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Regression analysis of the nuclear symmetry energy for relativistic mean-field models
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Regression analysis for the symmetry energy within a sample of relativistic mean-field models of nuclear
matter is performed. The selected models consistently meet the experimentally obtained limitations. A proposed
measure of the importance of adding the fourth-order term to the symmetry energy is analyzed. As a result
of the research, it became possible to arrange the models and perform two-dimensional and one-dimensional
linear regression analyses. The one-dimensional regression analysis between the input parameters confirms
the appropriateness of introducing the division of the sample of considered models into four separate classes
representing four statistically different fits. An additional result is the formulation of constraints on the function,
which describes the energy density of the system. The performed two-dimensional regression analysis refers to
an alternative method of parametrizing the symmetry energy using the power law. It was found that the Akaike
information criterion of model selection involving the γ exponent is sensitive to splitting the symmetry energy
into the kinetic and potential parts. The analysis indicates that the more appropriate way of splitting is the one
that does not consider the interaction with the sigma meson in the kinetic part.
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I. INTRODUCTION

Various theoretical strategies and associated numerical
techniques have been developed to attack the many-body
problem of isospin-asymmetric nuclear matter. Primary meth-
ods of tackling fall into three main categories: the many-body
microscopic approach, the effective-field theory approach,
and the phenomenological approach [1–3]. Theoretical ef-
forts must be confirmed experimentally, utilizing heavy-ion
collision experiments and astrophysical measurements. By
creating appropriate conditions, experiments with heavy-ion
collisions [4–6] make it possible to study extreme states of
strongly interacting matter and obtain information about the
nuclear equation of state (EoS) at high baryon densities and
temperature. This is of great importance to nuclear physics
because it allows one to test the understanding of the fun-
damental aspects of strong interactions. This issue is also
important astrophysically concerning the description of the
dynamics of supernovae and the properties of neutron stars
[7–9]. The EoS of asymmetric nuclear matter is still uncer-
tain, and the main reason for this is a poor understanding
of symmetry energy, especially its high-density limit [2,8].
There are many fascinating aspects of the symmetry energy
accessible by experimental and theoretical procedures. The
basis of the analysis carried out in this paper is the way
of defining the symmetry energy, specifically the commonly
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used parabolic approximation. Calculations for the analysis
in the following sections were based on selected relativistic
mean-field (RMF) models. RMF represents an approach to
the nuclear matter description understood in a broad aspect
of finite nuclei and infinite nuclear matter, emphasizing the
matter of a neutron star. The leading type of this category
of models is the quantum hadrodynamics (QHD), one whose
archetype is the linear Walecka model [10]. In general, QHD
develops a framework within which an accurate description
of the nuclear many-body problem as a relativistic system
of baryons and mesons is provided. QHD is an effective-
field theory that describes interacting nucleons based on the
mean-field approximation. The original Walecka model de-
scribes the properties of nuclear matter by the scalar-isoscalar
σ (attractive) and vector-isoscalar ω mesons (repulsive) ex-
change [11]. This model was then extended by including the
vector-isovector ρ meson. This type of model has undergone
further modifications, resulting in its increased applicability.
Much more sophisticated forms of models include a variety
of nonlinear meson interactions [12]. A wide range of these
models can be categorized according to interaction terms’
parameters. In general, nonlinear interactions between mesons
can be divided into representative classes, including self-
and mixed-interaction terms [13,14]. Detailed dynamics of
individual models are refined by selecting the appropriate
Lagrangian function, with parameters that should be com-
patible with experimental observations. Details are given in
Sec. III. Despite many theoretical and experimental efforts,
the uncertainty of the density dependence of the symmetry
energy, especially its high-density behavior, persists as one
of the most challenging problems in nuclear physics [15,16].
The EoS of asymmetric nuclear matter in terms of its binding
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energy per nucleon is a function of baryon number density
nb = nn + np, where nn and np are neutron and proton number
densities, and the parameter δ = (nn − np)/(nn + np) which
quantifies the isospin asymmetry of the system

E (nb, δ) = ε(nb, δ)

nb
− M, (1)

where ε(nb, δ) denotes the energy density and M is the nu-
cleon mass. One can extract information about the EoS from
the Maclaurin expansion of the function E (nb, δ) around δ =
0 [17]

E (nb, δ) =
∞∑

k=0

E2k (nb)δ2k = E0(nb) +
∞∑

k=1

E2k (nb)δ2k, (2)

where E0 = E (nb, δ = 0) is the energy of symmetric nuclear
matter, and all components of the sum in Eq. (2) beyond
the term E0 determine the isospin asymmetric part of the
binding energy. Thus, the expansion (2) aims to indicate the
system’s dependence on isospin asymmetry. Depending on the
ratio of the number of protons and neutrons, the system can
exist in states of different energies. Information about energy
differences associated with conditions characterized by other
numbers of neutrons and protons, therefore differing in the
value of the δ parameter, is provided by the asymmetry energy

Easym(nb, δ) = E (nb, δ) − E0(nb). (3)

In general, the nuclear symmetry energy is defined as the dif-
ference between the energy of neutron matter and symmetric
nuclear matter,

Esym(nb) = E (nb, δ = 1) − E (nb, δ = 0), (4)

and can be identified with the appropriate coefficient in the
Maclaurin series (2). The Maclaurin series truncated to the
second-order leads to the commonly used parabolic approxi-
mation of the EoS,

E (nb, δ) = E0(nb) + 1

2

∂2E

∂δ2

∣∣∣∣
δ=0

δ2 + · · · . (5)

In this case, the symmetry energy Esym(nb) is equated with
satisfactory accuracy as the coefficient E2 of the series (2).
When the quartic term is included, the sum of E2 and E4

is accepted as being the valid approximation. The quan-
tity E2(nb)δ2 for the parabolic approximation determines the
asymmetry-energy contribution to the energy E (nb, δ).

The density dependence of the nuclear matter EoS is ex-
pressed in terms of coefficients that appear in the Taylor-series
expansion of functions E0(nb) and Esym(nb) around the satu-
ration density n0. The results obtained for symmetric nuclear
matter in the case of parabolic approximation can be written
as

E0(nb) = E0(n0) + K0

2

(nb − n0

3n0

)2

+ · · · , (6)

where E0 is the binding energy, and K0 is the incompress-
ibility of symmetric nuclear matter, both taken at n0. The
density dependence of the symmetry energy is specified by the

expression

Esym(nb) = Esym(n0) + L0

(nb − n0

3n0

)

+ Ksym

2

(nb − n0

3n0

)2

+ · · · , (7)

where Esym, L0, and Ksym denote the symmetry-energy coeffi-
cient, its slope, and its curvature, respectively. All coefficients
are also calculated at the saturation density n0. Sustained ex-
perimental and theoretical efforts are made to put constraints
on particular coefficients and provide the optimal parametriza-
tions of models describing nuclear matter. Determination
of reliable constraints on the parameters characterizing the
isospin-dependent part of the nuclear matter equation of state
is a formidable experimental challenge. Depending on the
density range achieved in the given experiment, different ob-
servables can be used for this purpose. The most satisfactory
results were obtained for the saturation density based on the
data analysis obtained with the use of observables that in-
clude, among others, the atomic masses [18], neutron skins
of heavy nuclei [19], isospin diffusion in heavy-ion reactions
[20], excitation energies of isobaric-analog states (IAS) [21],
isoscaling of fragments from intermediate energy heavy-ion
collisions [22], the electric-dipole polarizability from ana-
lyzing the Pygmy dipole resonance [23], the frequency of
isovector giant dipole resonances [24], and optical potentials
from studying nucleon-nucleus scatterings [25,26]. The devel-
opment of experimental techniques and theoretical methods
offers varying approaches to understanding the dependence
of the symmetry energy on density. Of considerable impor-
tance are the results obtained in the lead radius experiment
(PREX). The reported updated results give the value of the
neutron skin thickness 	r208

np = 0.283 ± 0.071 fm [27–29].
This experimental finding is particularly vital not only for
the nuclear structure but also as a tool to probe the proper-
ties of the symmetry energy. Different theoretical approaches
indicate that the size of neutron skin in 208Pb and the value
of the symmetry-energy slope L(nb) are linearly related with
the most substantial value of the correlation at the subsatu-
ration cross density nc = 2/3 n0 [30], which approximately
corresponds to the average density of atomic nuclei. The
symmetry energy slope L(nb) in the vicinity of the satura-
tion density n0 influences the mass-radius relation and tidal
deformability of neutron stars [27,31–34], thus the thickness
of the neutron skin of heavy nuclei and the radii of neutron
stars are among the most promising observables that con-
vey information about symmetry energy. At the same time,
they also allow the determination of neutron-star parameters.
Observables describing nuclei’s collective motions in nuclear
reactions are used to probe the symmetry-energy properties
for densities higher than the saturation density n0, among
others [26]. However, the resulting limitations are endowed
with much more considerable uncertainties. Experimental ver-
ification of the properties of symmetry energy distinguishes
observables such as isospin diffusion or neutron-to-proton
ratios, the description of which is based on the transport
theory [35–37]. A good description of available experimental
data is obtained by adopting the power-law to recount the
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dependence of energy symmetry on density, which is an alter-
native form of symmetry energy parametrization. Usually, one
separates the symmetry energy into kinetic and potential con-
tributions Esym(nb) = Ekin

sym(nb) + Epot
sym(nb). The need to know

the potential and kinetic parts of the symmetry energy has its
justification in specific nuclear physics problems, for example,
in simulations of heavy-ion collisions [38] and astrophysics.
Given the astrophysical aspect, it was found that the critical
densities for forming four different charge states 	(1232)
depend differently on the kinetic and potential parts of the
symmetry energy [39]. The description of the kinetic part is
frequently given based on the free Fermi gas model. Using
the power-law parametrization for the potential part

Epot
sym(nb) = Epot

sym(n0)
(nb

n0

)γ

(8)

results in the following relation for the γ parameter:

γ = L0 − Lkin
0

3Epot
sym(n0)

, (9)

where the symmetry energy slope L0 is defined as

L0 = 3n0
dEsym(nb)

dnb

∣∣∣∣
n0

. (10)

The paper is organized as follows: in Sec. II, the inaccuracy
of the parabolic approximation of the symmetry energy is
determined. The paper uses the approximation method based
on the Dyson summation approach. The representation of the
symmetry energy as a function generated by the Padé approx-
imants [40] allows the definition of a series of the Dyson type
and the use of its properties. The third section presents the
theoretical approach to assessing the energy of nuclear matter
and describes the parametrization of the sample of the models
used. In the fourth section, a two-dimensional regression anal-
ysis based on the splitting method of the symmetry energy into
the kinetic and potential part is given. The obtained results and
their discussion are included in the fifth section. Knowledge
about the properties of nuclear matter is obtained indirectly
from experiments. Thus their interpretation depends on how
reliable are the models involved in explaining the experimen-
tal observables. Different classes of models can be used to
describe individual observables. If several models overlap in
the experimentally acceptable description of the properties of
nuclear matter, it becomes possible to narrow down the area
of the model parameters.

