
PHYSICAL REVIEW C 106, 055501 (2022)

Renormalization of proton-proton fusion in chiral effective field theory
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Renormalization of proton-proton fusion is studied in the framework of chiral effective field theory. Strict
perturbative treatment of subleading corrections is applied in the analysis. Possible enhancement of two-nucleon
contact axial current operators is the focus of the study. We find evidence that supports a previous proposal in
the literature to promote one of the contact axial current operators.
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I. INTRODUCTION

As the first reaction of the proton-proton (pp) chain, pp
fusion is the predominant process in conversion of hydrogen
to helium in light stars like the Sun. Its rate is an essential
ingredient in understanding stellar nucleosynthesis. However,
the reaction cross section is difficult to measure in terres-
trial laboratories; therefore, reliable theoretical prediction of
it is often needed as one of the inputs for stellar models.
In the present paper, we examine power counting of weak
currents involved in this process in chiral effective field theory
(ChEFT), with renormalization-group (RG) invariance as the
guideline.

At the hadronic level, the total cross section of pp fusion
consists of two essential elements: nuclear wave functions and
axial current operators. Near the threshold, it can be schemat-
ically written as

σ (E ) ∝
∑

M

∣∣〈ψM
d

∣∣ �A−|ψpp〉
∣∣2

, (1)

where �A− denotes the axial current, ψM
d (ψpp) the deuteron

bound state (pp scattering state), M the z component of the
deuteron spin, and E the center-of-mass (CoM) energy.

In the early investigations, both strong and weak interac-
tions were phenomenologically constructed [1–5]. As ChEFT
developed, interests in pp fusion were revived due to the
prospect of quantifying its theoretical uncertainty in an EFT
framework [6,7]. In the so-called hybrid approach, current
operators were derived from ChEFT and various potential
models were used to construct the nuclear wave functions.

Full EFT calculations were actually carried out at first in
pionless EFT [8–12]. At next-to-leading order (NLO), how-
ever, a low-energy constant (LEC) is needed: L1,A, which
parametrizes the two-body axial current. Several means to
determine L1,A were proposed in Refs. [13–15].

Applications of ChEFT to both potentials and currents
were performed in Refs. [16,17]. In these ChEFT calculations,
power counting of potentials and currents are based on naive
dimensional analysis (NDA). NDA has been shown to be
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inconsistent with RG invariance and various power counting
schemes of nuclear forces have been proposed to meet the
requirement of RG invariance [18–28]. RG analysis of the
nuclear currents in ChEFT was pioneered by Ref. [29], based
on the short-range behavior of two-nucleon wave functions.
The strategy of using RG for power-counting nuclear currents
was also applied in studying beyond-standard model physics
in nuclei [30–32]. For different points of view towards RG
invariance in the context of chiral nuclear forces, we refer to
Refs. [33–36].

We examine power counting of axial current operators
especially for the process of pp fusion. Since �-less poten-
tials are used in the present work, we set the breakdown
scale Mhi � δ � 300 MeV—the �-nucleon mass splitting—
to estimate uncertainties. Besides using RG invariance as
a guideline, we treat higher-order potentials in perturba-
tion theory in the same manner as they were studied in
Refs. [21–25,37–41], as opposed to lumping them altogether
with the leading-order (LO) potential in the Schrödinger equa-
tion [27].

The paper is organized as follows. In Sec. II, we demon-
strate how to deal with the pp interaction by calculating
the pp 1S0 phase shifts up to next-to-next-to-leading order
(N2LO). We then discuss the nuclear matrix element of pp
fusion in Sec. III, including relevant axial current operators
and the deuteron wave function. This is followed by results
and discussions in Sec. IV. Finally, a summary is offered in
Sec. V.

II. PROTON-PROTON SCATTERING

We describe near-threshold pp scattering where the energy
is so low that the Coulomb potential must be fully iterated.
For discussions on perturbative treatment of the Coulomb
potential in the context of pionless and cluster EFTs, we refer
to Refs. [42–44].

