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A new two-component model of the EMC effect based on light-front holographic QCD (LFHQCD) is
presented. The model suggests the EMC effect is the result of the nuclear potential breaking SU(6) symmetry.
The model separates the F A

2 nuclear structure function into two parts: a free contribution, involving the addition
of proton and neutron structure functions, weighted by the number of protons and neutrons respectively, and
a nuclear/medium modified contribution that involves a nucleus-independent universal function. Further, the
model displays a correlation between the size of the EMC effect and the SRC pair density a2, extracted from
kinematic plateaus at around x > 1 in inclusive quasielastic (QE) scattering.

DOI: 10.1103/PhysRevC.106.055202

I. INTRODUCTION

Deep inelastic lepton-nucleus scattering experiments, in-
volving squares of four-momentum transfers (Q2) between
10 and hundreds of GeV2, have shown that nuclear struc-
ture functions (per nucleon) are different than those of free
nucleons. This phenomenon is known as the EMC effect,
named after the European Muon Collaboration where it was
first observed; see, e.g., the review [1] and the original work
[2,3]. This was a shocking result as it was assumed that
deep inelastic scattering (DIS) off a nucleus A was the same
as scattering off A nucleons. This experimental observation
taught us quark interactions in nuclei are important, and that
parton distribution functions (PDFs) depend on the nuclear
environment.

The EMC effect is not large, of order 10%–15%, but is of
fundamental interest because it involves the influence of nu-
clear properties on scales that resolve the nucleon size. How-
ever, scales larger than the nucleon size are relevant because
modifications of nucleon structure must be caused by interac-
tions with nearby nucleons. Indeed, after the nucleon size, the
next largest length is the internucleon separation length d; this
is the scale associated with short range correlations (SRCs)
between nucleons. Therefore, the EMC effect is naturally con-
nected with SRCs between nucleons. On the other hand, the
internucleon separation is not much smaller than that of the
nuclear size. This means that effects involving the entire nu-
cleus cannot be disregarded. Such effects are known as mean-
field effects in which each nucleon moves in the mean field
provided by other nucleons. Thus, an explanation of the EMC
effect should involve physics at all three length scales [4].

The contents of this paper are as follows: In Sec. II, we
will discuss the role of virtuality in motivating the use of
quark degrees of freedom, as well as aid us in identifying
the dominant interactions in the EMC effect. In Sec. III we
will present a two-component model of the nucleon that will
guide our intuition throughout this paper. Furthermore, this
model of the nucleon will give us a relationship between

virtuality and the nuclear potential. In Sec. IV we will present
our construction of a new model of the EMC effect using
light-front holographic QCD. We will first summarize results
from Refs. [5,6], giving a framework in obtaining free nucleon
parton distribution functions (PDFs) from free nucleon elastic
form factors. Then, we will introduce the effects of a nuclear
medium, allowing one to obtain the modified nucleon PDFs.
In Sec. V we will present the model’s expressions for the
EMC ratios and present the model’s results for EMC ratios
for a variety of nuclei. Section VI will present an argument
that identifies the dominant interaction in the EMC effect,
mean field or SRC. Lastly, Sec. VII will provide a check of
the change in the electric charge radius of a nucleon inside a
nucleus. Our concluding remarks are given in Sec. VIII.

II. VIRTUALITY: A SMALL-DISTANCE SCALE

Bound nucleons of four-momentum p do not obey the
standard Einstein relation: pμ pμ = p2 = M2, and are thus
said to be off their mass shell. By examining the intermediate
nucleons in nucleon-nucleon scattering, we can gain insight
into why bound nucleons do not obey Einstein’s relation. In
the Blankenbecler-Sugar [7] and Thompson reductions [8] of
the Bethe-Salpeter equation [9], one nucleon emits a meson
of zero energy and nonzero momentum, while the other nu-
cleon absorbs the meson. Since the momenta of the nucleons
have changed, but their energies have not, p2 �= M2, meaning
the intermediate nucleons are off their mass shell. In other
reductions of the Bethe-Salpeter equation [10], one nucleon
is on the mass shell, and the other is not. This means that the
nuclear wave function, treated relativistically, contains nucle-
ons that are off their mass shell. Such nucleons must undergo
interactions before they can be observed, and are thus de-
noted as virtual, with difference p2 − M2 being proportional
to the virtuality V [11]. Experiments [12–14] using leptonic
probes at large values of Bjorken x interrogate the virtuality
of the bound nucleons. Plateaus, kinematically corresponding
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to scattering by a pair of closely connected nucleons, have
been observed [15] in this region.