A set of N = 23 RMF models is examined. Their multitude
results from the necessity to describe various experimental
situations. The study assumes that each of the RMF models
separately is reliably estimated by a very large number of real
observations. With this assumption, the presented statistical
analysis of the set of N RMF models concerns (as if) the
study of the experimental reality. Section IV presents a two-
dimensional analysis of the regression model selection based
on the Akaike information criterion [41], in which attention
focuses on the decomposition of the symmetry energy of the
model into the kinetic and potential parts. In Sec. V a series of
one-dimensional regression analyses for the input parameters
(Esym,2, L0, Esym,4, L4, nb, etc.) is performed. On the other

hand, the performed regression analysis allows for the clas-
sification of the RMF models, which would be justified even
if it concerned only the ordering of the theoretical parameters
space of RMF models.

II. THE INACCURACY OF THE PARABOLIC
APPROXIMATION TO THE SYMMETRY ENERGY

Critical issues in analyzing the symmetry energy have roots
in its implicit-like definition. The customarily applied ap-
proach uses the Taylor-series expansion of the nuclear matter
EoS because the Taylor series are practical tools for approx-
imating functions that can be difficult to compute otherwise.
The series (2) represents the function E (nb, δa) with satisfac-
tory accuracy in the vicinity of the point (n0, 0). Moreover, the
justification for the parabolic approximation has been verified
with good numerical accuracy based on various theoretical
models of nuclear matter. Thus, in many cases, the form of
the EoS used is based on the parabolic approximation, with
E2 being the dominant term of the asymmetry energy (3).
However, doubts about the validity of the parabolic approxi-
mation remain in the case of neutron-star matter characterized
by extreme values of density and isospin asymmetry. It has
been shown that special properties of neutron stars, such as
the proton fraction at beta equilibrium, the core-crust tran-
sition density, and the critical density for the direct URCA
process, are sensitive to the quartic term in the symmetry
energy [42,43]. Analysis of the fourth-order symmetry en-
ergy term within the selected nonlinear RMF models was
performed in Ref. [44]. The authors derived the explicit form
of the function Esym,4(nb) and then studied its corrections to
the parabolic law for the isospin asymmetric nuclear matter.
Their results confirm that the Esym,4(nb) influences isospin-
dependent properties of nuclear matter, such as the proton
fraction in β-stable neutron-star matter and the core-crust
transition density and pressure in neutron stars. In general, a
finite sum of Taylor terms does not guarantee stable nor sys-
tematically improvable approximation to the exact form of the
energy density function. The mathematical results suggest that
the Padé approximants approach gives a better representation
of the original function than the truncated Taylor series [40].
Several algorithms have been developed [45] to compare the
effectiveness of the Taylor and Padé methods. Assuming that
the function EP

sym(nb, δ) represents the form of the symme-
try energy fairly accurately [46,47], and E2 is its dominant
contribution then the fourth-order term E4 is considered as an
amendment. In this case,

E (nb, δ) = E0(nb) + EP
sym(nb, δ)δ2, (11)

where EP
sym(nb, δ)δ2 stands for the contribution of [46] the

asymmetry energy to the nuclear matter EoS. Introducing the
factor r(nb)

r(nb) = Esym,4(nb)[Esym,2(nb)]−2, (12)

the function EP
sym(nb, δ) can be written in the following way

[46]:

EP
sym(nb, δ) = Esym,2(nb)

1 − r(nb)Esym,2(nb)δ2
. (13)
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Functions Esym,2(nb) and Esym,4(nb), for which the exact den-
sity dependencies are unknown, set the form of r(nb). If
the parabolic approximation were exact then r(nb) would
vanish, r(nb) = 0, and EP

sym(nb) = Esym,2(nb). The function
w(nb) = Esym,4(nb)/Esym,2(nb) measures the importance of
the fourth-order symmetry energy contribution and can
roughly be understood, in the case of RMF models, as the
relative error of the parabolic approximation. In this con-
text, r(nb) = Esym,4(nb)[Esym,2(nb)]−2 = w[Esym,2(nb)]−1 can
be interpreted as the specific inaccuracy of the parabolic
approximation. The product r(nb)Esym,2(nb) = w(nb) carries
information about the relative value of the amendment and
thus the need to use higher-order terms. Knowing the function
r(nb) through the relationship Er (nb) = 1/r(nb) enables the
determination of the corresponding energy scale value Er (nb).

The necessity to introduce the fourth-order terms to the
description of asymmetric nuclear matter is analyzed by effec-
tive methods of the Dyson series type. The symbolic “Dyson”
series for EP

sym(nb, δ) is

EP
sym(nb, δ) = Esym,2(nb)

1 − r(nb)Esym,2(nb)δ2

= Esym,2(nb) + Esym,2(nb)[r(nb)δ2]Esym,2(nb)

+ Esym,2(nb)[r(nb)δ2]Esym,2(nb)[r(nb)δ2]

× Esym,2(nb) + · · · . (14)

The following analysis was performed on a sample of N = 23
RMF models.

The approximate solution to the function r(nb)

The saturation density for each model is denoted by n0,
which has different values for each RMF model. This model-
dependent n0 will be denoted ñ0. Introducing ñ0, which for a
specific model takes the value equal to its saturation density
n0, the following relation at the first-order approximation in
	nb ≡ (nb − ñ0) can be obtained from Eq. (12)

r(nb) ≈ r(ñ0)

(
1 − 2	nb

d ln Esym,2

dnb
(ñ0)

+	nb
d ln Esym,4

dnb
(ñ0)

)
, (15)

where, in line with Eq. (12), r(ñ0) = Esym,4(ñ0)E−2
sym,2(ñ0).

Equation (15) can be rewritten in the form:

1

r(ñ0)

r(nb) − r(ñ0)

	nb
≈ d ln Esym,4

dnb
(ñ0) − 2

d ln Esym,2

dnb
(ñ0).

(16)

Thus, assuming that the linear approximation in the expansion
(15) is satisfactory, the following relation can be obtained

1

r(ñ0)

r(nb) − r(ñ0)

nb − ñ0
= 	r(ñ0)

r(ñ0)

1

	nb
= − 1

Esym,2

dEsym,2

dnb
(ñ0)

− Esym,4

Esym,2

d

dnb

Esym,2

Esym,4
(ñ0), (17)

where ñ0 is a variable that takes values equal to saturation
densities for all the considered models. Given a specific model
with a saturation density n0, Eq. (17) can be rewritten in the
following form:

	r(n0)

r(n0)

1

	nb
≈ − 1

3n0

(
L0

Esym,2(n0)

+ 3n0
Esym,4(n0)

Esym,2(n0)

d

dnb

Esym,2

Esym,4
(n0)

)
, (18)

where L0 is the symmetry energy slope (10). Solution to the
relation (18) leads to the exponential behavior of r(nb) for a
given model:

r�(nb) = r0e
[− 1

3 ( L0
Esym,2 (n0 ) +C4(n0 ))(

nb−n0
n0

)]
, (19)

where r0 ≡ r(n0) and

C4(n0) = 3n0
Esym,4

Esym,2

d

dnb

Esym,2

Esym,4
(n0). (20)

The evolutionary form of the obtained solution suggests that
a continuation to a broader domain of density might not spoil
the accuracy of the approximation. The exponent in (19) is
a sum of two components. The first is the ratio of two main
parametrization factors describing the density dependence of
the symmetry energy L0/Esym,2(n0). The second (20) is the
correction resulting from both the fourth-order and second-
order terms in the Maclaurin expansion (2).