The full T matrix in the presence of the strong and
Coulomb interactions can be divided into two parts: the pure
Coulomb part Tc and the modified strong amplitude T̃sc [45].
We begin by introducing the Coulomb propagator:

G±
c (E ) = 1

E − H0 − Vc ± iε
, (2)
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where H0 is the free Hamiltonian, Vc is the Coulomb potential,
and the CoM energy E = p2/mN with the nucleon mass mN =
939 MeV. The Coulomb amplitude Tc( �p, �p ′) is defined as [46]

Tc( �p ′, �p) = 〈�p ′|Vc|ψ+
c ( �p)〉. (3)

Here, the incoming (ψ−
c ) and outgoing (ψ+

c ) Coulomb wave
functions are given by

|ψ±
c ( �p)〉 = (1 + G±

c Vc)| �p〉. (4)

Operator Tsc is defined by iterating the strong potential Vstr

through Gc(E ):

Tsc = Vstr + VstrGc(E )Tsc, (5)

and T̃sc( �p ′, �p) is the matrix element of Tsc between ψ+
c and

ψ−
c :

T̃sc( �p ′, �p) ≡ 〈ψ−
c ( �p ′)|Tsc|ψ+

c ( �p)〉. (6)

Tc and Tsc can be projected onto partial waves in a fashion
similar to their strong-interaction counterparts. More specifi-
cally, T̃sc(p, p) for 1S0 is related to the strong phase shift δsc(p)
as follows:

T̃sc(p, p) = − 4π

mN
e2iδc (p) e2iδsc (p) − 1

2ip
, (7)

where p is the CoM momentum and δc(p) the Coulomb phase
shift. We restrict ourselves to the 1S0 channel of pp interaction
because the P-wave contribution to near-threshold pp fusion
is smaller than the S-wave contribution by several orders of
magnitude [16,47]. We drop the subscript of orbital angular
momentum to simplify the notation.

The technique presented in Refs. [48,49] is adopted to cal-
culate the strong phase shift δsc(p). An artificial infrared cutoff
in coordinate space Rp is introduced, beyond which the strong
potential is neglected. One expects δsc to be independent of
Rp as long as Rp is much larger than the range of Vstr. We
have verified that, when Rp is chosen to be 10 fm, the relative
errors of the phase shifts δsc(p) are smaller than 10−3. The pp
scattering wave function ψpp(�r; �p ) will be constructed by this
method. It is useful to show the spin and isospin structure of
ψpp(�r; �p ) [5]:

ψpp(�r; �p) = 4π
√

2eiδsc
χ0(r; p)

pr
Y ∗

00( p̂)Y00(r̂)η0
0ζ

1
1 , (8)

where χ0(r; p) is the radial wave function and η
MS
S (ζ MT

T )
is the spin (isospin) piece of the wave function, with the z
component MS (MT ).

The power counting for the neutron-proton (np) 1S0 inter-
action explained in Ref. [25] is our starting point for the strong
potentials. Later, other schemes were proposed to improve
the convergence of ChEFT in 1S0 [38,41,50–52], but they are
aiming at momenta much higher than those we are concerned
with in the present paper. Following Ref. [25], we expand the
1S0 potential Vstr up to N2LO:

V (0)
str (p′, p) = V1π (p ′, p) + C(0), (9)

V (1)
str (p′, p) = C(1) + 1

2 D(0)(p′2 + p2), (10)

V (2)
str (p′, p) = V2π (p′, p) + C(2) + 1

2 D(1)(p′2 + p2)

+ 1
2 E (0) p′2 p2, (11)

where the LECs C and D are formally expanded at each
order: C = C(0) + C(1) + C(2) and D = D(0) + D(1). To reg-
ularize the ultraviolet part of potentials, we use a separable
Gaussian regulator:

V �(p′, p) ≡ exp

(
− p′ 4

�4

)
V (p′, p) exp

(
− p4

�4

)
. (12)

Unlike in the np sector, the pp contact interactions are
renormalized by the Coulomb force at short distances. On
the other hand, the OPE potential—the long-range part of the
strong interactions—is unchanged from np to pp. Because
OPE behaves similarly to the Coulomb force for r → 0, where
r is the internucleon distance, one expects the addition of
the Coulomb force only to change the renormalization of the
contact terms modestly and the power counting for the 1S0 pp
contact terms to remain in the same pattern as that for np. In
addition to this argumentation, we check the power counting
against RG invariance by verifying numerically that δsc is
independent of the cutoff value at each order.