For a nucleon to be so far off the mass shell, it needs to
be interacting strongly with another nearby nucleon. To see
that, consider a configuration of two bound nucleons initially
at rest in the nucleus. This is a good approximation for roughly
80% of the nuclear wave function. To acquire a large vir-
tuality, one nucleon must exchange a boson or bosons with
four-momentum �P comparable to that of the incident virtual
photon. Such a bosonic system can only travel a short distance
�r between the nucleons with

�r ∼ 1

| �P| , (1)

thus, a highly virtual nucleon gets its virtuality from another
nearby nucleon which must be closely separated. High virtu-
ality is a short-distance phenomenon, and as such will help us
determine whether an interaction is dominated by SRCs.

Additionally, high virtuality serves as an intermediate step
between using nucleonic and quark degrees of freedom. To
better understand this, consider a virtual nucleon as a super-
position of physical states that are eigenfunctions of the QCD
Hamiltonian. Virtual states with nucleon quantum numbers
can be expressed using the completeness of states of QCD,

|N (V )〉 =
nmax∑
n=1

cn|Nn〉, (2)

in which the states |Nn〉 are resonances and also nucleon-
multipion states. Each of these states [with the total three-
momentum of the state |N (V )〉] has a detailed underlying
structure in terms of quarks and gluons. In exclusive reactions
with not very large momentum transfer few states are excited
and one may use Eq. (2) to describe the physics. However,
for high energy inclusive reactions of experimental relevance
one needs many states. Because of the large number of states
entering in Eq. (2) it is most efficient to use quark degrees of
freedom to understand DIS large values of Q2. Thus, the free
nucleon can be regarded as a superposition of various con-
figurations or Fock states, each with a different quark-gluon
structure.

III. TWO-COMPONENT MODEL OF THE NUCLEON

As discussed in Sec. II, it is most efficient to use quark
degrees of freedom due to the large number of states en-
tering Eq. (2). Motivated by the the QCD physics of color
transparency [16–19], we will treat the infinite number of
quark-gluon configurations of the nucleon as two configura-
tions: a large-sized, bloblike configuration (BLC), consisting
of complicated configurations of many quarks and gluons,
and a small-sized, pointlike configuration (PLC) consisting of
three quarks. The BLC can be thought of as an object that
is similar to a nucleon, and the PLC is meant to represent
a three-quark system of small size that is responsible for
the high-x behavior of the distribution function; the smaller
the number of quarks, the more likely one can carry a large
momentum fraction.

When placed in a nucleus, the bloblike configuration feels
the usual nuclear attraction and its energy decreases. The
pointlike configuration feels far less nuclear attraction by
virtue of color screening [20], in which the effects of glu-
ons emitted by small-sized configurations are canceled in
low-momentum transfer processes. The nuclear attraction in-
creases the energy difference between the BLC and the PLC,
therefore reducing the PLC probability [16]. Reducing the
PLC probability in the nucleus reduces the quark momenta, in
qualitative agreement with the EMC effect. Working out the
consequences of the BLC-PLC model enables the connection
between the EMC effect and virtuality to be clarified.

A. Free nucleon

The Hamiltonian for a free nucleon in the two-component
model can be expressed schematically by the matrix

H0 =
[

EB V
V EP

]
, (3)

where P represents the PLC and B represents BLC. We define
the energy difference between the PLC and the BLC to be
� = EP − EB. The hard-interaction potential V connects the
two components, causing the eigenstates of H0 to be |N〉 and
|X 〉 rather than |B〉 and |P〉. The normalized eigenstates are
given by

|N〉 = 1√
1 + ε2

(|B〉 + ε|P〉), (4)

|X 〉 = 1√
1 + ε2

X

(|B〉 + εX |P〉). (5)

where

ε = −2V

� + �
, εX = 2V

−� + �
, � ≡

√
�2 + 4V 2. (6)

