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By applying a relativistic mean-field description of neutron star matter with density dependent couplings, we
analyze the properties of two different matter compositions: nucleonic matter with � baryons and nucleonic
matter with hyperons and � baryons. The �-meson couplings are allowed to vary within a wide range of values
obtained by experimental data, while the hyperon-meson couplings are fitted to hypernuclear properties. Neutron
star properties with no deconfinement phase transition are studied. It is verified that many models are excluded
because the effective nucleon mass becomes zero before the maximum mass configuration is attained. Hyperon-
free compact stars with �-dominated composition are possible: the deltic stars. It is found that with a convenient
choice of parameters the existence of deltic stars with 80% of � baryons at the center of the star is possible.
However, the presence of hyperons lowers the � baryon fraction to values below 20% at the center and below
30% at 2–3 saturation densities. It is discussed that, in the presence of � baryons, the hyperon softening is not so
drastic because �’s couple more strongly to the ω meson, and the stiffness of the equation of state is determined
by the ω dominance at high densities. The speed of sound reflects very well this behavior. The compactness of
the pulsar RX J0720.4-3125 imposes xσ� > xω� > 1 and favors xρ� > 1.
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I. INTRODUCTION

Although the class of stellar remnants that are neither white
dwarves nor black holes is traditionally named neutron stars
(NS), these objects are not composed solely of neutrons. Even
the more naïve description of such objects must include some
amount of protons in order to guarantee the stability of the
nuclear matter, and this fact was already pointed out in the
first proposals of the existence of NS by Landau, Baade, and
Zwicky in the early 1930s. Almost forty years ago, Glenden-
ning [1] discussed in his seminal paper different scenarios
considering non-nucleonic degrees of freedom in NS matter,
including hyperons, � baryons, pions, and kaons, within a
relativistic mean field approach. In this work, Glendenning
found that the � baryons do not nucleate inside the NS
core. This result was due to the coupling parameters chosen,
as it was shown later that, with a convenient choice of the
couplings minimally constrained by the existing experimental
measurements, � baryons may indeed occur inside neutron
stars [2–11].

The knowledge of the NS composition and of the sig-
natures of this composition is presently a field of intense
investigation. To consider the entire spin-1/2 baryon octet as
part of the NS matter composition is almost the standard in the
nuclear astrophysics community [12–22], but, more recently,
there is a strong interest in understanding how the presence
of the � baryons specifically may influence the properties of
NS and their evolution [23–31]. The lightest spin-3/2 baryons

are just ≈30% heavier than the nucleons, and are even lighter
than the heaviest spin-1/2 baryons of the octet, what makes it
very reasonable to expect them to appear at the same density
range as the hyperons (about 2–3 times the nuclear saturation
density). One thing that could forbid the � onset would be if
they were subject to a very repulsive coupling, but that is not
the case, since their coupling potential for isospin-symmetric
matter at saturation density is expected to be attractive and
in a range of to 2/3 to 1 times the potential of the nucle-
ons [6,8,11].

In [32], the authors studied the effect of heavy baryons
on the constitution of hot nonhomogeneous matter, in par-
ticular their effects on the light clusters’ abundance and
dissolution, using two relativistic mean-field nuclear models
(FSU2H [33], a model with nonlinear mesonic terms, and
DD2 [34], a model with density-dependent couplings). For
the � baryon, the couplings were restricted to values com-
patible with experimental observations, as discussed in [6,10].
It was found that the model FSU2H was much more restric-
tive, because most of the couplings would not be acceptable
to describe neutron stars since the effective nucleon mass
would become zero at densities below the maximum mass
configuration. On the other hand, the DD2 model seemed to
show much more flexibility and allowed a wider range of
acceptable couplings. In [10], the FSU2H model was fully
investigated, but there was no reference to the implications
of the fact that the effective nucleon mass may become null at
still low densities. In [8], this problem was also encountered,
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but the authors modified their model in order to avoid this
issue.

In the present work, we will explore in depth the effects of
the � baryon couplings considering a model that describes
adequately nuclear matter properties and NS observations,
considering the � admixture, in both pure nucleonic and hy-
peronic NS matters. We will study the behavior of the nucleon
effective mass, that was not addressed in Ref. [23], the speed
of sound, the � and hyperonic fractions, and the electron
chemical potential, and we will also discuss the star properties
such as mass and radius. We will pay special attention to
some interesting aspects, such as the possible increase of the
NS maximum mass as compared to hyperonic only stars, and
the possibility of the formation of stars with more than 80%
of � baryons at the core center. Also, special compact stars
may exist in some hyperon-free �-dominated composition,
referred as deltic stars.

II. FORMALISM

In this study, hadronic matter is described within a
relativistic mean-field approach with density-dependent cou-
plings. This class of models is shown to be very consistent in
the description of nuclear matter experimental properties [35],
and also when astrophysical constraints are imposed [36,37].
In such models, the interaction is described through the ex-
change of mesons, and here we consider the scalar meson σ ,
the vector mesons ω and φ (that carries hidden strangeness),
isoscalars, and the isovector-vector meson �ρ.

