.50 f m−3 for xσH = 0.7, respectively. On the other hand,
the main effect of σ -cut potential happens on �0 fractions
where �0 appears at 1.52 f m−3 for xσH = 0.6 as compared
to 1.39 f m−3 for xσH = 0.7.

In Fig. 5, we display the mass-radius (MR) relation for
nucleonic and nucleonic plus hyperon-rich neutron star with
original TM1∗ and TM1∗ with σ -cut potential ( fs = 0.6)
along with observational data. The astrophysical observable
constraints from GW190814 [14], PSR J0740+6620 [12,13],
PSR J0348+0432 [18], GW170817 [51], and NICER experi-
ment for PSR J0030+0451 [10,11] are represented by shaded
regions. As anticipated, the obtained mass for pure nucleonic
matter (n, p, e, μ) is larger compared to the mass obtained
with hyperons for both the values of xσH . In hyperon-rich
matter, mass is higher for xσH = 0.7 compared to xσH = 0.6
irrespective of whether we implemented the σ -cut potential
or not. The effect of σ -cut potential is almost similar in all the
considered TM1∗ EOSs. The TM1∗ with σ -cut potential gives
the slightly higher mass of neutron star for nucleonic matter
compared to the original TM1∗.

In Fig. 6, we display the calculated tidal deformability of
neutron star with original TM1∗ and TM1∗ with σ -cut poten-
tial ( fs = 0.6) for nucleonic and nucleonic plus hyperon-rich
matter with xσH = 0.6 and 0.7. The observational constraints
from GW170817 are shown as a shaded region. Our results
seem to be consistent with the observational constraints from
GW170817. TM1∗ with σ -cut potential ( fs = 0.6) for pure
nucleonic matter has highest value of the tidal deformability.
Similarly, in hyperon-rich matter the value of tidal deforma-

FIG. 6. The tidal deformability of neutron star as function of
maximum mass with original TM1∗ and TM1∗ with σ -cut potential
for nucleonic and nucleonic plus hyperon-rich matter with xσH = 0.6
and 0.7 along with observational constraints from GW170817.

bility is higher for xσH = 0.7 compared to xσH = 0.6. For
comparison, all the calculated values of neutron star properties
such as tidal deformability (�1.4), radii (R1.4 and R2.07), (in
km) and maximum mass [Mmax(in M�)] with different TM1∗
models are listed in Table I. It is concluded that with σ -cut po-
tential ( fs = 0.6) for pure nucleonic matter is well constrained
and its maximum mass satisfy the current available maximum
mass 2.08 ± 0.07M� [12]. Similar high mass neutron stars
were obtained from three other RMF models [25] investigated
with nucleon-only matter.

IV. CONCLUSIONS AND SUMMARY

The σ -cut scheme developed [24] and recently imple-
mented to study neutron star properties of EOS with hyperons
using TM1 parameter set [26] and kaon condensate using
FSUGold parameter set [27]. In the present analysis, we
adopted and implemented the σ -cut scheme for the RMF
model TM1∗ parameter, which gives the same results as TM1
for finite nuclei and nuclear matter properties [28]. We an-
alyzed the effect of σ -cut potential on symmetric nuclear
matter, pure neutron matter, symmetry energy, and neutron
star structure and composition with nucleonic and nucleonic

TABLE I. The values of neutron star properties, namely the tidal
deformability (�1.4), radii (R1.4 and R2.07) (in km) and maximum
mass [Mmax(in M�)] are listed.

TM1∗ models Mmax R1.4 R2.07 �1.4

npeμ 2.02 15.24 12.18 845.30
npeμ, fs = 0.6 2.08 15.23 12.98 860.81
npeμ+H, xσH = 0.6 1.59 15.13 13.67 841.74
npeμ+H, xσH = 0.6, fs = 0.6 1.74 15.23 13.64 851.92
npeμ+H, xσH = 0.7 1.69 15.12 13.20 831.66
npeμ+H, xσH = 0.7, fs = 0.6 1.86 15.23 13.47 860.81
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plus hyperon-rich matter and compared with the existing
experimental and observational data. We found that σ -cut po-
tential with TM1∗ parameter predicts a stiffer EOS compared
to other microscopic EOSs for symmetric nuclear matter. A
similar trend is also found in the case of pure neutron matter
and symmetry energy results. We found that there is almost
no effect till the two times nuclear saturation density ρ0 and
σ -cut potential make symmetry energy softer at high density.
We proceed to construct EOS with the original TM1∗ and
TM1∗ with σ -cut potential ( fs = 0.6) for pure nucleonic and
nucleonic and hyperon rich matter. The sensitivity of meson-
hyperon coupling on the EOS is analyzed. For hyperon-rich
matter, we choose scalar coupling constants xσH = 0.6 and
0.7, respectively, and fixed the respective hyperon potential

depths in the matter as pronounced from the hypernuclear
experiments. For xσH = 0.6, we obtained smaller mass and
tidal deformability as compared to xσH = 0.7 of neutron star.
The dominant global properties of the neutron star, such as
the mass, radius, and tidal deformability within the model,
are in good agreement with experimental and observational
constraints.
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