The notation |X 〉 is used to denote the orthogonal excited
state. For later use, the probability of the PLC, PPLC, for free
nucleon is

PPLC = ε2

1 + ε2
. (7)

B. Medium effects

Now suppose the nucleon is bound to a nucleus. The nu-
cleon feels an attractive nuclear potential, here represented by
H1(n,p), with

H1(n,p) =
[
U(n,p) 0

0 0

]
, (8)

to represent the idea that only the large-sized component of
the nucleon feels the influence of the nuclear attraction. Note
that U(n,p) is dependent on A and Z . The treatment of the nu-
clear interaction U(n,p) as a number is clearly a simplification
because the interaction necessarily varies with the relevant
kinematics.

The complete Hamiltonian H = H0 + H1(n,p) is

H =
[

EB − |U(n,p)| V
V EP

]
, (9)
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in which the attractive nature of the nuclear binding potential
is emphasized. Then interactions with the nucleus increase the
energy difference between the bare BLC and PLC states and
thereby decrease the PLC probability.

The medium-modified nucleon and its excited state, |Ñ〉
and |X̃ 〉, are now

|N〉 = 1√
1 + ε̃2

(|B〉 + ε̃|P〉), (10)

|X 〉 = 1√
1 + ε̃2

X

(|B〉 + ε̃X |P〉). (11)

The expression for ε̃ can be obtained by making the replace-
ment � → � + |U(n,p)|:

ε̃ = −2V

� + |U(n,p)| + √
(� + |U(n,p)|)2 + 4V 2

. (12)

Since V is associated with the strong force, and U(n,p) to the
nuclear force, we can expand Eq. (12) to first order in |U(n,p)|

�
:

ε̃(n,p) ≈ ε

(
1 − |U(n,p)|

�

)
. (13)

The probability of the modified PLC for the nucleon
P̃PLC(n, p) is now

P̃PLC(n, p) = ε̃2
(n,p)

1 + ε̃2
(n,p)

. (14)

Replacing ε̃(n,p) with Eq. (13), expanding to first order in
|U(n,p)|

�
, and solving for r̃(n,p) we get

P̃PLC(n, p) = ε2

1 + ε2
− 2|U(n,p)|ε2

�(1 + ε2)2

= PPLC

(
1 − 2|U(n,p)|

�(1 + ε2)

)
. (15)

C. Connecting the nuclear potential to virtuality

The next step is to relate U(n,p) to the virtuality which is
done in Ref. [21]. Suppose a photon interacts with a virtual
nucleon of four-momentum Pmiss. The three-momentum Pmiss

opposes the A − 1 recoil momentum p ≡ Pmiss = −PA−1. The
mass of the on-shell recoiling nucleus is given by M∗

A−1 =
MA − M + E , where E > 0 represents the excitation energy
of the spectator A − 1 nucleus, and M is the mass of the
nucleon:

M2V = P2
miss − M2 (16)

= (MA −
√

(M∗
A−1)2 + p2)2 − p2 − M2 (17)

which reduces in the nonrelativistic limit to

M2V(n,p) ≈ −2M

(
p2

2Mr
+ E(n,p)

)
, (18)

where the reduced mass Mr = M(A − 1)/A. The virtuality
V (n, p) is less than 0, and its magnitude increases with both
the A − 1 excitation energy and the initial momentum of the
struck nucleon.

References [16,21] obtain a relation between the potential
U(n,p) and the virtuality V(n,p) by using the extension of the
Schrödinger equation to an operator form

p2

2Mr
+ U(n,p) = −E(n,p), (19)

so that p2

2Mr
+ E(n,p) = −U(n,p) = |U(n,p)|, we get

V(n,p) = −2|U(n,p)|
M

, (20)

thus directly connecting the nuclear potential and the virtual-
ity.