In this approach the Lagrangian density reads as

L =
∑

b

�̄b

[
γx

(
i∂μ − 
ωbω

μ − 
φbφ
μ − 
ρb

2
�τ · �ρμ

)

−(mb − 
σbσ )

]
�b + 1

2

(
∂μσ∂μσ − m2

σ σ 2
)

− 1

4
�μν�

μν + 1

2
m2

ωωμωμ − 1

4
�μν�

μν + 1

2
m2

φφμφμ

− 1

4
�Rμν · �Rμν + 1

2
m2

ρ �ρμ · �ρμ, (1)

where mi is the mass associated with the i = σ, ω, φ, ρ me-
son field, �μν = ∂μων − ∂νωμ, �μν = ∂μφν − ∂νφμ, �Rμν =
∂μ�ρν − ∂ν �ρμ − 
ρ (�ρμ × �ρν ), and �τ is the isospin matrix (with
vectors in isospin space denoted by arrows). The sum on the
index b runs over all the baryonic species considered in the
matter composition, described by the field ψb with the mass
mb. We are aware that spin-3/2 baryons (such as the �’s) are
in fact described by the Rarita-Schwinger Lagrangian density,
which would demand a distinction in (1) for the terms when
b = {�}. Nonetheless, the resulting equation of motion can
be written compactly as a Dirac equation in the mean-field
approximation; see [38].

The density-dependent coupling constants 
σ , 
ω, and 
ρ

are adjusted in order to reproduce some of the nuclear matter
bulk properties using the following scaling with the baryonic
density nB:


i(nB) = 
i(n0)ai
1 + bi(η + di )2

1 + ci(η + di )2
(2)

TABLE I. The symmetric nuclear matter properties at saturation
density for the DDME2 model: the nuclear saturation density n0,
the binding energy per particle B/A, the incompressibility K , the
symmetry energy Esym, the slope of the symmetry energy L, and the
nucleon effective mass M∗. All quantities are in MeV, except for n0

that is given in fm−3, and the effective nucleon mass is normalized to
the nucleon mass.

Model n0 B/A K Esym L M∗/M

DDME2 0.152 16.14 251 32.3 51 0.57

for i = σ, ω and


ρ (nB) = 
ρ exp[−aρ (η − 1)], (3)

with η = nB/n0, where n0 is the nuclear saturation density. We
want to stress that it is necessary to guarantee the thermody-
namic consistency and the energy-momentum conservation of
density-dependent effective models, through a rearrangement
self-energy terms. It plays an essential role in the applications
of the theory, and we refer to [39,40] for a detailed treat-
ment of this issue. The Euler-Lagrange equations are used to
calculate the equations of motion for the meson and baryon
fields—see for instance [39]—and a complete description for
the hadronic matter given by this Lagrangian density can be
derived from there. The model parameters considered here are
obtained from a fitting that considered known experimental
constraints on values of nuclear matter binding energy, com-
pressibility modulus, symmetry energy and its slope, as well
the 208Pb neutron skin measurements. This parametrization is
labeled as DDME2 and its details can be found in [41]. In
Table I, we give its symmetric nuclear matter properties at
saturation density.

The fitting of the model’s free parameters are made by con-
sidering ordinary nuclear matter, composed only of nucleons
(protons and neutrons). We parametrize the other baryonic
species’ couplings in terms of the nucleon-meson couplings
by defining the ratio xib = 
ib/
i, with i = σ, ω, φ, ρ and b =
{N}, {H}, {�}, where it is defined that xiN = 1. The hyperon
couplings are defined taking the same density dependence
of the couplings to the σ and ω mesons as the one of the
nucleons, and for the density dependence of the φ coupling
we take the one of the ω meson. The couplings to the σ meson
were taken from [42] for �, [43] for �, and from [44] for �:

xσ� = 0.621, xσ� = 0.467, xσ� = 0.321.

The magnitudes of the couplings for the isoscalar-vector
mesons are given by the SU(6) symmetry:

xω� = xω� = 2

3
, xω� = 1

3
,

xφ� = xφ� = −
√

2

3
, xφ� = −2

√
2

3
.

The coupling of each hyperon to the ρ meson is defined
by the product of the hyperon isospin with the ρ meson
coupling to the nucleon, i.e., xρH = τH . This hyperon-meson
coupling scheme corresponds to the hypernuclear potentials in
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symmetric nuclear matter at saturation density: U�(n0) =
−32 MeV, U�(n0) = −18.78 MeV, and U� (n0) = +30 MeV.