The perturbative treatment of higher-order potentials may
be most conveniently explained by a generating function. We
introduce an auxiliary parameter x and define a potential in
the form of x polynomials, with V (n)

str as the coefficient of xn:

Vstr(p′, p; x) = V (0)
str (p′, p) + xV (1)

str (p′, p) + x2V (2)
str (p′, p)

+ O(x3). (13)

This potential results in an x-dependent amplitude,
T̃sc(p′, p; x), whose Taylor expansion in x leads to the
desired correction to the LO amplitude T̃ (0)

sc (p′, p):

T̃sc(p′, p; x) = T̃ (0)
sc (p′, p) + xT̃ (1)

sc (p′, p) + x2T̃ (2)
sc (p′, p)

+ · · · . (14)

One can follow the same suit to relate the EFT expansion of
δsc to that of T̃sc.

In the numerical calculations, the following values are
taken for various parameters: the fine-structure constant α =
1/137.036, the axial vector coupling constant gA = 1.29, the
pion decay constant fπ = 92.4 MeV, and the pion mass mπ =
138 MeV.

To determine the LECs of pp contact interactions, we fit
T̃sc to the empirical values of pp phase shifts provided by the
partial-wave analysis in Ref. [53]. At LO, the phase shift at
CoM momentum p = 5.0 MeV is used as the input. At NLO
and N2LO, p = 68.5 and p = 153.2 MeV are added. The 1S0

phase shifts up to N2LO are shown in Fig. 1. The convergence
of EFT expansion and the cutoff variation bands is similar to
that for np scattering presented in Ref. [25]. A shift from � =
1.5 to 3.2 GeV smaller than that from 0.5 to 1.5 GeV indicates
the cutoff convergence for large �’s at N2LO. Near p � 200
MeV, the N2LO cutoff variation becomes comparable to that
of the NLO band. This echos the slow convergence of 1S0, as
mentioned earlier.

III. AXIAL CURRENTS AND MATRIX ELEMENTS

We at first use NDA to take stock of the axial current
operators to be used in the paper. The weak current �A for the
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FIG. 1. The pp 1S0 phase shift as a function of the CoM mo-
mentum p. The solid circles represent the empirical values from
Ref. [53]. The red and green bands represent the results at LO and
NLO, respectively, from � = 0.5 to 3.2 GeV. At N2LO, � = 0.5,
1.5, and 3.2 GeV are represented by, respectively, dashed, dotted,
and dot-dashed curves.

two-nucleon system can be written in the plane-wave basis as

〈 �P ′ �p ′| �A| �P �p 〉 = �A1B( �p ′, �p; �q )(2π )3δ(3)

(
�p ′ − �p − �q

2

)
+ �A2B( �p ′, �p; �q ), (15)

where �p ( �p ′) denotes the initial (final) relative momentum,
�P ( �P ′) the initial (final) total momentum, �q = �P ′ − �P the
momentum carried by the current, and �A1B ( �A2B) the one-body
(two-body) current operators. Up to N2LO in NDA, only
one-body axial current operators contribute to the pp fusion
rate. When there is no ambiguity, we drop the momentum-
conserving δ function for one-body current operators. With
these conventions, the LO axial current takes the following
form:

�A(0)
− ( �p ′, �p ) = −gA

∑
i

�σiτi,−, (16)

where �σi is the spin Pauli matrix of nucleon i and τ− ≡ (τx −
iτy)/2 acts on the isospin.

By NDA, NLO axial currents vanish. At N2LO, there are
two types of contributions. One comes from the N2LO correc-
tion to the nucleon axial form factor, which is proportional to
〈r2

A〉q2. With the axial mean-square radius 〈r2
A〉 � 0.4 fm2 and

the lepton-deuteron momentum transfer q ≈ 1 MeV, 〈r2
A〉q2 ≈

10−5; therefore, this part, although nominally N2LO, is negli-
gible. The other part is what we take into account: the 1/m2

N
correction to the nucleon axial vector coupling [54–56],

�A(2)
− ( �p ′, �p ) = gA

2m2
N

∑
i

[ �K2 �σi − (�σi · �K ) �K]τi,−, (17)

where �K = 1
2 ( �p + �p ′). Here the �q-dependent terms have been

neglected due to the smallness of q in near-threshold re-
actions. An equivalent expression for �A(2)

− can be found in
Ref. [57]. For expressions of the axial currents in coordinate
space, we refer to Refs. [7,58].