IV. MEDIUM MODIFICATION IN LFHQCD

We will now introduce a new model of the EMC effect
using light-font holographic QCD nucleon form factors as
a starting point [5]. The SU(6) spin-flavor symmetric quark
model is used in calculating the effective charges of positive
and negative helicity protons and neutrons. These effective
charges are used to obtain expressions for the nucleon form
factors. In order to extend this model to nuclei, the key
idea is that the nuclear medium will affect the probabil-
ities of finding a spin up or down quark q in a proton
or neutron, breaking SU(6) symmetry; thus, the effective
charges are ultimately modified as well. We will use in-
tuition from the two-component model of the nucleon to
guide us in parametrizing the new modified effective charges.
Furthermore, connecting to arguments presented in Sec. II,
the formalism of light-front holographic QCD presented in
Ref. [5] allows us to write valence free and modified PDFs
in terms of quark degrees of freedom.

A. Free nucleon PDFs from holographic QCD

To summarize results in [5], in LFHQCD the electromag-
netic form factor for an arbitrary twist-τ hadron is

Fτ (Q2) =
∫

dz

z3
V (Q2, z)�2

τ , (21)

�τ (z) =
√

2

�(τ − 1
)κτ−1zτ eκ2z2/2, (22)

where V (Q2, z) is the bulk to boundary propogator, and �τ (z)
is the twist-τ hadronic wave function. The spin-nonflip elastic
Dirac form factor for a nucleon N , F N

1 , is given by

F N
1 (Q2) =

∑
±

gN
±

∫
dz

z4
V (Q2, z)�2

±(z) (23)

with

gN
+ = Pu

N↑eu + Pd
N↑ed ,

gN
− = Pu

N↓eu + Pd
N↓ed ,

(24)

where gN
± are the effective charges for a positive (+) or nega-

tive (−) chirality nucleon N , Pq
N (↑,↓) is the probability to find

a spin up or down quark q in a nucleon N , eq is the charge
of a quark q in units of positron charge e, and �±(z) are the
wave functions corresponding to a positive (+) or negative
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(−) chirality nucleon. Notably, �±(z) have the following de-
pendencies:

�+(z) ∼ zτ+ 1
2 eκ2z2/2,

�−(z) ∼ zτ+1+ 1
2 eκ2z2/2. (25)

The SU(6) symmetry approximation is used to obtain
Pq

N (↑,↓). Using this symmetry approximation, the effective
charges become:

gp
+ = 1, gp

− = 0, gn
+ = − 1

3 , gn
− = 1

3 . (26)

Reference [5] next introduces a free parameter r that mul-
tiplies the neutron effective charges gn

+ and gn
− in order to

properly match F n
1 to existing experimental data. In this paper,

we will use r = 1.5, as done in Ref. [6] and further motivated
by an argument using wave function normalization [22]. The
effective charges now become:

gp
+ = 1, gp

− = 0, gn
+ = − 1

2 , gn
− = 1

2 . (27)

In order to obtain expressions for the nucleon form factors,
a simplified model is introduced which only uses the leading
twist-3 term in the nucleon wave function. This leads to the
following results for F N

1 :

F p
1 (Q2) = Fτ=3(Q2), (28)

F n
1 (Q2) = − 1

2 Fτ=3(Q2) + 1
2 Fτ=4(Q2). (29)

One can obtain the up (u) and down (d) valence PDFs of the
free proton and neutron by using a flavor decomposition of
nucleon form factors [23], and by writing the form factors for
quark flavor q, F q, in terms of the valence GPD Hq

v (x, t ),

F N
1 = 2

3

(
F u

1

)N − 1
3 (F d

1 )N , (30)

Isospin−−−−−→
Symmetry

(
F u

1

)p = 2F p
1 + F n

1 ,

(
F d

1

)p = F p
1 + 2F n

1 , (31)

(F q
1 )N =

∫ 1

0
dx Hq

v (x, t ) =
∫ 1

0
dx qN

v (x)et f (x), (32)

where (F q
1 )N is the F1 flavor form factor for quark q in nucleon

N , qN
v (x) is the valence PDF for quark flavor q in nucleon N ,

and f (x) is the profile function [6].
Furthermore, Ref. [24] recast Eq. (21) in terms of an Euler

beta function and determined what the PDF is for (F q
1 )N = Fτ .