The �-meson couplings are treated rather freely in this
study. Some experimental constraints summarized in [6] sug-
gest that the nucleon-� potential is slightly more attractive
than the nucleon-nucleon one, which consequently implies
xσ� � 1. Also, the vector coupling is constrained to re-
sults [45] respecting the relation

0 � xσ� − xω� � 0.2, (4)

with no constraint put in the xρ� value. All of these constraints
will be considered tentative, as we aim to explore the behavior
of NS matter according to these parameters in a comprehen-
sive way, not discarding whole regions of possible values
beforehand. At this point, it is important to emphasize that we
do not expect � baryons to appear at the saturation density.
We have verified that for xσ� = 1.2 the � onset in symmetric
nuclear matter occurs at ρ = 0.32 fm−3 if xω� = 0.95, and
at ρ = 0.36 fm−3 if xω� = 1.0, i.e., above 2n0. In fact, it is
expected that the onset of � baryons occurs at larger densities
in symmetric nuclear matter than in β-equilibrium matter
because symmetric nuclear matter is more bound. The above
mentioned constraints will be remembered in the evaluation
of the results. Early investigations on the behavior of these
parameters were made in [10,46,47], but no previous study
analyzed carefully the astrophysical implications of the van-
ishing nucleon effective mass, among other considerations.

It is known that the value of the symmetry energy slope
L has some influence on the baryonic species’ onsets [6,7].
The slope of the symmetry energy at saturation of DDME2
is compatible with both experimental and observational data;
see [48–50]. Although the analysis of PREX-2 results indi-
cates a quite large value of L = 106 ± 37 MeV [51,52], other
analyses combining astrophysical observations and PREX-2
data have shown that smaller values of L were also compatible
with PREX-2: in [53] the value L = 53+14

−15 MeV was obtained;
in [54] a smaller neutron skin thickness was predicted based
on the PREX-2 results leading to a smaller slope of the sym-
metry energy of L = 54 ± 8 MeV. Besides, CREX seems to
indicate that L could be smaller than PREX-2 predicts [55].
Drago, Lavagno, and Pagliara [5] showed that the � onset
density increases only slightly with L if hyperons are not in-
cluded. They obtained an increase of the onset density of less
than 0.05 fm−3 within the range 40 < L < 70 of their model.
This indicates that the occurrence of � baryons will not be
affected if L < 70 MeV is considered, a value that falls on the
lower limit of the 1σ uncertainty on L obtained by PREX-2.
In order to ensure that this behavior still holds for the model
employed here, we have changed the parametrization DDME2
so that the symmetric nuclear matter properties are the same
and only the density dependence of the ρ-meson coupling is
changed. With this generalized model, it was verified that the
� onset did not change more than 0.01 fm−3 considering for
L the range 42 < L < 79 MeV.

In order to describe NS matter properly, we must ob-
serve charge neutrality and chemical equilibrium conditions.
To reach these constraints, a noninteracting gas of leptons
(electrons and muons) is included in the description. At zero
temperature, the particle fractions can be determined from

the neutron and electron chemical potentials, such that the
particle fractions yi = ni/nB are determined from the neutron
and electron chemical potentials through

μb = μn − qbμe, (5)

where qb is the electric charge of the baryon b, and μμ = μe.
In the inner crust of the star, nonspherical clusters may form,
the so-called nuclear pasta phases. For this equation of state
(EoS) region, we consider a self-consistent Thomas-Fermi
calculation [56] with the same RMF model and under the
same thermodynamic conditions as for the homogeneous gas
core, i.e., β-equilibrium matter at zero temperature. This in-
ner crust EoS was recently published [57] in the CompOSE
database [58]. For the outer crust, we use the EoS by Baym,
Pethick, and Sutherland [59], that was added below baryon
density of 0.0003 fm−3. The unified inner-crust–core DDME2
EoS can also be found in CompOSE [60].

III. RESULTS AND DISCUSSIONS

We first discuss the composition and expected onset of the
different heavy baryons in β-stable, charge-neutral NS matter,
as described by the DDME2 model formalism exposed in the
previous section. Figures 1 and 2 show the particle fractions
when the baryonic composition considered is the hyperon-free
matter, i.e., composed of nucleons and � baryons (labeled
N�), and �-admixed hypernuclear matter, i.e., composed of
nucleons, hyperons, and �’s (labeled NH�). The negatively
charged spin-3/2 baryons are favored when charge neutrality
is enforced, while the positively charged ones are suppressed,
in the same way as what usually takes place with the hyperons.
Being negatively charged, the �− can replace a neutron-
electron pair at the top of their Fermi seas, being favored
over the lighter � and � baryons because of the fact that
their potential is more attractive, to a proportion at which the
mass difference is counterbalanced. When allowed, the first
hyperon to appear is the �, as it is the lighter one and neutrally
charged.

Analyzing Figs. 1 and 2, we conclude that, if the coupling
fractions are lager than 1, in hyperon free (N�) matter, having
xσ� > xω� favors the appearance of all � species, even the
one with charge +2; if xσ� = xω�, the larger the coupling,
the less favored the � baryons are, due to the ω dominance
at large densities that occurs because the σ field saturates;
also, the electrons are efficiently replaced by �− baryons if
the xω� is not too large. When hyperons are included in the
(NH�) matter, the � hyperon sets after the �− and is pushed
to high densities if xσ� > xω�; if xσ� = xω� the larger xω�,
the more important is the contribution of the �− hyperon,
and the smaller �− because the larger the xω�, the more
repulsive the �− interaction is at high densities; see [10].
The presence of hyperons strongly disfavors the increase of
� fractions at high densities because hyperons feel a much
weaker repulsion since the coupling to the ω meson is smaller.
This fact is exemplified by the competition between the �−
and the �−, as one can notice in the bottom panel of Fig. 2,
with the former suppressing the first as it is lighter and subject
to a less repulsive coupling. For a fixed xω�, there will always
be a xσ� where the �− and the � appear at the same density,
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FIG. 1. Particle relative populations as a function of the density,
fixing xρ� = 1.0, for the N� matter composition. The particle frac-
tion curves stop at the vanishing effective mass density (see text).

beyond which the resonances are favored. Moreover, as al-
ready discussed in [6,10], if hyperons are explicitly included
and the constraint given by Eq. (4) is imposed, �− will always
appear first, shifting the onset of hyperons to larger densities
compared with the �-free threshold density.