III. THE RELATIVISTIC MEAN-FIELD APPROACH

The following Lagrangian density function specifies the
detailed dynamics of the system:

L = L0 + Lint. (21)

The Lagrangian density of free baryon and meson fields L0 is
given by

L0 = ψ̄ (iγ μ∂μ − M )ψ + 1
2

(
∂μσ∂μσ − m2

σ σ 2
)

− 1
4 FμνFμν + 1

2 m2
ωωμωμ

− 1
4 BμνBμν + 1

2 m2
ρ �ρμ · �ρ μ, (22)

where σ , ωμ, and �ρμ represent the scalar-isoscalar σ , vector-
isoscalar ω, and vector-isovector ρ meson fields, respectively,
and ψ is the isodublet nucleon field. The field tensors Fμν and
Bμν are defined as Fμν = ∂μων − ∂νωμ and Bμν = ∂μ�ρν −
∂ν �ρμ. The interaction Lagrangian density Lint includes the
couplings of the standard Yukawa type and provides a variety
of nonlinear interactions of meson fields grouped in LNL

Lint = ψ̄

[
gσ σ −

(
gωωμ + 1

2
gρ �τ · �ρμ

)
γ μ

]
ψ + LNL, (23)

LNL = −A

3
σ 3 − B

4
σ 4 + C

4

(
g2

ωωμωμ
)2

+ gσ g2
ωσ (ωμωμ)

(
α1 + 1

2
α′

1gσ σ

)

+ gσ σg2
ρ (�ρμ�ρ μ)

(
α2 + 1

2
α′

2gσ σ

)

+ 1

2
α′

3(gωgρ )2(ωμωμ)(�ρμ�ρ μ). (24)
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The solution of the equations of motion that follows from
the Lagrange function (21) is at the root of calculating the
respective energy of the considered model. All analyses were
based on the mean-field approximation, in which the meson
fields are separated into classical components and quantum
fluctuations. After picking the vacuum expectation value, the
quantum fluctuation term vanishes and is not included in the
ground state, and only classical components remain:

σ → 〈σ 〉 ≡ s, ωμ → 〈ω〉 ≡ 〈ω0〉δμ0 ≡ ω0,

�ρ μ → 〈ρ3〉 ≡ 〈ρ0,3〉δμ0 ≡ r0,3. (25)

In this approach, the energy density of the system given as
the zero component of the energy-momentum tensor takes the
following form:

ε = 1

2
m2

σ s2 + A

3
s3 + B

4
s4 − 1

2
m2

ωω2
0

− C

4

(
g2

ωω2
0

)2 + gωω0nb

− 1

2
m2

ρr2
0,3 + gρr0,3n3b

− gσ s(gωω0)2

(
α1 + 1

2
α′

1gσ s

)
− gσ s(gρr0,3)2

×
(

α2 + 1

2
α′

2gσ s

)
− 1

2
α′

3(gωω0)2(gρr0,3)2

+
∑
j=n,p

g

2π2

∫ kF j

0
k2

√
k2 + M2

eff, jdk, (26)

where Meff = M − gσ s denotes the effective nucleon mass
and n3b = 〈ψ̄γ 0τ3ψ〉 = np − nn, and g under the sum repre-
sents the number of degrees of freedom. The nonlinear meson
interaction terms which are necessary for the construction of a
correct nuclear matter EoS alter both the isoscalar and isovec-
tor sectors [31,48]. However, since the expectation value of
the ρ field is generally an order of magnitude smaller than that
of the ω field, higher-order nonlinear couplings of the ρ meson
are not considered because they only have a marginally influ-
ence on the properties of finite nuclei. In the case of infinite
nuclear matter, it was shown that the quartic ρ meson coupling
gives a measurable effect only in stars made of pure neutron
matter. As an example of the parametrization that considers
the quartic ρ meson term, the results obtained in Ref. [49]
can be given. This paper analyzes the relationship between
the skin of heavy nuclei rich in neutrons and the properties of
a neutron-star crust. It was verified that changes in parameter
sets that lead to an increase in the effective mass of the nucleon
or increase the strength of the ρ meson coupling lead to the
softening of the EoS for high densities, which gives as a result
neutron-star models with slightly smaller radii. The appropri-
ate coupling constants determine the strength of the nonlinear
meson interactions. The energy density of the system given
by Eq. (26) encodes the correct form of the symmetry energy.
The Taylor series expansion method is a simple and generally
accepted approximation that makes it possible to calculate
its density dependence. The following equations present the
explicit form of the symmetry energy Esym,2(nb) and its slope

TABLE I. Parameters characterizing isospin asymmetric nuclear
matter that are subject to experimental constraints.

Coefficient Span of experimental constraints

Esym,2(n0) 25–35 MeV
Esym,2(n0) 30–35 MeV
L0 25–115 MeV
K0

τ,v (n0) −700– − 400 MeV
Esym,2 (n0/2)

Esym,2 (n0 ) 0.57–0.86

L(nb):

Esym,2(nb) = k2
F

6
√

k2
F + M2

eff

+ g2
ρnb

8m2
ρ,eff

, (27)

L(nb) = k2
F

3
√

k2
F + M2

eff

− k4
F

6
√(

k2
F + M2

eff

)3

×
(

1 + 2MeffkF

π2

∂Meff

∂nb

)
+ 3g2

ρ

8m2
ρ,eff

nb

− 3g2
ρ

8m4
ρ,eff

∂m2
ρ,eff

∂nb
n2

b, (28)

where m2
ρ,eff = m2

ρ + gσ sg2
ρ (2α2 + α′

2gσ s) + α′
3(gωgρ )2ω2

0
denotes the effective mass of the ρ meson. The first
component of the sum in the symmetry-energy expression,
Eq. (27), is the kinetic part and the second represents the
potential-energy contribution.

Parameters

The process of a continuous and more accurate description
of the properties of nuclear matter requires using reliable mod-
els. In the case of RMF models, it consists of the appropriate
selection of model parameters. The presented discussion is
based on the calculations performed using selected models,
the parametrizations of which are studied in Refs. [13,50].
Their compliance with the limitations resulting from the anal-
ysis of experimental data obtained for nuclear matter with
different values of isospin asymmetry, emphasizing the ne-
cessity to reproduce the properties of symmetric matter and
neutron matter, justifies this choice. The choice of experi-
mental constraints in the case of symmetrical matter (δ = 0)
considers the nuclear matter incompressibility at saturation
density K0 in the range 190–270 MeV [51–53], the skewness
coefficient −Q in the range 200–1200 MeV [54], the pressure
P(nb) in density ranges (2n0, 5n0) and (1.5n0, 2.5n0) [2,55].
The last group of limitations is addressed to the isovector
sector of the EoS [35], and more specifically to the symmetry
energy coefficient Esym(n0) [56], the symmetry energy slope
L0 evaluated at n0 [57,58], the volume part of the isospin
incompressibility K0

τ,v at n0 [13,59,60], and the ratio of the
symmetry energy at n0/2 to its value at n0 [61]. Individual
values of constraints for the coefficients characterizing the
isospin-dependent part of the EoS are summarized in Ta-
ble I. Thus, the carefully selected sets of parameters that
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satisfactorily meet the nuclear matter constraints were used
for the analysis in this paper. A characteristic feature of the
selected models is the variety of nonlinear meson interaction
terms. Their presence in the isospin-dependent sector makes it
possible to remodel the density dependence of the symmetry
energy.

IV. TWO-DIMENSIONAL REGRESSION FOR THE
L0/Esym,2(n0) RATIO

The function r�(nb), Eq. (19), which represents approx-
imate form of the specific parabolic approximation r(nb)
includes, in the exponent, the term L0/Esym,2(n0). This factor
originates from the parabolic approximation and suggests that
the ratio L0

Esym,2(n0 ) is worth attention. It can be recast to the
following form:

L0

Esym,2(n0)
= Lkin

0

Esym,2(n0)
+ Lpot

0

Esym,2(n0)
, (29)

where L0 = Lkin
0 + Lpot

0 is decomposed into the kinetic and
potential parts, respectively. The power-law relation for the
density dependence of the symmetry energy introduces the
factor γ , Eq. (9), that differentiates the considered models and
can be expressed as follows:

γ = Lpot
0

3Epot
sym,2(n0)

. (30)

The potential part of the symmetry energy can be given by the
formula [see Eq. (27)]

Epot
sym,2(nb) = g2

ρnb

8m2
ρ,eff

, (31)

and, in such case, the kinetic energy has the form

Ekin
sym,2 = k2

F

6
√

k2
F + M2

eff

. (32)

The exponent in the power-law parametrization of the sym-
metry energy corresponding to the division of the symmetry
energy into the potential and kinetic part given by Eqs. (31)
and (32) is denoted by γ1. A second parameter γ2 [50], which
corresponds to the modified form of the potential symmetry
energy, could be used. It is related to the splitting of the
symmetry energy into kinetic and potential parts. In the case
of γ2, the kinetic part does not include the medium-modified
effective nucleon mass and is given by the formula

Ekin
sym,2 = k2

F

6
√

k2
F + M2

, (33)

the potential symmetry energy is also remodeled

Epot
sym,2 = k2

F

6
√

k2
F + M2

eff

− k2
F

6
√

k2
F + M2

+ g2
ρnb

8m2
ρ,eff

. (34)

The changed symmetry energy distribution causes a corre-
spondingly changed distribution of its slope. So there is a
possibility to include the power-law parametrization in the

performed analysis. Using Eq. (30) the ratio L0/Esym,2(n0) can
be rewritten as

L0

Esym,2(n0)
= 1

Lkin
0

Esym,2(n0)
+

(
3

Epot
sym,2(n0)

Esym,2(n0)

)
γ , (35)

or

L0

Esym,2(n0)
=

(
Ekin

sym,2(n0)

Esym,2(n0)

)
Lkin

0

Ekin
sym,2(n0)

+
(

3
Epot

sym,2(n0)

Esym,2(n0)

)
γ , (36)

where the almost constancy of the factor
3Epot

sym,2(n0)/Esym,2(n0) across the RMF models, [13], is
the reason for the decompositions (35) or (36) with γ being
as one of the two variables on the RHS of these equations.
In this way, γ naturally appears in the analysis. It will
be checked that the variability of Ekin

sym,2(n0)/Esym,2(n0) in
Eq. (36) is also negligible, allowing for treating its mean
across the RFM models as a coefficient before the variable
Lkin

0 /Ekin
sym,2(n0) (see Secs. IV B 1 and IV B 2). In the analysis

of models (35) and (36), the Akaike information criterion
is used for model selection [69]. The motivation behind its
usage is the maximum likelihood method, which maximizes
the probability of realization of the observed sample, in this
case, represented by the analyzed set of models. This will
be explained in Sec. IV A. In Sec. IV B, it will be shown
that, by using the Akaike information criterion, the discussed
representations (35) and (36) of L0/Esym,2(n0) enables one
to differentiate between various forms of the kinetic part
of the symmetry energy. This distinction is based on the
fact that if the kinetic energy is given by the formula (33),
then the Akaike criterion picks out the model (36), with
Ekin

sym,2(n0) in the denominator of the first factor. Contrary
to this, when the kinetic energy takes into account the
effective mass of the nucleon, Eq. (32), the model (35) is
preferred, with Esym,2(n0) in the denominator of the first
factor. Application of the Akaike criterion to this problem
requires the construction of appropriate regression functions
related to the pair of relationships (35) and (36), and the
assumption that the variable L0/Esym,2(n0) and the factors
Lkin

0 /Esym,2(n0) and γ in Eq. (35) or Lkin
0 /Ekin

sym,2(n0) and γ in
Eq. (36) are random variables. Although analytical models
(35) and (36) are equivalent, they lead to different linear
regression models in the population of all considered models.
That is, when L0/Esym,2(n0) is treated as the response variable
and the factors Lkin

0 /Esym,2(n0) and γ in Eq. (35) or the factors
Lkin

0

Ekin
sym,2(n0 )

and γ in Eq. (36) are recognized as the explanatory

ones then Eq. (35) and Eq. (36) can be perceived as two
regression models in the space of the discussed models. Due
to the difference in the form of the factor Lkin

0 /Esym,2(n0) in
Eq. (35) and Lkin

0 /Ekin
sym,2(n0) in Eq. (36), the matching of these

two regression models to the sample of the considered models
in which the kinetic term is constructed differently, will also
be different. An additional reason for such a choice of factors
is that the coefficients standing before them have relatively
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low variability in the group of the studied RMF models (see
Secs. IV B 1 and IV B 2).