We find that the following two-body contact axial current
operator, as predicted in Ref. [29], is enhanced in comparison
with NDA:

�Act ( �p ′, �p ) = d̂R �σ1 × �σ2(τ1 × τ2)−. (18)

The LEC d̂R is usually determined by fitting to observables of
a three-nucleon system, e.g., tritium β decay [7] or binding
energy [16], making use of the relation between d̂R and the
LEC cD that appears in three-nucleon forces, as demonstrated
in Ref. [59].

The deuteron wave function is yet another essential ingre-
dient. In coordinate space it has the following form:

ψM
d (�r ) =

∑
L=0,2

uL(r)

r
YM

1L1(r̂)ζ 0
0 , (19)

where YM
JLS (r̂) are the normalized spin-angle wave func-

tions [60]. The S- and D-wave components of the wave
function u0(r) and u2(r) are normalized so that∫ ∞

0
dr

[
u2

0(r) + u2
2(r)

] = 1. (20)

We follow Ref. [24] regarding power counting of the chiral
forces in the coupled channel of 3S1 − 3D1, which actually
coincides with NDA up to N2LO. The procedure spelled out
in Ref. [61] is followed to determine the values taken by the
contact LECs in the potentials. We also use the cutoff values
adopted in Ref. [61], discarding some cutoff ranges where the
numerical accuracy may suffer.

The matrix element of the axial current between the pp
scattering and deuteron states is usually parametrized as

〈
ψM

d

∣∣Ai
−
∣∣ψpp

〉 = δMi

√
32π

γ 3
gAC0�R(p), (21)

where γ = 45.7 MeV is the deuteron binding momentum,
C0 =

√
2πη/(e2πη − 1) the Gamow penetration factor (not

to be confused with the contact coupling constants of the
chiral potentials), and �R(p) the radial matrix element at the
pp relative momentum p. Expansion of the matrix element
consists of contributions from currents and corrections to the
wave functions:〈

ψM
d

∣∣ �A−
∣∣ψpp

〉 = 〈
ψM

d
(0)∣∣ �A(0)

−
∣∣ψ (0)

pp

〉 + 〈
ψM

d
(0)∣∣ �A(0)

−
∣∣ψ (1)

pp

〉
+ 〈

ψM
d

(2)∣∣ �A(0)
−

∣∣ψ (0)
pp

〉 + 〈
ψM

d
(0)∣∣ �A(0)

−
∣∣ψ (2)

pp

〉
+ 〈

ψM
d

(0)∣∣ �A(2)
−

∣∣ψ (0)
pp

〉 + · · · . (22)

At LO, the contribution to �R from the one-body axial current
operator (16) reduces to the following integral [5]:〈

ψM
d

(0)∣∣ �A(0)
−

∣∣ψ (0)
pp

〉 = �R(p | �A(0)
− )

=
√

γ 3

2p2

eiδ(0)
sc

C0

∫ ∞

0
dr u0(r)χ0(r; p), (23)
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FIG. 2. The LO (�(0)
R ) and NLO (�(0)

R + �
(1)
R ) radial matrix elements for p = 2.17 MeV as functions of the cutoff value �.

where u0 and χ0 are the LO radial wave functions. At N2LO,
the contribution from the axial current (17) is given by〈
ψM

d
(0)∣∣ �A(2)

−
∣∣ψ (0)

pp

〉 = �R(p | �A(2)
− )

= 1

12m2
N

√
γ 3

2p2

eiδ(0)
sc

C0

×
∫ ∞

0
dr

[
u′′

0χ0 + u0χ
′′
0 − 2

(
u′

0 − u0

r

)
×

(
χ ′

0 − χ0

r

)]
. (24)

We are left with the matrix elements of the LO current
between high-order wave functions: 〈ψM

d
(ν)| �A(0)