The corresponding PDF for Fτ , referred to as qτ (x), is normal-
ized to unity and is given by

qτ (x) = �
(
τ − 1

2

)
√

π�(τ − 1)
(1 − w(x))τ−2 w(x)−

1
2 w′(x), (33)

with

w(x) = x1−xe−a(1−x)2
, (34)

where the flavor-independent parameter a = 0.531 ± 0.037.
Using Eqs. (28), (29), (31), and (32) one can obtain the va-
lence u and d proton quark distributions at the matching scale

FIG. 1. A plot of f (x) = q3/q4, as a function of x. Notice that
f (x) increases with increasing x, displaying the PLC dominance at
high x.

between LFHQCD and pQCD, μ0 = 1.06 ± 0.15 GeV [6]:

up
v (x) = 3

2 q3(x) + 1
2 q4(x),

d p
v (x) = q4(x), (35)

One can obtain the neutron valence PDFs through isospin
symmetry.

From now on, we will drop the subscript v and it is implied
that all PDFs presented in this paper are valence. Also, notice
that the above PDFs are expressed as a superposition of twist-
τ PDFs, our quark degrees of freedom. The squares of the
proton and neutron wave functions are characterized by

�2
p ∼ up + d p = 3

2 q3(x) + 3
2 q4(x), (36)

�2
n ∼ un + dn = 3

2 q3(x) + 3
2 q4(x). (37)

Tying back to the two-component model, the elastic form
factors in the LFHQCD model fall asymptotically as 1/Q2τ ,
and the slope of form factors as Q2 = 0 is proportional to τ .
These features mean that an increase in the value of τ corre-
sponds to an increase in effective size. Furthermore, Ref. [6]
notes that τ refers to the number of constituents in a given
Fock component of the hadron. Therefore, the function q3 is
naturally associated with the a three-quark PLC system and
q4 with the BLC. This association is also consistent with the
discussion regarding the PLC dominating at high x as can be
seen by analyzing f (x) = q3/q4 (Fig. 1). Lastly, normalizing
Eqs. (36) and (37), the probability of the PLC, PPLC, for both
nucleons is equal to 1/2. Using Eq. (7), we find that ε = −1.

B. Modified nucleon PDFs from holographic QCD

In order to introduce the effects of a nuclear medium
we must identify terms the nuclear medium would modify:
these are the probabilities that go into calculating the effective
charges, Pq

N (↑↓), and the nucleon wave functions, �±(z). To
obtain the nucleon wave functions, one must solve the ef-
fective single-variable light-front Schrödinger equation (SE)
[24]. The SE involves an effective potential that encompasses
the confining interaction terms in the QCD Lagrangian, i.e.,
the potential due to the strong force. On the other hand, the
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FIG. 2. Deuterium EMC ratio comparisons between the
LFHQCD model (red line) and published experimental data
(removed isoscalar corrections) obtained from BONuS data (filled
stars). The red bands display 1σ uncertainties for the LFHQCD
EMC model. The number in parentheses next to the experiment
name in the legend is the normalization factor that multiplies all the
data points ηexp in Eq. (61).

nuclear medium can be thought of as the potential due to the
nuclear force. As a result, the modification to the effective
potential due to a nuclear medium is small; the same is true for
Pq

N (↑↓) by similar reasoning. In this study, we will only con-
sider the consequences of nuclear mediums breaking SU(6)
symmetry, i.e., modifying Pq

N (↑↓).
Motivated by np dominance in SRCs, we expect the nu-

clear potential to depend on whether one introduces a proton
or neutron into the nucleus. For example, we expect the proton
to feel a stronger attraction to a nucleus if there are an abun-
dance of neutrons and vice versa. We apply medium effects
by introducing two free parameters (which both depend on
mass and atomic numbers A and Z , respectively) δrp(A, Z )
and δrn(A, Z ). With these two phenomenological parameters,
we parametrize the effective charges in Eq. (27) as

g̃p
+ = 1 − δrp(A, Z ), g̃p

− = δrp(A, Z ),

g̃n
+ = − 1

2 − δrn(A, Z ), g̃n
− = 1

2
+ δrn(A, Z ). (38)

The A and Z dependencies in δrp and δrp are dropped
from now on and are implied. The signs in front of δrp

and δrn are motivated by the suppression of the PLC from
the two-component model. We will soon see that the above
parametrization leads to a suppression of the PLC, q3(x).
Notice that if there is no nuclear medium, δrp = δrn = 0, and
the free nucleon effective charges are regained.