From the analytical models given by Eqs. (35) and (36) it
is evident that the intercept is equal to zero. Thus, the form of
the analytical models (35) and (36) requires that the intercept
(offset) in the statistical counterparts of these equations is also
equal to zero. Therefore, two statistical regression models fk ,
k = 1, 2 (see Sec. IV B), are proposed:

Model1 :
L0

Esym,2(n0)
= α1,1

Lkin
0

Esym,2(n0)
+ α1,2γ + E , (37)

where L0/Esym,2(n0) is the response, and Lkin
0 /Esym,2(n0) and

γ are the factors and E is the error (random ingredient), or

Model2 :
L0

Esym,2(n0)
= α2,1

Lkin
0

Ekin
sym,2(n0)

+ α2,2γ + E , (38)

where L0/Esym,2(n0) is the response, and Lkin
0 /Ekin

sym,2(n0) and
γ are the factors and E is the error. In a compact form these
models can be rewritten as follows:

ModelM :
L0

Esym,2(n0)
=

(
L0

Esym,2(n0)

)
theor

+ E , (39)

where [L0/Esym,2(n0)]theor is the theoretical (theor) value (the
conditional expectation value) of the response, i.e.,(

L0

Esym,2(n0)

)
theor

= αM,1AM + αM,2γ . (40)

Here, for M = 1 the corresponding statistical model is called
f1 with the first factor AM = A1 = Lkin

0 /Esym,2(n0), and for
M = 2 the corresponding statistical model is called f2 with
the first factor AM = A2 = Lkin

0 /Ekin
sym,2(n0).

If a sample of N models is chosen from the population of
RMF models, then the regression model (40) is estimated by

L0

Esym,2(n0)
=

̂L0

Esym,2(n0)
+ Ê , (41)

where

̂L0

Esym,2(n0)
= α̂M,1AM + α̂M,2γ (42)

is the conditional mean of the response and the error term E in
Eq. (39) is replaced by its estimate Ê . Throughout this paper,
the variance of the error term Ê is denoted by MSE (mean
squared error) [70].

A. The consistency assumption for every relativistic
mean-field model

In this paper, it is assumed that every theoretical RMF
point in the sample of N = 23 RMF models is estimated con-
sistently (and thus without any bias, at least asymptotically).
Therefore, every theoretical RMF point on the scatter diagram
[with coordinates L0/Esym,2(n0) for the response and AM and
γ for the factors] coincides with the estimate obtained for
the infinite number n of hypothetical experiments testing this
RMF model. It follows that in the limits n → ∞ and for all the
population of RMF models, the finite sample error Ê tends to
E .

B. The Akaike information criterion analysis

Below, the Akaike information criterion model selection
procedure for the (N = 23) RMF model points is used. In
Secs. IV B 1 and IV B 2 the estimation of regression models
(37) and (38) using the sample of N = 23 points of the RMF
models is performed.

To select the better regression model from the two models
(37) and (38) considered in this paper, the Akaike infor-
mation criterion for the normal distribution of the response
L0/Esym,2(n0) and explanatory variables AM and γ is used.
The Akaike information criterion (AIC) for a model with a
“free” parameter �K is defined as follows:

AIC(�K ) = −2 ln L(�̂K ) + 2K, (43)

where L(�K ) is the likelihood function of the model with
�K parameter in the N-dimensional sample and �̂K is a
maximum likelihood (ML) estimator of the K-dimensional
parameter �K . In Sec. IV, �K=2 = (α1,1, α1,2) for Model1
and �K=2 = (α2,1, α2,2) for Model2. More information on the
Akaike information criterion model selection can be found,
e.g., in Ref. [69]. In the sense of Kullback-Leibler relative
entropy, a model with a lower value of AIC can be under-
stood as being closer than other models to a certain “true”
model. This can be justified in the following way: Let the
data y = (y1, y2, . . . , yN ) be generated by the unknown, true
model g for the random variable Y and let the model fk be the
candidate for the description of the investigated phenomenon
(e.g., the statistical models f1 for the regression Model1 and
f2 for the regression Model2, see Sec. IV). Thus, the model
fk ≡ fk (Y,�K ) in the light of data coming from the g(Y )
model is considered. The maximization of the log-likelihood
function ln L f (y|�K ) for L f being the likelihood function for
the fk model is asymptotically (or on average) equivalent to
maximizing the expectation value

λ(�K ) ≡ Eg[ln fk (Y,�K )].

The parameter �K is unknown, thus, it is replaced by its max-
imum likelihood method (MLM) estimator �̂K . Therefore,
instead of λ(�K ) the expectation value

QK ≡ Eg,h�K
[ln fk (Y, �̂K )]

is maximized, where h�K is the distribution h�K (�̂K ) of
the estimator �̂K . The maximization of QK is equivalent
to the minimization of −2NQK , where N is the dimension
of the sample. As AIC( fk ) is approximately the unbiased
estimator of −2NQK , the model which minimizes AIC( fk )
is chosen. Asymptotically (or in the mean), the MLM
is equivalent to the minimization of the Kullback-Leibler
distance

D(g, f ) = Eg[ln g(Y )] − Eg[ln fk (Y,�K )]

= Eg[ln g(Y )] − λ(�K ) (44)

between the models fk and g. In this case, the minimization
of AIC( fk ) implies the selection of the model that minimizes
the distance of the model fk chosen for the purpose of the
statistical analysis from the unknown, true model g.
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TABLE II. The characteristics of the two-dimensional linear regressions Y ≡ L0/Esym,2(n0) = α̂M,1AM + α̂M,2γ + Ê , M = 1, 2, (41), (42)
for γ1 and γ2, where A1 = Lkin

0 /Esym,2(n0), A2 = Lkin
0 /E kin

sym,2(n0 ) and nb = n0. The characteristics of the regressions are the Akaike information
criterion AIC for the model defined in Eq. (43) and supplementarily, the mean square due to regression MSR [70], the mean squared error MSE
(which is the variance of the error term Ê ), and the coefficient of determination R2 = SSR/SSY , where SSR and SSY are the sum of squares
due to regression and the total sum of squares of the response Y , respectively, and SSY = SSR + SSE , where SSE is the error sum of squares.
The values of α̂M,1, α̂M,2 are the estimates of the structural parameters of a particular regression model and Ŷ stands for the approximant of
Ytheor = αM,1AM + αM,2γ . σ̂α̂M,1 and σ̂α̂M,2 are the standard errors of α̂M,1 and α̂M,2, respectively. The regression model does not contain an offset.

Ŷ = α̂M,1AM + α̂M,2γ α̂M,1 σ̂α̂M,1 α̂M,2 σ̂α̂M,2 AIC SSE MSR MSE R2 N

Ŷ = α̂1,1A1 + α̂1,2γ , γ = γ1 0.98417 0.01223 1.49976 0.04164 −75.32436 0.0426263 50.13187 0.00203 0.9996 23
Ŷ = α̂2,1A2 + α̂2,2γ , γ = γ1 0.56087 0.00739 1.21478 0.04744 −72.61983 0.0479453 50.12921 0.00228 0.9995 23
Ŷ = α̂1,1A1 + α̂1,2γ , γ = γ2 0.89957 0.03121 2.05395 0.02891 −107.85549 0.0103613 50.14800 0.00049339 0.9999 23
Ŷ = α̂2,1A2 + α̂2,2γ , γ = γ2 0.34671 0.00441 1.96486 0.01171 −153.54415 0.0014214 50.15247 0.00006768 ≈1 23

1. Model selection for γ ≡ γ1

The analysis of the sample of N = 23 models for
γ ≡ γ1 (Table II) gives AIC(Model1) = −75.32436
and AIC(Model2) = −72.61983. As AIC(Model1) <

AIC(Model2), therefore Model1 is chosen, for which
AM = A1 = Lkin

0 /Esym,2(n0). Then the estimates of the
structure parameters α1,1 and α1,2 are

Model1 : α̂1,1 = 0.98417 and α̂1,2 = 1.49976, (45)

and the N sample estimate of [L0/Esym,2(n0)]theor, Eq. (42), is

̂L0

Esym,2(n0)
= α̂1,1

Lkin
0

Esym,2(n0)
+ α̂1,2γ . (46)

Here,

̂L0

Esym,2(n0)

is the conditional mean of L0/Esym,2(n0).
The scatter plot of the RMF models and the regression

surface given by Eq. (46) is shown in Fig. 1. If the considered
RMF points exhaust all physical situations, then α̂1,1 = α1,1

FIG. 1. Plot of the two-dimensional regression surface for γ1.
The RMF models are numbered in the order they appear in Table II.

and α̂1,2 = α1,2. For the considered sample of N = 23 RMF
models for γ = γ1, the relative standard errors of estimation
of α1,1 and α1,2 are equal to 1.243% and 2.776%, respectively
(see Table II). The coefficient of determination R-squared
[70], which is a goodness-of-fit measure for linear regression
models, has the value R2 = 0.9996 (see Table II). The corre-
sponding means 1 = 1 and

3
Epot

sym,2(n0)

Esym,2(n0)
= 1.42496

[see Eq. (35)] are close to the values α̂1,1 = 0.98417 and
α̂1,2 = 1.49976, respectively. This fact, together with the
weak variability of 3Epot

sym,2(n0)/Esym,2(n0), for which the

coefficient of variation V [3Epot
sym,2(n0)/Esym,2(n0)] = 8.601%,

justifies the assumption that the factors on the right-hand side
(RHS) of Eq. (35) are Lkin

0 /Esym,2(n0) and γ . Nevertheless,
this weak variability of 3Epot

sym,2(n0)/Esym,2(n0), suggests that

the coefficients 1 and 3Epot
sym,2(n0)/Esym,2(n0) in Eq. (35) have

to be replaced by ones resulting from the correction of the
relation (30). This could follow from taking into account the
higher-order terms in Eq. (5).