− |ψ (ν ′ )
pp 〉, which

are in turn induced by higher-order chiral potentials. In much
the same way the pp scattering amplitude was expanded [see
Eqs. (13) and (14)], we can obtain the potential-corrected
�R through numerical Taylor expansions. First, an auxiliary
potential is defined by introducing the dummy parameter x:

V (x) = V (0) + xV (1) + x2V (2). (25)

Second, a generating function is calculated through Eq. (23),
�R(p; x| �A(0)

− ). Its Taylor series around x = 0 yields desired
corrections:

�R(p; x| �A(0)
− ) = �

(0)
R (p) + x�(1)

R (p) + x2�
pot
R (p) + · · · ,

(26)

where

�
(1)
R (p) = 〈

ψM
d

(0)∣∣ �A(0)
−

∣∣ψ (1)
pp

〉
, (27)

�
pot
R = 〈

ψM
d

(2)∣∣ �A(0)
−

∣∣ψ (0)
pp

〉 + 〈
ψM

d
(0)∣∣ �A(0)

−
∣∣ψ (2)

pp

〉
. (28)

In practice, construction of the auxiliary potential V (x) can be
tweaked if higher numerical accuracy can be achieved or more
information is needed. For instance, one can use instead

V (x, y, z) = V (0) + xV (1)
1S0

+ yV (2)
1S0

+ zV (2)
3S1 − 3D1

, (29)

which makes the iterative contribution from V (1) and the first-
order perturbation of V (2) in two S waves be separated from
each other. This breakdown of contributions is unambiguous
up to N2LO, where different partial-wave potentials do not
mix. We come back to this in Sec. IV.

IV. RESULTS AND DISCUSSIONS

Electroweak reactions can reveal rich structure in nuclei.
However, multiple low-energy scales often coexist in these
reactions, which may call for additional care in EFT analysis.
The characteristic scales in pp fusion include the pp initial
relative momentum, the deuteron binding momentum γ �
46 MeV, and the inverse Bohr radius αmN � 7 MeV. At ener-
gies of solar-physics interests, p � αmN , so that the Coulomb
potential must be treated nonperturbatively. Therefore, with
Mhi � δ the acceptable upper bound for EFT truncation error
at the νth order will be (γ /δ)ν+1.

FIG. 3. The N2LO corrections of the radial matrix element �R as a function of the cutoff � at p = 2.17 MeV.
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FIG. 4. Renormalized N2LO �R (�(0)
R + �

(1)
R + �

(2)
R ) for various CoM momenta p as a function of the cutoff value. The solids circles,

squares, and triangles correspond to p = 2.17, 10, and 100 MeV, respectively.

The NDA estimation of the current operators could be
upset by enhancement of nonperturbative nuclear dynamics
in the initial or final states. We can be alerted to this sort
of enhancement by RG analysis as a diagnostic tool. Our
strategy of testing NDA of axial current operators against
RG invariance is similar to that of Ref. [61]. Long-range
physics—contributions from one-body and pion-exchange
currents—are assumed to follow NDA, and we study whether
those contributions are independent of the cutoff value �.

Choosing the initial relative momentum p = 2.17 MeV,
we illustrate in Fig. 2 the cutoff variation of the radial
matrix element �R(p) at LO and NLO. Cutoff indepen-
dence is evidently achieved at LO for large cutoff values.
The NLO fluctuation appears to be oscillating with a de-
caying magnitude. The magnitude—from peak to trough—is
about (2.68–2.64)/2.65 � 1.5%, comparable or smaller than
the theoretical uncertainty expected of a legitimate NLO �
(γ /δ)2 � 3%. Therefore, we conclude that both LO and NLO
are sufficiently insensitive to the cutoff value.

We compare our NLO result with the rates calculated pre-
viously in the literature by choosing p = 0. With � = 1 GeV
and the aforementioned truncation error of 3%, the value
of the radial matrix element is 2.65 ± 0.08. One of the po-
tential model calculation gives �2

R(0) = 7.052 ± 0.007 [5],
translating to �R(0) = 2.656. Pionless EFT calculation [11]
has �R(0) = 2.648 and NDA-based ChEFT calculation in
Ref. [17] has �R(0) = 2.662. Our NLO result agrees with
these calculations within the uncertainty.