With Eq. (38), Eqs. (28) and (29) now become

F̃ p
1 (Q2) = (1 − δrp)Fτ=3(Q2) + δrpFτ=4(Q2), (39)

F̃ n
1 (Q2) = −(

1
2 + δrn

)
Fτ=3(Q2) + (

1
2 + δrn

)
Fτ=4(Q2). (40)

Care must be taken in obtaining the modified nucleon u and
d valence PDFs. For N �= Z , one cannot use Eq. (31) as the
nuclear medium modifies protons and neutrons differently.
However, one can use Eq. (31) for N = Z . We can thus obtain

FIG. 3. EMC ratio comparisons between the LFHQCD model
(red line) and published experimental data (removed isoscalar cor-
rections) obtained from JLab (solid points) and MARATHON (solid
triangles). The red bands display 1σ uncertainties for the LFHQCD
EMC model. The number in parentheses next to the experiment name
in the legend is the normalization factor that multiplies all the data
points ηexp in Eq. (61).

the expressions of modified nucleon valence PDFs for N = Z
and use their forms to intuit expressions for what the valence
PDFs should be for arbitrary N and Z . This process gives us
the following medium modified proton valence PDFs:

ũp = (
3
2 − 3δrp

)
q3(x) + (

1
2 + 3δrp

)
q4(x), (41)

d̃ p = (−3δrp)q3(x) + (1 + 3δrp)q4(x) (42)

and the following modified neutron valence PDFs:

ũn = (−3δrn)q3(x) + (1 + 3δrn)q4(x), (43)

d̃n = (
3
2 − 3δrn

)
q3(x) + (

1
2 + 3δrn

)
q4(x). (44)

One can check that the above expressions for the modified
PDFs, using Eqs. (30) and (32), give Eqs. (39) and (40).
Again, notice that the above modified PDFs are expressed as
a superposition quark degrees of freedom qτ . Further, notice
that we have a suppression of the PLC contribution to the
above modified nucleon valence PDFs.

It is important to note that Eqs. (41)–(44) are not quantities
constrained by data, the quantities that experimental DIS data
constrain are the nuclear PDFs f A. Motivated by Ref. [25], we
will define the nuclear PDFs as

f A = Z f̃ p + N f̃ n, (45)

where f denotes the quark flavor, Z is the atomic number, N
is the number of neutrons, and f̃ p ( f̃ n) is the modified proton
(neutron) PDF in nucleus A.

Lastly, the squares of the modified proton and neutron
wave functions are characterized by

�̃2
p ∼ ũp + d̃ p = (

3
2 − 6δrp

)
q3(x) + (

3
2 + 6δrp

)
q4(x), (46)

�̃2
n ∼ ũn + d̃n = (

3
2 − 6δrn

)
q3(x) + (

3
2 + 6δrn

)
q4(x), (47)

where even though we ignored the effects of the nuclear
medium on �±, the wave functions still get modified due to
modifications in the effective charges. Normalizing Eqs. (46)
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FIG. 4. EMC ratio comparisons between the LFHQCD model (red line) and published experimental data (removed isoscalar corrections)
obtained from SLAC (open boxes), JLab (solid points), and CLAS (crosses). The red bands display 1σ uncertainties for the LFHQCD EMC
model. The number in parentheses next to the experiment name in the legend is the normalization factor that multiplies all the data points ηexp

in Eq. (61).

and (47), we find that the modified PLC probability is

P̃PLC = 1
2 − 2δrp. (48)

Using Eq. (15) and noting that PPLC = 1/2, which leads to
ε = 1, we get a relationship between δr(n,p) and the nuclear
potential

P̃PLC = 1

2
− 2δrp = 1

2

(
1 − |U(n,p)|

�

)
, (49)

δr(n,p) = 1

4

|U(n,p)|
�

. (50)

Lastly, using Eq. (20) we can obtain a relationship between
δr(n,p) and virtuality

δr(n,p) = 1

4

|U(n,p)|
�

= −M

8

V(n,p)

�
. (51)

V. EMC RATIOS

Rewriting the modified proton valence PDFs in Eqs. (41)
and (42),

ũp = up + 3δrp(q4 − q3), (52)

d̃ p = d p + 3δrp(q4 − q3), (53)

and vice versa for the modified neutron PDFs. The modified
DIS structure function for the proton is