FIG. 2. Plot of the two-dimensional regression surface for γ2.
The RMF models are numbered in the order they appear in Table II.
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TABLE III. An exemplary characteristic of models in terms of the nonlinear couplings of mesons.

Group Models σ − ω2 σ 2 − ω2 σ − ρ2 σ 2 − ρ2 ρ2 − ω2 m2
ρ,eff

BSR + + + + +
Group Ia m2

ρ + gσ sg2
ρ (2α2 + α′

2gσ s) + α′
3(gωgρ )2ω2

0FSUGZ03 + + + + +
FSUGZ06 + + + + +

BKA + + + − −
Group Ib m2

ρ + 2α2gσ g2
ρs

G2� + + + − −
FSUGold − − − − +

Group II m2
ρ + α′

3(gωgρ )2ω2
0FSUGold4 − − − − +

IU-FSU − − − − +
Z271s6 − − − + −

Group III m2
ρ + α′

2(gσ gρ )2s2

Z271s5 − − − + −
Z271s4 − − − + −

2. Model selection for γ ≡ γ2

Similarly, the analysis of the sample of N = 23
models for γ ≡ γ2 (Table II) gives AIC(Model1) =
−107.85549 and AIC(Model2) = −153.54415. As
AIC(Model2) < AIC(Model1), Model2 is selected, for
which AM = A2 = Lkin

0 /Ekin
sym,2(n0). Then the estimates of the

structure parameters α2,1 and α2,2 are

Model2 : α̂2,1 = 0.34671 and α̂2,2 = 1.96486, (47)

and the N sample estimates of [L0/Esym,2(n0)]theor is

̂L0

Esym,2(n0)
= α̂2,1

Lkin
0

Ekin
sym,2(n0)

+ α̂2,2γ . (48)

The corresponding scatter plot of the RMF models and the
regression surface given by Eq. (48) is shown in Fig. 2. If the
considered RMF points exhaust all physical situations then
α̂2,1 = α2,1 and α̂2,2 = α2,2. For the considered sample of N =
23 RMF models for γ = γ2, the relative standard errors of

estimation of α2,1 and α2,2 are equal to 1.272% and 0.596%,
respectively (see Table II). The coefficient of determination
R-squared has the value R2 ≈ 1. The means

Ekin
sym,2(n0)

Esym,2(n0)
= 0.34853

and

3
Epot

sym,2(n0)

Esym,2(n0)
= 1.95442

[see Eq. (36)] are close to the values α̂2,1 = 0.34671
and α̂2,2 = 1.96486, respectively. This fact, together
with the weak variability of Ekin

sym,2(n0)/Esym,2(n0) and

3Epot
sym,2(n0)/Esym,2(n0), for which the coefficient of

variation is equal to V [Ekin
sym,2(n0)/Esym,2(n0)] = 4.036% and

V [3Epot
sym,2(n0)/Esym,2(n0)] = 2.159%, respectively, justifies

the assumption that the factors on the RHS of Eq. (36)

FIG. 3. The left panel shows the density dependence of the symmetry energy Esym,2(nb) obtained within the parabolic approximation
for parametrizations that represent the four groups of models discussed. The right panel depicts the density dependence of the fourth-order
symmetry energy Esym,4(nb). The models are listed in the figure legend according to the dependent variable value (from the lowest to the
highest) at the saturation density n0 of the given model. The same order is also used in other figures where the dependence on nb is considered.
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TABLE V. The characteristics of Y ≡ Esym,2(n0) vs X ≡ L0 regression: the mean square due to regression MSR, the mean squared error
MSE and the coefficient of determination R2. When the error sum of squares SSE = 0 then the total mean square MSY for the response Y is
given, a, b and c are the estimates of the structural parameters of a particular regression model. In the linear regression case c = 0. Ni is the
size of the group.

a b c MSR MSE R2 Ni

Êsym,2 = a + bL0 + cL2
0 MeV MeV−1 MeV2 MeV2

Group Ia (BSR, FSUGZ03, FSUGZ06) 11.23958 0.45512 −0.00215 9.36761 0.03115 0.98364 13
Group Ib (BKA, G2�) −39.04488 1.60742 −0.00877 3.89676 0.00335 0.99957 4
Group II (FSUGold, FSUGold4, IU-FSU) 51.04781 −0.82104 0.00853 MSY = 0.51905 1 3
Group III (Z271s6, Z271s5, Z271s4) 24.46057 0.16761 −5.58035 ×10−4 MSY = 0.44163 1 3
All groups 39.47017 −0.30662 0.0028927 11.16314 0.41083 0.73098 23
Êsym,2 = a + bL0 MeV MeV2 MeV2

Group Ia (BSR, FSUGZ03, FSUGZ06) 22.47243 0.14171 18.48784 0.050807 0.97066 13
Group Ib (BKA, G2�) 13.04805 0.25223 7.57194 0.11247 0.97115 4
Group II (FSUGold, FSUGold4, IU-FSU) 26.30182 0.10275 0.96372 0.07439 0.92834 3
Group III (Z271s6, Z271s5, Z271s4) 26.0775 0.10727 0.88295 0.00030125 0.99966 3
All groups 26.8095 0.081484 18.86494 0.55609 0.61765 23

are Lkin
0 /Ekin

sym,2(n0) and γ . Thus, Ekin
sym,2(n0)/Esym,2(n0) and

3Epot
sym,2(n0)/Esym,2(n0) in Eq. (36) are equal to almost

constant coefficients. Nevertheless, this weak variability
of Ekin

sym,2(n0)/Esym,2(n0) and 3Epot
sym,2(n0)/Esym,2(n0)

suggests that the coefficients Ekin
sym,2(n0)/Esym,2(n0) and

3Epot
sym,2(n0)/Esym,2(n0) in Eq. (36) have to be replaced by new

ones, resulting from correcting the relation Eq. (30). This
could be acquired by taking into account higher-order terms
in Eq. (5).

V. RESULTS

The assumption that every theoretical RMF point in the
sample of N = 23 models is estimated consistently was
adopted for all regression analyses. From Secs. IV B 1 and
IV B 2 it follows that the symmetry energy decomposition into
the kinetic and potential parts is reflected in the results ob-
tained by the Akaike information criterion for model selection
(Table II). For the reason that there are differences in the form
of the first factors A1 = Lkin

0 /Esym,2(n0) in Eq. (35) and A2 =
Lkin

0 /Ekin
sym,2(n0) in Eq. (36), the fits of these two regression

models to the sample of models considered, in which the ki-
netic component is constructed differently, are also different.
In the first case, the Akaike criterion chooses the model de-
scribed by Eq. (35). Therefore, the exponent in the power-law
parametrization of the potential part of the symmetry energy,
Eq. (8), is given by γ1, whereas for the factor constructed
from the pure kinetic terms only [i.e., Lkin

0 /Ekin
sym,2(n0)] the

model specified by Eq. (36) with the exponent γ2 is preferred.
Thus, when applied to the power-law shape of the symmetry
energy, the two-dimensional regression model analysis leads
to density dependence of the symmetry energy differentiated
by the value of the γ exponent.

Next, a one-dimensional regression analysis was per-
formed to provide supplementary information about the
sample of selected models. Due to the ρ meson effective mass,
all models in the considered sample are divided into four
groups. Details are given in Tables III and IV. Underneath

these groups reveal themselves in one-dimensional regression
analysis between the input parameters. The assumption was
made that the theoretical value of a response Y , i.e., the con-
ditional expectation value, is Ytheor = α + βX , where X is a
factor. Then the estimator of Ytheor in the sample of N models
is the conditional mean Ŷ = α̂ + β̂X , where α̂ and β̂ are the
estimators of the structural parameters α and β of the regres-
sion model. The values of the estimators α̂ and β̂ in the sample
will be denoted by a and b, respectively. The regression model
in the sample has the form Y = Ŷ + Ê , where Ê is the error.
The results for analyzed linear regressions between various
input parameters X and Y are collected in Tables V–IX. If N
considered RMF points would exhaust all physical situations,
then the estimates a = α and b = β.

A. Inaccuracy of the parabolic approximation:
The role of the symmetry energy

The input parameters used in the performed regression
analysis include, among others, coefficients characterizing the
dependence of the symmetry energy on the density. Thus,
the second Esym,2(nb) and fourth-order Esym,4(nb) symmetry
energy functions are the analysis’s starting point. Results in
the left and right panels in Fig. 3 were obtained for the repre-
sentative parametrizations for selected groups of models. The
division of the considered models into groups will be justified
later in the text.

The nonlinear meson interaction terms modify the system’s
energy density. Such a modification is equivalent to changing
the main EoS characteristics, appearing in Taylor expansion
for the symmetric and asymmetric matter. In the case of
asymmetric matter, these changes concern, among others,
the symmetry-energy coefficient, the form of the symmetry
energy, and its slope. Providing that the parabolic approxi-
mation is sufficient, the symmetry-energy dependencies on
density Esym,2(nb) show behavior characteristic of the RMF
models, i.e., they are functions increasing with density. It is
well known that an almost linear relationship is obtained in
the extreme case, but it can be easily modified by including
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TABLE VIII. Characteristics of (E pot
sym,2)−2(n0 ) vs Lpot

0 , (E kin
sym,2)−2(n0) vs Lkin

0 and γ vs r(n0) regressions for γ1. The characteristics of the
regressions are the mean square due to regression MSR, the mean squared error MSE , and the Pearson correlation coefficient rX,Y , a, and b are
the estimates of the structural parameters of a particular regression model. Ni is the size of the group.