The families of stars that result from the input of the ob-
tained equations of state (EoS) in the Tolman-Oppenheimer-
Volkoff (TOV) equations of relativistic hydrostatic equilib-
rium [61,62] are shown in Fig. 3 for hyperon-free matter and
Fig. 4 for �-admixed matter including hyperons. In each fig-
ure we show results for three values of the coupling fractions
xω� (0.95, 1.0, and 1.1) and xρ� (0.5, 1.0, and 1.5). The color
bar indicates the xσ� value which we vary between 0.8 to
1.2. In the following figures, the full black line represents
the results obtained with the pure nucleonic (N) EoS, and
the black dash-dotted line has been calculated for a hyperonic
(NH) EoS. In these figures the crosses indicate the maximum
mass configuration. The top panels in both figures, and middle
panels of Fig. 4, show some EoS that do not reach the max-
imum mass star. In the presence of hyperons, this happens
for for xσ� − xω� � 0.1. Formally, the maximum mass star
is obtained when the TOV stability conditions of having a
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FIG. 2. Same as Fig. 1, but for the NH� matter composition.

positive derivative of the star mass with respect to its central
density (∂M/∂εc � 0) reaches a zero value. Black crosses
indicate the maximum mass star for each EoS if this criterion
is attained. As we will discuss later, some mass-radius curves
do not reach the maximum configuration because the effective
mass of the nucleon becomes zero at a too low density. This
problem was identified in other works [8,11,32,63], but its
consequences were not fully explored until now. In [8], the
authors modified the model in order to avoid negative effective
masses for the nucleon.

The shaded green and blue regions below in the figures rep-
resent observational constraints obtained from two indepen-
dent analysis of NICER data of the pulsar PSR J0030+0451,
that resulted in M = 1.34+0.15

−0.16 MSun and R = 12.71+1.14
−1.19 km

according to Ref. [64], and in M = 1.44+0.15
−0.14 MSun and R =

13.02+1.24
−1.06 km according to Ref. [65], respectively. The

magenta square region above represents the recent mea-
surement of the pulsar PSR J0740+6620 [66,67] of M =
2.072+0.067

−0.066 MSun and R = 12.39+1.30
−0.98 km, at a confidence in-

terval of 68% [68]. The uncertainties associated with the
observations are not small enough to put strong constraints
on the coupling parameters we are investigating. All models
that reach the maximum mass configuration are compatible
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FIG. 3. Mass-radius diagrams for some choices of xρ� and xω�, varying the xσ� parameter for the N� matter composition (color scale).
The solid and dot-dashed black lines represent the N and NH compositions, respectively, and the black crosses indicate the maximum mass
star if this configuration is reached. The colored regions represent NICER constraints (see text).

with the observational constraints for the several scenarios of
matter composition considered, either with nucleons and �’s
or including hyperons as well.

From the figures, we see that xσ� competes with xω� and
xρ�, with greater values of the first making the stellar radius
decrease when compared with the �-free matter composition.
Larger values of xσ� are associated with a larger attraction,
and therefore a softer EoS at intermediate densities when
the effect of the σ meson dominates. A similar effect occurs
when smaller values of xρ� are taken: the smaller the xρ�, the
smaller the radii obtained for a given pair (xσ�, xω�). This
can be understood because a smaller xρ� decreases the repul-
sion associated with the proton-neutron asymmetry. Another
interesting effect is the fact that the simultaneous presence
of hyperons and �’s increases the maximum mass above the
hyperonic matter maximum mass limit if xω� � 1. This is due
to the fact that at high densities the effect of the vector meson
dominates over the σ meson and the � coupling to the ω

meson is larger than the coupling of the nucleons or hyperons
to the ω meson. The role of the couplings in the maximum
mass is quite complex, and will be better understood later in
the discussion.