At N2LO, the cutoff variation is much more significant. We
break down the N2LO corrections at p = 2.17 MeV in Fig. 3
according to the source that generates them. “3S1” is generated
by the N2LO deuteron wave function, “1S0” by the N2LO pp
scattering wave function, and “ �A(2)” by the N2LO axial current
operator acting on the LO wave functions. The largest of these
variations is due to the N2LO 3S1 − 3D1 potential, showing as
large as 40% deviation with respect to LO based on the values
of �R for � = 1.3 and 1.6 GeV. The 1S0 potential causes
appreciable variation too, with the fluctuation amounting to
an uncertainty of 5% based on the values of �R for � = 1.7
and 2.7 GeV. �A(2) only probes the cutoff variation of the LO
wave functions, which is negligible in comparison with the
other two contributions. We notice that both variations of 3S1

and 1S0 are much larger than the acceptable N2LO uncertainty
(γ /δ)3 � 0.4%.

The sensitivity to the cutoff value at N2LO suggests that
modification of NDA-based power counting be in order. More
specifically, we need to assign the contact axial current �Act

to N2LO instead of the NDA counting of N3LO. This is
in approximate agreement with the conclusion of Ref. [29],
where �Act was found to be N7/4LO based on the analysis using
the asymptotic wave functions at short distances.

While Ref. [29] and our work both agree that RG invari-
ance requires counting of the axial vector current move away
from NDA, there are some differences. First, the sublead-
ing chiral potentials and current operators are included in
the present paper, while Ref. [29] focused on analyzing the
short-range behavior of the LO wave functions. Second, in
our work, however long-range corrections are counted, e.g.,
LO one-body currents combined with N2LO wave functions,
the counterterms that renormalize those long-range matrix
elements are assigned the same counting. By this working
principle, we will not have fractional indices like in Ref. [29].

We now demonstrate that �Act indeed renormalizes �R at
N2LO. To determine d̂R, we require the recommended value
of �R (p = 0) 2.652, provided by Ref. [62], to be reproduced
at N2LO. Then the prediction of �R at other relative momenta
is made for various cutoff values. Shown in Fig. 4, �R is
evidently renormalized.

V. SUMMARY

We continue the RG-based analysis of nuclear electroweak
currents that was initiated in Ref. [61]. Proton-proton fusion is
the focus of the present paper. We have calculated the nuclear
matrix element of the axial current for this process up to
N2LO.

The chiral forces responsible for pp S-wave interactions
and for the deuteron wave function were constructed accord-
ing to the power counting laid out in Refs. [24,25]. Because
the incoming pp state is near threshold, the Coulomb force
is fully iterated at LO. We have verified numerically that
the inclusion of the Coulomb potential does not spoil RG
invariance, but the 1S0 contact terms need to be redetermined
by fitting to pp phase shifts.
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The novelty of our calculations is perturbative treatment of
subleading chiral nuclear forces, as opposed to indiscriminate
summation of LO and higher orders. Thanks in large part to
strict perturbative calculations, we were able to isolate the
contributions from different partial waves and to investigate
their cutoff dependence individually.

At LO and NLO, no significant cutoff variations were
found, and our NLO value of the radial matrix element is in
agreement with previous calculations within the EFT uncer-
tainty. At N2LO, the chiral force in 3S1 − 3D1 was found to
generate the most cutoff-sensitive contribution. (Interestingly,
this is similar to Ref. [61] where the 3S1 − 3D1 potential at
N2LO was also found to drive a significant cutoff variation.)
As a result, we concluded that one of the two-body contact
axial current operators—defined as �Act in Eq. (18)—must
appear no later than N2LO, one order lower than assessed
by NDA. Renormalized by �Act, �R was illustrated to fulfill

RG invariance at N2LO. Our finding echos partly the analysis
of contact electroweak currents in Ref. [29], where �Act was
assigned N7/4LO.

The most immediate consequence of promoting �Act con-
cerns the theoretical uncertainty of pp fusion in chiral EFT.
Without a reliable input of its LEC d̂R, the pp fusion cross
section can be predicted only up to NLO, with an uncertainty
conservatively estimated to be (γ /δ)2 � 3%.
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