RMF Models a b MSR MSE Pearson r·,· Ni

(Ê pot
sym,2)−2 = a + bLpot

0 MeV−2 MeV−3 MeV−4 MeV−4

Group Ia BSR, FSUGZ03, FSUGZ06 0.0060126 −7.57863 ×10−5 5.75991 ×10−6 5.05004 ×10−8 −0.95501 13
Group Ib BKA, G2� 0.0086623 −0.00016112 1.16554 ×10−6 1.77416 ×10−7 −0.87557 4
Group II FSUGold, FSUGold4, IU-FSU 0.0051507 −6.83135 ×10−5 7.49779 ×10−7 1.1468 ×10−8 −0.99244 3
Group III Z271s6, Z271s5, Z271s4 0.0038609 −3.65655 ×10−5 1.02589 ×10−7 2.60022 ×10−10 −0.99874 3
(Ê kin

sym,2)−2 = a + bLkin
0 MeV−2 MeV−3 MeV−4 MeV−4

Group Ia BSR, FSUGZ03, FSUGZ06 0.0043 −1.96191 ×10−5 1.21959 ×10−8 3.10725 ×10−10 −0.88379 13
Group Ib BKA, G2� 0.0068088 −6.76529 ×10−5 1.12622 ×10−7 6.75377 ×10−9 −0.94494 4
Group II FSUGold, FSUGold4, IU-FSU 0.0052405 −3.91962 ×10−5 2.36291 ×10−8 2.96855 ×10−10 −0.99378 3
Group III Z271s6, Z271s5, Z271s4 0.0052381 3
All groups 0.0084653 −0.00010151 9.61737 ×10−6 1.65674 ×10−8 −0.98239 23
γ̂ = a + br0 MeV

Group Ia BSR, FSUGZ03, FSUGZ06 2.26262 −2565.16545 0.29432 0.0022886 −0.95979 13
Group Ib BKA, G2� 0.99671 −595.26274 0.0024162 0.001645 −0.65072 4
Group II FSUGold, FSUGold4, IU-FSU 1.6318 −1475.4594 0.081895 0.0050426 −0.97057 3
Group III Z271s6, Z271s5, Z271s4 1.6318 −1475.4594 0.081895 0.0050426 −0.99931 3

the mentioned nonlinear meson interaction terms. The results
presented in Fig. 3 reveal an interesting property. The depen-
dencies of Esym,2(nb) on density, depicted in the left panel in
Fig. 3, represent a family of curves similar in shape, with
gradually diminishing values for a given density, but this is
the Esym,4(nb) that allows for introducing some systematics
in ordering the analyzed models. In the right panel in Fig. 3
the density dependence of Esym,4(nb) is depicted. The re-
sults obtained for the Z272s5 and Z272s6 parametrizations
are noteworthy as their Esym,4(nb) values exceed those ob-
tained for other models. Also, the concavity of the function
Esym,4(nb) for these models is different. The results of further

analysis are represented in a sequence of figures and concern
forms of functions r(nb) and w(nb). Having obtained the
second and fourth-order symmetry-energy functions makes it
possible to find a solution to the function r(nb) determining
the specific inaccuracy (Sec. II) of the parabolic approxima-
tion. The results are given in the left panel in Fig. 4. This
figure shows functions r(nb) for parametrizations gathered
in Table IV. The order in which individual curves appear
in Fig. 4 results from the value of the function r(nb) in n0.
Details are given in the figure legend. In general, functions
r(nb) are model dependent and do not increase with density.
The exception is the group of FSU models, for which some

TABLE IX. Characteristics of (E pot
sym,2)−2(n0) vs Lpot

0 , (E kin
sym,2)−2(n0) vs Lkin

0 , and γ vs r(n0) regressions for γ2. The characteristics of the
regressions are the mean square due to regression MSR, the mean squared error MSE , and the Pearson correlation coefficient rX,Y . a and b are
the estimates of the structural parameters of a particular regression model. Ni is the size of the group.

RMF Models a b MSR MSE Pearson r·,· Ni

(Ê pot
sym,2)−2 = a + bLpot

0 MeV−2 MeV−3 MeV−4 MeV−4

Group Ia BSR, FSUGZ03, FSUGZ06 0.0036305 −2.86661 ×10−5 7.54949 ×10−7 2.6394 ×10−9 −0.98131 13
Group Ib BKA, G2� 0.0054917 −5.84224 ×10−5 4.3713 ×10−7 1.58213 ×10−8 −0.96566 4
Group II FSUGold, FSUGold4, IU-FSU 0.0032533 −2.7058 ×10−5 7.17328 ×10−8 4.28126 ×10−10 −0.99703 3
Group III Z271s6, Z271s5, Z271s4 0.0031536 −2.45852 ×10−5 4.63788 ×10−8 9.98246 ×10−11 −0.99893 3
(Ê kin

sym,2)−2 = a + bLkin
0 MeV−2 MeV−3 MeV−4 MeV−4

All groups 0.023890 −0.000736 4.93132 ×10−7 6.64906 ×10−12 −0.99986 23
γ̂ = a + br0 MeV

Group Ia BSR, FSUGZ03, FSUGZ06 1.80773 −1460.89946 0.095461 0.00030713 −0.98276 13
Group Ib BKA, G2� 1.2584 −569.95247 0.0022151 0.00060328 −0.8046 4
Group II FSUGold, FSUGold4, IU-FSU 1.23879 −676.33617 0.0172085 8.2095 ×10−5 −0.99762 3
Group III Z271s6, Z271s5, Z271s4 0.90048 −174.73706 0.013904 2.32044 ×10−5 −0.99917 3
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FIG. 4. The left panel presents the parabolic approximation r(nb) inaccuracy as a function of baryon density nb calculated for the whole set
of parametrizations. The right panel shows the dependence on the density of the correction factors C4 obtained for the selected parametrizations.
The differentiation is evident.

functions r(nb) have minimum and group of Z272 models
for which some functions have maximum. Solving Eq. (18)
makes it possible to determine the approximate form of the
function r(nb) denoted in the following by r�(nb). This ap-
proximate solution is given by Eq. (19). It shows that two
factors determine the density dependence of r�(nb), the first
being the model-specific L0/Esym,2(n0) ratio and the second
being the correction factor, which reflects the influence of the
fourth-order symmetry energy. Calculating the function r�(nb)
requires determining the value of the C4 correction factor
given by Eq. (20) for the saturation density n0. However, the
C4(nb) dependence is also presented for the results’ complete-
ness. The density dependence of C4(nb) for the representatives
of the distinguished group of models is displayed in the right
panel in Fig. 4. The factor that introduces the correction from
the fourth-order symmetry energy reveals significantly dif-
ferent density dependencies for parametrizations considered
in Fig. 3. The left panel in Fig. 5 shows the approximate
solutions to Eq. (19), for all the parametrizations used. The
most numerous group are parametrizations for which r�(nb)
decreases with the density. Three sets of parameters (Group
II), for which the dependence on the density is the steep-
est, deserve mentioning. Although, in this case, the functions
r�(nb) take large values near the point n0, their values de-
crease quickly with increasing density. Models of Group III
show exceptionally high values of r�(nb). In the case of the
Z271s4 and Z271s5 parametrizations, one observes a further
increase with density. An additional advantage of the approx-
imate solution given by Eq. (19) is that the function r�(nb)
can be determined using the Taylor expansion coefficients
of the functions Esym,2(nb) and Esym,4(nb) taken at n0. The
approximate solution given by the exponential function well
reproduces the function r(nb) in a limited density range, close
to the saturation value. The left panel in Fig. 5 shows functions
r�(nb) calculated for the acceptable range of density. In the

case of models belonging to Groups Ia, Ib, and II, the span
of this density range is from n0 to 2n0. The comparison of
the exact solutions with the approximate one (right panel in
Fig. 5) indicates the necessity to truncate the r�(nb) solution
to a limited range of density. The density range for which the
approximate solution is consistent with the exact one is de-
termined by comparing these two functions. The exponential
solution is less accurate, especially for densities greater than
2n0. The mean approximation error at nb = 2n0 for the RMF
models in the combined Groups Ia, Ib, and II is approximately
10%. The density range encountered in the r� solution for the
Z271s4, Z271s5, and Z271s6 parametrizations is even more
narrow due to the approximation error, which in these cases
increases significantly with density.

Knowing the function r(nb) a factor measuring the impor-
tance of the Esym,4(nb)/Esym,2(nb) the ratio can be determined.
It is reasonable to determine the w(nb) function in the limited
density range resulting from the comparison of solutions r(nb)
and r�(nb). In that case, w(nb) can be calculated based on
r�(nb) function for any density value within this range. The
Esym,4(nb)/Esym,2(nb) ratio depends decisively on the behavior
of the symmetry energy Esym,2(nb). Within the considered
models, the highest values of w(nb) are for Group III. The
specific inaccuracy of the parabolic approximation r(nb) is
closely related to the magnitude of the relative error w(nb)
of this approximation. This can be verified by the relation
r(w), which is depicted in the right panel in Fig. 6. For the
selected parametrizations in Groups Ia, Ib, and II r decreases
with increasing w. The most significant change occurs for
densities close to the saturation density. A particular situa-
tion arises for the FSUGold4 parametrization for which the
steepest change occurs, which can be noticed by comparing
the left panel in Fig. 6 and the right panel in Fig. 5 because, in
the region where w(nb) is almost constant, r(nb) substantially
decreases.
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FIG. 5. The left panel shows the approximate solution of Eq. (19), denoted as r�(nb), calculated for the entire parametrization set as
a function of baryon density nb. The right panel compares the r(nb) and r�(nb) functions for selected parametrizations. The dashed lines
illustrate the obtained exponential solutions r�(nb) marked with “exp.”