In Fig. 5 we plot the nucleon effective mass,

Mn = mn − 
σσ, (6)

as a function of the density. When we consider the nucleon-
only neutron star matter composition, Mn decreases asymp-
totically with nB. When other baryon species are included in
the matter composition (either hyperons, �’s, or both), we see
a much faster decrease of the nucleon effective mass. This
behavior is understood from the fact that each new particle
present adds (through the scalar density dependence of the
σ field) to the negatively contributing term of Eq. (6). The
greater the multiplicity of baryons in the matter, the faster is
the drop of Mn, as we can see from comparing top and bottom
panels of Fig. 5 or even comparing the �-admixed with the N
or NH compositions inside each panel, noting that the higher
values of xσ� produce higher fractions of �’s. For some
configurations, the drop is so fast that the nucleon effective
mass becomes too small and reaches zero before attaining
the maximum densities expected to occur in the maximum
mass configuration. This behavior was already well-known
for the hypernuclear star matter [69], but the inclusion of �’s
makes it even more pronounced. These EoS do not describe
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FIG. 4. Same as Fig. 3, but for NH� matter composition.

neutron stars properly, and therefore must be discarded from
our analysis. We argue that these EoS would be valid if a phase
transition to deconfined quark matter (or other exotic matter
composition) could occur at a density below the one at which
the nucleon effective mass becomes zero. This scenario will
be explored in a future work.

For the models with a nonvanishing effective nucleon
mass, the EoS are computed while the thermodynamic sta-
bility condition dP/dε � 0 holds true. A liquid-gas type of
phase transition is expected to occur when the thermodynamic
stability is lost but, as the EoS can be computed to densities far
beyond the ones present in stellar interiors (reaching at least
nB = 1.25 fm−3), and disregarding some unrealistic choices
of very negative values of the relation xσ� − xω�, this be-
havior would not be prevalent in any physically reasonable
scenario. We will disregard the models that are not able to
attain the maximum mass configuration when their EoS is
applied to the TOV equations. In a scenario that allows for
a hadron-quark deconfinement phase transition as in [6] but
is not considered in our study, they could still be acceptable.
We conclude that the above results allow us to constrain the
� couplings due to some unphysical behavior such as the
effective nucleon mass becoming zero at too low densities,
or the EoS predicting a thermodynamic instability near the
saturation density that does not seem to be observed, but

present known astrophysical observations do not set any fur-
ther constraint.

In Fig. 5, the results are shown considering the whole
computed EoS and, as in the previous figures, black crosses
indicate maximum mass star if this configuration is reached
for the scenario in question. The maximum central density is
around nB = 0.85 fm−3 for the N� composition, and around
nB = 1.00 fm−3 for the NH� composition. When �’s are
favored to a point of suppressing all other species (higher
values of xσ� and/or lower values of xω�), the situation re-
verts back to the N matter composition asymptotic behavior,
leading to the diminishing of the negatively contributing terms
in Eq. (6), but now the � baryons are the most abundant
particles. In this extreme limit, the EoS reaches the maximum
mass star configuration once again, e.g., the indigo blue curve
in Fig. 5 top left panel (this configuration is composed of an
80% fraction of �’s in the center of the star, see Fig. 7).

The derivative of the pressure with respect to the en-
ergy density is the speed of sound, a quantity that provides
information about shear viscosity, tidal deformability and
gravitational waves signatures [70–72]. At zero temperature,
its square is simply defined as

v2
s = ∂P

∂ε
. (7)
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FIG. 5. Normalized nucleon effective mass as a function of the density, taking xρ� = 1.0, for some choices of xω� and varying the xσ�

parameter for the N� (top panels) and for NH� (bottom panels) matter compositions. The solid and dot-dashed black lines represent the N
and NH compositions, respectively, and black crosses indicate the central values of the maximum mass star if this configuration is reached.

FIG. 6. Speed of sound squared as a function of the density, taking xρ� = 1.0, for some choices of xω� and varying the xσ� parameter for the
N� (top panels) and NH� (bottom panels) matter composition. The solid and dot-dashed black lines represent the N and NH compositions,
respectively, and the black crosses indicate the central values of the maximum mass star if this configuration is reached. The dotted line
represents the conformal limit v2

s = 1/3.
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FIG. 7. � fraction for the N� matter composition (top panels) and for NH� matter composition (middle panels), and hyperon fraction
for NH� matter (bottom panels) as a function of the density, taking xρ� = 1.0, for some choices of xω� and varying the xσ� parameter. Black
crosses indicate the central values of the maximum mass star if this configuration is reached.

It can be interpreted also as a measure of the EoS stiffness,
with a higher speed generating a higher pressure at a given
energy density and, therefore, sustaining a bigger star mass
for a given radius. Results for the speed of sound are shown in
Fig. 6, where one can notice the kinks due to the different
particle onsets. If only nucleonic matter is allowed in the
N composition, quite high Fermi levels must be occupied.
With the inclusion of new particles, the presence of more
degrees of freedom distributes the Fermi pressure among the
different particles and softens the EoS. It holds true in the
intermediate densities (for nB < 0.50 fm−3) for the N� com-
position, and always after the hyperon onset in the NH and
NH� compositions. The behavior of hyperonic neutron-star
matter, however, is affected in a more complicated way by the
inclusion of � baryons. The NH� composition is softer than
the NH case at lower densities, but this situation is reversed
in the middle regions. This is due to the strong coupling of
the �’s to the ω meson. For the same reason, at high den-
sities N� matter has a larger speed of sound than N matter.

This difference is then reduced in the higher densities once
again.

Perturbative QCD results for very high densities (more
than 40 times the nuclear saturation density) predict an upper
limit of v2

s = 1/3 [73,74]. In such high densities, far beyond
the ones reached in the neutron star interiors, the baryonic
matter is expected to be deconfined in quark matter. How-
ever, several authors have discussed that the two-solar-mass
constraint requires a speed of sound well above the conformal
limit, indicating that matter inside NS is a strongly interacting
system [52,73,75–77]. Nevertheless, within the description
undertaken in [74], it was shown that the size of the quark core
in hybrid stars is related to the speed of the sound of the quark
matter, and very massive quark matter cores are expected in
the NS interiors if the conformal limit is not strongly violated.
As shown in Fig. 6, the onset of hyperons and �’s breaks the
monotonic behavior of v2

s , reducing the speed of sound, but
the conformal limit is always violated due to the fact that we
are describing hadronic (and not deconfined quark) matter.
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The speed of sound behavior, i.e., the sudden decrease, is
similar to the one found in other works when new degrees
of freedom set in, such as the onset of hyperons in [78] or of s
quarks in [79].

The relative populations of each kind of baryons are shown
in Fig. 7, where we have defined the particle fractions as
yi = ∑

b nb/nB, with i = {H,�}, meaning that the summation
runs only over the hyperons or �’s, respectively. Very large �

fractions are expected for the larger values of xσ�, the effect
being quite drastic if xω� < 1. In this case, many EoS do
no attain the maximum-mass star, and are considered invalid.
In the presence of hyperons, the condition of attaining the
maximum mass configuration is stronger, because the nu-
cleon effective mass goes to zero too soon. Taking xω� > 1,
these difficulties cease to occur. The hyperon fractions are
also shown in Fig. 7 bottom panels. As expected, larger xσ�

couplings, which favor the appearance of �’s, will disfavor
the appearance of hyperons. This completes the conclusion
drawn from Fig. 7 middle panels where it is seen that, for
stars with both �’s and hyperons, large � contents do not
reach the maximum-mass configuration. We also conclude
that for models that are able to attain the maximum-mass
configuration, identified by the cross, the hyperon fraction at
the center of the star is of the order of 50% and the � fraction
is below 20%. In the presence of hyperons, the maximum
� fraction is attained for densities between 2ρ0 and 3ρ0 and
takes values below 30%. Although the � baryons set in first,
they are replaced by hyperons at high densities because the
coupling of the � baryons to the ω meson is stronger. Looking
at, e.g., the upper-middle panel of Fig. 3, we identify an
isolated configuration where the EoS reaches the maximum
mass with a very large xσ�. From the top left panel of Fig. 7,
it is possible to see that this configuration is composed of
around 80% � baryons, considering all isospin projections
together. It explains why the nucleon effective mass reverts
to the asymptotic behavior in order to allow the description
at higher densities (see the left panel of Fig. 5). These results
suggest that compact stars might exist in some hyperon-free
�-dominated composition, that we label deltic stars.

The bottom row of Fig. 3 allows us to see a rather un-
expected behavior. For these choices of xω� and xρ�, the
maximum masses increase with xσ�, i.e., with a greater frac-
tion of �’s (see Fig. 7). It may be considered counterintuitive
since, taking as an example the hyperon puzzle [80], the
inclusion of more particles involves more degrees of free-
dom, and lowers the Fermi levels. Following this reasoning,
it is expected that the admixture of �’s in hypernuclear
matter would make the EoS softer, but it is not always
the case. In Walecka-type relativistic models (a category in
which we include the DDME2 and other density-dependent
parametrizations), the attractive σ field grows rapidly until
about three times the saturation density, but then shows a
softer dependence on nB at higher densities. On the other hand,
the repulsive ω field grows indefinitely in a linear fashion
and then becomes dominant in the denser regions. There are
more �’s in the matter composition for larger σ -� couplings,
and, since the ω-� coupling is always taken to be much
greater than the ω-hyperon coupling (that is, not greater than
∼2/3gω), configurations where �’s are more abundant will

FIG. 8. Maximum stellar mass as a function of the xω� coupling,
taking xρ� = 1.0, varying the xσ� parameter for the NH� matter
composition. The dot-dashed black horizontal line represents the
maximum mass for the NH composition (M = 2.07MSun), and the
curves are plotted only for values where the maximum mass star
configuration is reached.

have a stronger repulsion than scenarios that only consider
the NH composition, resulting in a stiffer EoS and a higher
maximum mass.

The effect of the �-meson couplings on the maximum
stellar mass is illustrated in Fig. 8. We note that, for a fixed
xω�, increasing the parameter xσ� will always produce a more
massive star. When the parameter xσ� is fixed, the maximum
mass will decrease slightly for greater xω�. The main factor
in play here is the balance between the relative fractions of
hyperons and �’s: a larger xσ� favors larger � fractions. The
�’s couple more strongly to the ω fields. Even though stronger
σ -meson couplings are involved, the ω field dominance at
large densities results in a stiffening of the EoS, and, there-
fore, larger masses. This balance is stronger for 1.0 < xω� <

1.2. In [63], a similar conclusion was drawn, although the
maximum mass was obtained for 1.1 < xω� < 1.2, implying
smaller values. This difference is probably occurring because
a different hyperon interaction was considered. Notice, how-
ever, that we do not consider xω� > 1.2 and that with our
parametrization we do not get maximum mass configurations
for xσ� − xω� � 0.1.