B. Saturation properties

Analyzing the properties of nuclear matter at the saturation
density Table X is of particular importance for confrontation
with the existing experimental data. Every adjustment of cou-
pling constants intended to reproduce the coefficients char-
acterizing Esym,2(nb), in ranges allowed by the experimental
limitations, demands the inclusion of a set of constraints. The
collection of experimental limitations, presented in the paper
of Dutra et al. [13,50] and used to specify the appropriate sam-
ple of models, is included in Table I. As stated in this table,

the spans of experimental constraints for Esym(n0) and L0 are
in the range 25–33 MeV and 25–115 MeV, respectively. Val-
ues of Esym,2(n0) and L0 obtained for the models considered
(parametrizations are given in Table IV) are gathered in the
left panels of Figs. 7 and 8. One can see from these figures that
the resulting points are scattered in the experimentally allowed
areas. The right panel of Fig. 7 shows a specific arrangement
of the fourth-order symmetry energy values obtained for the
saturation density n0. Groups Ia and Ib constitute the most
numerous set of models returning relatively similar values of

FIG. 6. The left panel shows the density dependence of functions w(nb), which measures the importance of the fourth-order symmetry
energy. The solutions obtained for parametrizations Z271s5 and Z271s6 stand out clearly. Esym,4(nb) relative to Esym,2(nb), takes values
significantly higher than those obtained for the other models presented in this figure. The distinction is noticeable for the FSUGold4
parametrization because w(nb) reaches its minimum in the given density range. The right panel shows the relationship between the functions
r(nb) and w(nb). The specific behavior relates to the FSUGold4 parametrization. In this case, one observes a step change in the value of r(nb)
and its almost constancy afterward.
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FIG. 7. The symmetry energy Esym,2(n0) versus saturation density n0 for selected parametrizations is given in the left panel, whereas the
right panel shows the fourth-order symmetry energy Esym,4(n0) versus n0.

Esym,4(n0). At the same time, significantly different results
are obtained for Group II and Group III models. The slope
of the fourth-order symmetry energy L4 ≡ L4(n0) (the right
panel in Fig. 8) calculated for models belonging to each group
shows an arrangement similar to that obtained for Esym,4(n0)
(the right panel in Fig. 7). Figure 9 presents the dependencies
of Esym,2(n0) and Esym,4(n0) on L0. Regression analysis for
each group of models separately suggests the possibility of
a nonlinear correlation between Esym,2(n0) and L0. This is
apparent in the left panel in Fig. 9. The linear regression
model for the whole sample produces meaningfully degraded
coefficients (see Table V). From the values of the coefficient
of determination R2 given in Table V it can be noticed that the

linear fit for all N = 23 RMF models taken together is worse
than those obtained within individual groups. It turns out that,
for Group Ia, the c coefficient with the L2

0 factor is statisti-
cally significant. However, for the entire sample of N = 23
RMF models (Table V), the quadratic term is also statistically
significant. Further confirmation that the distinction between
groups of models is possible by the analysis of the behavior of
the symmetry energy higher-order terms (in this case Esym,4)
is provided by the right panel in Fig. 9 and by Fig. 10. In the
right panel in Fig. 9 the dependence of Esym,4(n0) on L0 is
presented and Fig. 10, includes the Esym,4(n0) dependence on
Esym,2(n0). The results of the regression analysis for Esym,4(n0)
vs L0 and Esym,4(n0) vs Esym,2(n0) are summarized in Table VI.

FIG. 8. The same as in Fig. 7 but for the symmetry energy slope L calculated at n0 [L(n0) ≡ L0]. The left panel shows the results obtained
within the parabolic approximation, and the right depicts the fourth-order symmetry energy slope L4(n0 ) values.
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TABLE X. Chosen saturation properties of the asymmetry energy: saturation density n0, the second-order Esym,2(n0) and the fourth-order
Esym,4(n0) symmetry energy coefficients and their slops L0 and L0,4.

PS n0 [fm−3] Esym,2(n0) [MeV] Esym,4(n0) [MeV] L0 [MeV] L0,4 [MeV]

BSR8 0.1469 31.0768 0.7593 60.2507 2.9134
BSR9 0.1473 31.6136 0.7656 63.8931 2.8237
BSR10 0.1474 32.7192 0.7655 70.8318 2.7827
BSR11 0.1468 33.6858 0.7480 78.778 2.6294
BSR12 0.1474 33.9987 0.7460 77.8991 2.7109
BSR15 0.1455 30.9734 0.7504 61.7886 2.6610
BSR16 0.1457 31.2432 0.7536 62.332 2.6629
BSR17 0.1464 31.9794 0.7433 67.4375 2.6338
BSR18 0.1459 32.738 0.7508 72.6483 2.5537
BSR19 0.1467 33.7835 0.7455 79.473 2.4969
BSR20 0.1461 34.5357 0.7284 88.0262 2.3517
FSUGZ03 0.1473 31.5433 0.7654 63.9832 2.8147
FSUGZ06 0.1475 31.1777 0.7538 62.4233 2.6563
BKA20 0.1465 32.3192 0.6994 75.6206 2.4680
BKA22 0.1477 33.2565 0.7466 79.0354 2.6904
BKA24 0.1470 34.1903 0.7477 84.7965 2.6074
G2� 0.1537 30.416 0.6953 69.7508 2.3121
FSUGold 0.1484 32.5931 0.9905 60.498 2.5677
FSUGold4 0.1475 31.401 1.0920 51.7592 1.8335
IU-FSU 0.1546 31.2961 1.1781 47.2041 1.0941
Z272s6 0.1484 31.1982 2.5993 47.8066 7.6791
Z272s5 0.1484 31.8381 2.2101 53.5693 8.3358
Z272s4 0.1484 32.527 1.8159 60.1848 8.2080

Here a comment is in order. The reason for the lower values
of the Pearson linear correlation coefficient for Groups Ia and
Ib seen in the Table VI is not the badness of the linear fit
to the RMF points, but the low sensitivity of the response
to the factor change. In other words, the conditional means
of Esym,4(n0) hardly changes with the change of the factor,
i.e., either L0 or Esym,2(n0). It manifests itself, in particular for

group Ia, by relatively low values of the mean sum of squares
due to regression (MSR) and the same order of magnitude of
the mean squared error (MSE ) when compared with Groups
II and III. It can also be noticed (Table VI) that for Group Ib,
the sign of the correlations is exceptionally positive.

The specific inaccuracy r0 = r(nb = n0) of the parabolic
approximation calculated for saturation densities of individual

FIG. 9. The left panel shows dependence of Esym,2(n0) on L0. The regression analysis performed for each group of models separately points
to the existence of nonlinear correlations between Esym,2(n0) and L0. The right panel depicts the dependence of Esym,4(n0) on L0. The analysis
indicates existence of linear correlations between Esym,4(n0 ) and L0 for each group of models.
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FIG. 10. The dependence of the symmetry energy Esym,4(n0) on
Esym,2(n0 ). An ordering of models into separate groups is visible.

models are presented in the left panel in Fig. 11. As in the
previous figures, four groups of models can be distinguished.
The right panel shows the relationship between the inaccuracy
r0 and the symmetry-energy slope L0. The regression of r0 vs
L0, in the four groups of RMF models separately, shows that
within a given group the models lie very close to the straight
regression line (see Table VII). The dependence of the sym-
metry energy on density significantly influences the function
r(nb), which is reflected in the reliance of conditional means
r̂0 on L0. The values of the Pearson correlation coefficient
rr0L0 , shown in Table VII, signifies that the linear correlation
between these variables is negative and very strong. The right
panel in Fig. 11 shows the effect of the slope of symmetry

FIG. 12. The factor w ≡ w(n0 ) determining the Esym,4 relative to
Esym,2 versus L0. For each group, the highest value of w is achieved
for the lowest value of L0.

energy on the r0 values. For each group of models, the highest
value of r0 is obtained for the smallest value of L0. A similar
conclusion can be drawn when analyzing the dependence of
the w(n0) coefficient on L0 within each group (Table VII, Fig.
12), one can notice the characteristic behavior of the w factor,
which has the highest value for the models with the lowest L0

value. The function r(nb) can be treated as a physical quantity
that has been derived under the assumption that the symmetry
energy is well approximated by the Padé approximant method.
Then recalling the strong linear correlation between r0 and
L0 and using the regression function r̂0 = a + bL0, one can
suggest the condition that in accord with Eq. (12) must be
imposed on the function that describes the energy of the

FIG. 11. The left panel gives the values of the parabolic approximation r(n0) ≡ r0 incorrectness calculated at the saturation densities n0.
The right panel depicts the parabolic approximation r0 incorrectness versus the symmetry energy slope L0. In this case, the individual mode
represented by points concentrated along straight lines confirms the existence of the selected groups.
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FIG. 13. Dependence of E−2
sym,2 on the symmetry energy slope L0. Linear regression analysis shows a relationship between E−2

sym,2 and L0

for models belonging to each group.

system
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As discussed previously, the conditional mean of Esym,4

changes linearly with L0, and Esym,4 is in the nominator on the
LHS of Eq. (49). The factor E−2

sym,2 besides Esym,4 on the LHS
of Eq. (49) is dominant in determining the parabolic approx-

imation specific inaccuracy r. Thus, it is also interesting to
investigate its dependence on L0. In accord with the values in
Table VI, the results shown in Fig. 13 point again to the very
good linear correlation between the quantities E−2

sym,2 and L0

for each group of models. The correlation between r0 and L0 is
very good (see Table VII). This, together with the premises of
Padé analysis mentioned just above, gives additional support
for proposing Eq. (49) as the physical bound on the energy
density in the modeling the generalized, future RMF models.
Nevertheless, one can consider in Eq. (49) the extension of the
regression analysis by inclusion higher-order terms of L0 in

FIG. 14. The left panel reveals the exact linear correlation between the kinetic components E kin−2
Esym,2(n0) and Lkin

0 for the case where the
kinetic part of the symmetry energy does not involve interaction with the scalar meson σ ; thus, without medium modified nucleon mass. When
the power-law parametrizes the dependence of the symmetry energy on density, the case under consideration corresponds to the γ2 coefficient.
The right panel shows the results of the same analysis performed for the γ1 case. The linear correlations between E kin−2

sym,2 (n0) and Lkin
0 were

obtained separately for each group.