In Fig. 9, we perform a similar study for the radius of the
maximum mass star (top panel) and radius of the 1.4MSun star
(bottom panel). For xρ� = 1.0, the presence of �’s may re-
duce the maximum mass radius by 100–150 m, 11.5 km being
the minimum, and the 1.4MSun star radius by 20–500 m, with a
minimum of 12.7 km. Only models that attain maximum mass
configurations are represented in Figs. 8 and 9. In [9] smaller
radii are obtained, and the presence of �’s may give rise to a
reduction of the radius of the canonical star of up to ≈2 km.
However, it is not clear if the authors exclude models that do
not attain the maximum mass. In [10], the authors obtained,
with FSU2H, effects of the order of the ones discussed in the
present work with DDME2. From Figs. 3 and 9, it is seen that
the presence of �’s (induced by larger values of xσ�) causes a
significant decrease in the radius of the stars with intermediate
masses. This is explained by the fact that the appearance of
the �’s softens the EoS in the intermediate density region,
as clearly seen in the top panels of Fig. 6. Stars with core
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FIG. 9. Radii of the maximum mass (top) and canonical (bottom)
stars as a function of the xω� coupling, taking xρ� = 1.0, varying
the xσ� parameter for the NH� matter composition. The dot-dashed
black horizontal lines represent the radii of the NH matter stars
(R = 11.67 km and R = 13.22 km, respectively), and the curves are
plotted only for values where the maximum mass star configuration
is reached.

densities in this range are further compressed when �’s set in
and, consequently, their radii decrease [10].

The stiffening of the EoS due to the � admixture was also
noticed in Ref. [29], where it was suggested that it occurs due
to the isospin asymmetry. We define the coefficient

δI =
∑

b I3 bnb∑
b nb

, (8)

that represents the average third isospin component of a given
matter composition, weighted by each particle relative den-
sity, as shown in Fig. 10. The density at which the curves
with and without �’s split marks the appearance of the �−
baryon, which turns the isospin asymmetry more negative
and, consequently, makes the EoS stiffer. It happens earlier
for larger xσ� couplings, as this is the determining param-
eter to favor the onset of the �’s. For the N� composition
(top panels of Fig. 10), the isospin asymmetry coefficient
tends to more negative values as the density increase, because
the matter becomes dominated by the �−. This tendency is
stronger for smaller xω� couplings, as a strong ω coupling
does not favor � populations at higher densities. However,
when the NH� composition is considered (bottom panels
of Fig. 10), the isospin asymmetry coefficient becomes less

negative once the hyperon threshold is reached and follows the
NH composition behavior after that, becoming less negative
as the matter is more dominated by the hyperons. Neverthe-
less, the configurations with relatively more �’s present (i.e.,
bigger xσ�, drawn in indigo blue in the plots) show more
negative values of δI .

In Fig. 11, we summarize the constraints on the values of
the couplings that ensure the existence of neutron stars com-
patible with the stability criteria and with the observational
results. For three values of the coupling xρ� (0.5, 1, and 1.5),
the compactness of a 1.4MSun star is plotted versus the xσ�

and xω�. The color gradient indicates the compactness, de-
fined as CM = M/R, of the canonical (M = 1.4MSun) star. The
compactness of the isolated neutron star RX J0720.4-3125 is
inferred to be C = 0.105 ± 0.002 MSun/km [81], which gives
us an additional parameter for analysis, specially focused on
the less massive star radii. From the figures, we see that the
effect of xρ� is making the canonical star less compact as
the parameter increases, improving the agreement with this
constraint. The black region on the upper-left corner rep-
resents values for which dP/dε < 0 before nB = 0.2 fm−3,
meaning that the thermodynamic stability condition is not
satisfied at these low densities. The gray region represents
values where the maximum mass star configuration is not
reached because the effective nucleon mass goes to zero. Note
that all configurations approved by these two criteria fulfill the
observational constraints shown in Fig. 3. The white-shaded
triangular regions indicate the combinations of parameters
that do not fulfill the constraint given by Eq. (4) [45]. The
remaining points, identified with (a) and indicated by the color
gradient, correspond to �-meson couplings that satisfy all
constraints. Comparing with the coupling domain obtained
in [10], in this work a larger domain was obtained, indicating
that solutions with xω�>1.0 and xσ� > 1.0 are possible. The
difference is essentially connected with the model: DDME2
allows for a larger parameter domain for which the effective
mass does not go to zero before the maximum mass configu-
ration is attained. For a large enough xρ�, the constraint C =
0.105 ± 0.002 MSun/km is satisfied for xσ� and xω� larger
than 1. A smaller value of xρ�, e.g., 0.5 in the left panel, is
more constraining with respect to the combination xσ�-xω�

and does not allow for large values of xσ�.
In the present work, we have considered that the � baryons

are stable in stellar matter, as considered in many other
works [6,11,63]. This may be justified because the possible
final states for the decay of the � to occur are blocked. Gen-
erally, in vacuum the �’s, � = {�++,�+,�0,�−}, quickly
decay via the strong force into a nucleon N = {p, n} and a
pion of appropriate charge,

� −→ N + π.

The �− will decay if μ�− − μn = μπ− , giving possibly rise
to a π− condensate, and in β equilibrium μπ− = μe. For
reference, we show in Fig. 12 the electron chemical potential
[i.e., the difference between the � and the nucleon (effective)
chemical potentials], and indicate the vacuum pion mass with
a dotted line, mπ = 139.5 MeV. In several scenarios the elec-
tron chemical potential is larger than the pion vacuum mass.
This would indicate that indeed the pion condensate would be
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FIG. 10. Isospin asymmetry coefficient Eq. (8) as a function of the density, taking xρ� = 1.0, for some choices of xω� and varying the xσ�

parameter for the N� matter composition (top panels) and for NH� matter composition (bottom panels). The solid and dot-dashed black lines
represent the N and NH compositions, respectively.
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FIG. 11. Constraints on meson-� couplings, for the N� matter composition (top panels) and for the NH� matter composition (bottom
panels). The color gradient (a) indicates the compactness of the canonical star. The black region (b) represents values for which dP

dε
< 0 before

nB = 0.2 fm−3. The gray region (c) represents values where the maximum mass star configuration is not reached when inputting the EoS in the
TOV equations. The white-shaded region (d) indicates the combinations of parameters that do not fulfill the constraint given by Eq. (4) [45].
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FIG. 12. Electron chemical potentials as a function of the density, taking xρ� = 1.0, for some choices of xω� and varying the xσ� parameter
for N� (top panels) or NH� (bottom panels) matter composition. The dashed line represents the vacuum π mass.

favorable. However, in Refs. [1,82], the authors showed that
the repulsive 12-wave pion-nucleon interaction does not favor
pion condensation because, in the medium, the pion energy is
above its vacuum mass.

IV. CONCLUSIONS

By applying a relativistic mean-field formalism, we have
analyzed the properties of NS matter with an admixture of
nuclei and � baryons, and an admixture of nuclei, hyperons,
and � baryons. The meson-hyperon couplings were chosen by
imposing hypernuclear properties [42,43]. For the �-meson
couplings, we have considered the constraint obtained in [45]
from electron-nucleon measurements.

It was shown that under some conditions, in particular,
in the presence of a large admixture of different particles,
the nucleon effective mass goes to zero before the maximum
mass configuration is reached. These configurations were con-
sidered unphysical. It was shown that using astrophysical
observations to constraint the couplings, the onset of the �−
baryon is favored over the hyperons, in particular the � hy-
peron. Some NS configurations were determined with ≈80%
�− baryons in the core center, the so called deltic stars. It
was shown that at large densities the presence of �’s would
generate a quite stiff EoS due to the ω meson dominance. As a
consequence, NS with a nucleon-hyperon-� admixure attains
larger maximum masses and a larger speed of sound in the
core center. For the same reason, in the presence of hyperons
the � distribution is maximum at intermediate densities, be-
low 30%, and decreases towards the NS star center to values
below 20%.

Neutron stars with a very large � content (>60%) were
obtained for the first time in this work. This feature is strongly
influenced by the choice of the �-meson couplings and re-
quires that no hyperons are present. Previous similar studies
did not consider � baryons alone in the matter composition,
but together with hyperons [5,9,10], or considered a different
model [8] that does not favor the presence of �’s.

Taking as reference the isolated neutron star RX
J0720.4-3125, for which the compactness CM = 0.105 ±
0.002 MSun/km [81] was measured, it was shown that values
of xσ�, xω�, and xρ� � 1.0 are favored together with xσ� >

xω�. A small xρ� favors smaller radii in neutron stars with
intermediate masses.

The calculation of the electron chemical potential has al-
lowed us to discuss the possibility of the occurrence of a
pion condensate. However, the values that we have obtained
were never much larger than the pion vacuum mass, which
may indicate that its condensation may not be favored. Also,
and according to Refs. [82,83], this possibility was disfavored
because the pion s-wave interacts repulsively with nucleonic
matter.

Finally, all stars obtained in this work with a mass above
two solar masses satisfy the NICER constraints for pulsars
PSR J0740+6620 and PSR J0030+0451. The maximum NS
masses with an admixture of hyperons and �’s was obtained
for xσ� = 1.2 and xω� ≈ 1.05, corresponding to a maximum
fraction of �’s: to obtain the maximum fraction, a large xσ�

is needed but not too large xω�. The presence of �’s may
cause, for the canonical mass, a reduction in the radius of up
to 500 m, and of 200 m for the maximum-mass configura-
tion, and considering xρ� = 1. Taking a smaller value, e.g.,
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xρ� = 0.5, the radius of the canonical star may be reduced
up to ≈1 km. In the present work, we have obtained a larger
coupling domain than the one determined in [10], but certainly
much smaller than the one discussed in [9].
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