055805-20



REGRESSION ANALYSIS OF THE NUCLEAR SYMMETRY … PHYSICAL REVIEW C 106, 055805 (2022)

FIG. 15. The linear regression analysis performed for the potential part of the symmetry energy. The left panel shows results obtained for
the γ2 case and the right panel for the γ1. In both cases, linear correlations were obtained separately among each group of models.

the regression functions of r0, Esym,4 and E−2
sym,2. Additionally,

the utility of E−2
sym,2 in the analysis of the RMF models is due

to the very good fit of the linear regression E−2
sym,2 vs L0 in

each group of models (see Table VI). The same is true for the
linear regression E−1

sym,2 vs L0 (see Table VI) and the squared

of E−1
sym2 can be used instead of E−2

sym,2 as a multiplier of Esym,4

in Eq. (49). An analysis of the kinetic Ekin−2

sym,2 and potential

Epot−2

sym,2 terms for the energy symmetry can also be performed
(Tables XI–XII). The results of the corresponding regression
analyses are collected in Tables VIII and IX. When the kinetic

part is given by Eq. (33), then there is a functional relationship
between Ekin−2

sym,2 and L0. In this case, the regression analysis
results in the straight line shown in the left panel in Fig. 14.
With the assumption that the kinetic-energy contribution to
the symmetry energy includes the effective nucleon mass,
the obtained regression lines can be fit separately for each
group of models, which is shown in the right panel in Fig. 14.
The determined linear correlation coefficients are given in
Table VIII. Results of the linear regression analysis performed

for the dependence of the potential symmetry energy Epot−2

sym,2
on L0 is presented in Fig. 15. When the potential energy of the

FIG. 16. This figure presents the dependence of γ parameter determining the power-law parametrization of the symmetry energy on the
incorrectness factor r(nb). The analysis was carried out for selected density values being multiples of n0. A detailed analysis of the diagram is
given in the text. The left panel contains the results for γ1 and the right panel for γ2. Horizontal solid lines limit the experimentally accessible
range of γ .
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TABLE XI. Decomposition of the symmetry energy and its slope into the kinetic and potential parts. Values of particular coefficients are
taken at saturation density n0. The kinetic part includes the effective nucleon mass Meff = M − gσ s.

PS E kin
sym,2(n0) [MeV] E pot

sym,2(n0) [MeV] Lkin
0 [MeV] Lpot

0 [MeV] γ1

BSR8 17.4661 13.6107 52.7778 7.47294 0.18
BSR9 17.5668 14.0468 52.4064 11.4867 0.27
BSR10 17.6339 15.0853 53.0864 17.7454 0.39
BSR11 17.4679 16.218 51.891 26.887 0.55
BSR12 17.4655 16.5332 52.3014 25.5977 0.52
BSR15 17.3255 13.6479 49.3392 12.4494 0.30
BSR16 17.3453 13.8979 49.4071 12.9249 0.31
BSR17 17.3803 14.5991 49.503 17.9345 0.41
BSR18 17.3896 15.3483 49.4802 23.1681 0.50
BSR19 17.4007 16.3828 49.5144 29.9586 0.61
BSR20 17.3999 17.1358 49.0976 38.9287 0.76
FSUGZ03 17.5657 13.9776 52.4026 11.5806 0.28
FSUGZ06 17.3491 13.8287 49.419 13.0043 0.31
BKA20 16.6426 15.6766 48.6818 26.9389 0.57
BKA22 17.4975 15.7591 52.313 26.7224 0.57
BKA24 17.5426 16.6477 52.0947 32.7019 0.65
G2� 16.6317 13.7843 46.366 23.3847 0.57
FSUGold 17.471 15.1221 49.7934 10.7046 0.24
FSUGold4 17.3707 14.0303 49.4458 2.31333 0.05
IU-FSU 17.9358 13.3604 54.4133 −7.20916 −0.18
Z272s6 13.817 17.3811 32.5519 15.2547 0.29
Z272s5 13.817 18.021 32.5519 21.0174 0.39
Z272s4 13.817 18.71 32.552 27.6327

TABLE XII. Decomposition of the symmetry energy and its slope into the kinetic and potential parts. Values of particular coefficients are
taken at the saturation density n0. The kinetic part does not include the medium modification of the nucleon mass.

PS E kin
sym,2(n0) [MeV] E pot

sym,2(n0) [MeV] Lkin
0 [MeV] Lpot

0 [MeV] γ2

BSR8 11.1939 19.8828 21.6154 38.6353 0.65
BSR9 11.2139 20.3998 21.6525 42.2406 0.69
BSR10 11.2201 21.499 21.6642 49.1676 0.76
BSR11 11.1872 22.4986 21.6028 57.1752 0.85
BSR12 11.2174 22.7813 21.659 56.2401 0.82
BSR15 11.1266 19.8468 21.4898 40.2989 0.62
BSR16 11.1336 20.1096 21.5029 40.8291 0.68
BSR17 11.1695 20.8099 21.5698 45.8677 0.73
BSR18 11.1441 21.5939 21.5224 51.126 0.79
BSR19 11.1859 22.5975 21.6004 57.8726 0.85
BSR20 11.1547 23.381 21.5422 66.4841 0.95
FSUGZ03 11.2134 20.3298 21.6516 42.3315 0.69
FSUGZ06 11.1352 20.0426 21.5058 40.9175 0.68
BKA20 11.1761 21.1431 21.5821 54.0385 0.85
BKA22 11.2327 22.0238 21.6877 57.3477 0.87
BKA24 11.2005 22.9899 21.6275 63.169 0.92
G2� 11.5254 18.8906 22.2326 47.5182 0.84
FSUGold 11.2664 21.3267 21.7504 38.7476
FSUGold4 11.222 20.179 21.6676 30.0916 0.50
IU-FSU 11.568 19.7282 22.3119 24.8922
Z272s6 11.2675 19.9307 21.7524 26.0542 0.44
Z272s5 11.2675 20.5706 21.7524 31.8169 0.52
Z272s4 11.2657 21.2596 21.7524 38.4324 0.60
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symmetry energy is expressed by Eq. (34) (the left panel in
Fig. 15) as well as when it is given by Eq. (31) (the right panel
in Fig. 15) four groups of models can be distinguished. Linear
regression analysis was performed for each of these groups.

C. Power-law parametrization of the symmetry energy

An alternative method of symmetry energy parametriza-
tion using the power law to its description allows referring
to the obtained experimental constraints. Results reported by
Russotto [71] led to an estimate of the γ exponent, which
after including all corrections, 1σ statistical uncertainty and
systematic uncertainties take the value at 0.72 ± 0.19. This
corresponds to the value of the slope parameter L0 = 72 ± 13
MeV. Figure 16 shows the γ parameter’s dependence on
the r0 = r(n0) coefficient, characterizing the parabolic ap-
proximation’s inaccuracy. The obtained distribution of points
determined for all parametrizations leads to a noticeably
different behavior for the distinguished groups of models.
Models of Groups Ia and Ib are characterized by a higher
value of γ , which is consonant with a higher value of L0.
The horizontal lines correspond to experimentally acceptable
values of γ . The right panel shows the dependence of γ2

on r0. It is easy to notice that the distribution of points for
individual models is analogous to that obtained for γ1—but
the values of γ2 are greater than γ1. This change is due to
the different forms of the kinetic and the potential parts of
the symmetry energy. The effect of γ redefinition increases
the number of models yielding results within experimentally
acceptable values. From Tables VIII and IX it can be noticed
that the linear regression fit of γ vs r0 for γ2 is better than γ1

except for Group III (where there is a very small difference).
The case of γ2 also gives the smallest value of the Akaike
information criterion obtained in Sec. IV B 2, Table II. These
facts suggest that the splitting of L0 followed by Eq. (36), and
therefore the one that is consistent with the method used in the
case of γ2 better suits the actual situation.

VI. CONCLUSIONS

The EoS of nuclear matter encodes information about
the symmetry energy, which is assigned a vital role in the
structure of both neutron-rich nuclei and neutron stars. The
parabolic approximation is a commonly used method to de-
scribe the symmetry energy. This paper presents an approach
that estimates the significance of the symmetry energy quartic
term. It was found that the measure of the importance of
the w(nb) = Esym,4(nb)/Esym,2(nb) ratio and the related func-
tion called specific inaccuracy of the parabolic approximation
r(nb) depend on the density. Their values also depend de-
cisively on the form of the symmetry energy and can be
estimated for any density value within the admissible range,
which for most models is (n0, 2n0). An important fact is that in
this density range, the value of Esym,4(nb)/Esym,2(nb) ratio can
be determined based only on the coefficients characterizing
the form of the symmetry energy at saturation density n0.
The analysis of the function determining the specific inac-
curacy of the parabolic approximation made it possible to
notice a kind of ordering in the whole class of the con-
sidered models. All models, carefully selected according to
the experimental constraints used for the analysis, represent-
ing different experimental situations. The two-dimensional
regression analysis of model selection based on the Akaike
information criterion is presented. The results of this
analysis indicates that all the considered models are consistent
with Eq. (30), which results from adopting the power-law
parametrization of the symmetry energy. It turns out that the
Akaike information criterion is sensitive to how the symmetry
energy of the model is decomposed into kinetic and potential
parts. On the other hand, after conducting a series of one-
dimensional regression analyzes, it turned out that the RMF
models do not form a chaotic set in the input parameters space
(Esym,2, L0, Esym,4, L4, nb, etc.), but four groups of models.
In each of these groups, the RMF models are represented by
regression functions for these input parameters with charac-
teristics suggesting linear relationship in the class of RMF
models.
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