F̃ p
2

x
= 4

9
ũp + 1

9
d̃ p, (54)

F̃ p
2

x
= F p

2

x
+ 5

3
δrp(q4 − q3). (55)

0.3 0.4 0.5 0.6 0.7
x

0.80

0.85

0.90

0.95

1.00

1.05

(F
A

2
2

/A
2)

/(
F

A
1

2
/A

1)

27Al/2H

LFHQCD EMC

CLAS (0.992)

SLAC (0.993)

0.3 0.4 0.5 0.6 0.7
x

56Fe/2H

LFHQCD EMC

CLAS (0.983)

SLAC (0.990)

0.3 0.4 0.5 0.6 0.7
x

63Cu/2H

LFHQCD EMC

JLab (0.982)

FIG. 5. EMC ratio comparisons between the LFHQCD model (red line) and published experimental data (removed isoscalar corrections)
obtained from SLAC (open boxes), JLab (solid points), and CLAS (crosses). The red bands display 1σ uncertainties for the LFHQCD EMC
model. The number in parentheses next to the experiment name in the legend is the normalization factor that multiplies all the data points ηexp

in Eq. (61).
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The modified DIS structure function for the neutron is ob-
tained the same way:

F̃ n
2

x
= F n

2

x
+ 5

3
δrn(q4 − q3). (56)

Thus, the F2 DIS structure function for a nucleus of mass
number A, with Z protons and N neutrons, is

F A
2 = ZF̃ p

2 + NF̃ n
2 = 4

9
× uA + 1

9
× dA, (57)

F A
2 = ZF p

2 + NF n
2 + 5x

3
(q4 − q3)(Zδrp + Nδrn). (58)

The EMC ratio for deuterium is thus

F d
2

F p
2 + F n

2

= 1 + 4 δr(2H )

(
1 − f (x)

1 + f (x)

)
, (59)

where δr(2H ) is the value of δrp and δrn for deuterium. Lastly,
the EMC ratio, relative to deuterium, for a nucleus of mass and
atomic numbers A and Z is

2

A

F A
2

F d
2

= 2

A

ZF p
2 + NF n

2 + 5x
3 (Zδrp + Nδrn)(q4 − q3)

F p
2 + F n

2 + 10x
3 δr(2H )(q4 − q3)

. (60)

A. Fitting

We determined δrp and δrp for a variety of nuclei by
performing a χ2 minimization procedure:

χ2 =
∑
exp

∑
i

( f (xi) − yi ∗ ηexp)2

σi2
. (61)

We have a sum over experiments because we have data from
different experiments for the same EMC ratio measurement. It
is implied that the sum over i is for the given experiment that
is being summed over. f (xi ) is the model’s prediction for the
EMC ratio evaluated at Bjorken xi, yi is the experimental EMC
ratio data measured at Bjorken xi, σi is the uncertainty in the
measurement of the EMC ratio at Bjorken xi, and ηexp is the
normalization factor that multiplies every data point in a given
experiment. The inclusion of ηexp is to further optimize the
fitting of our model to experimental data. Most experiments
include a normalization uncertainty, meaning that all mea-
sured data points can be multiplied by a constant that is within
the normalization uncertainty. In addition to δrp and δrp, ηexp

is also used as a fitting parameter, with its fitting bounds being
the normalization uncertainty for the given experiment being
summed over.

Furthermore, uncertainties in δrp and δrn due to uncer-
tainties outside of fitting, e.g., uncertainties in experimental
data, were obtained through Monte Carlo error propagation.
The uncertainties due to fitting were accounted for by adding
them to the Monte Carlo uncertainties in quadrature, and then
taking the square root. The fitting procedure done in this paper
goes as follows: we first fit the deuterium EMC ratio data in
order to obtain δr(2H ). Using this value of δr(2H ), we then
fit the rest of the EMC ratio data we had. For the case with
3He/2H and 3He/3H, we performed a simultaneous fitting in
order to obtain δrp and δrn values for 3He and 3H.

FIG. 6. EMC ratio comparisons between the LFHQCD model
(red line) and published experimental data (removed isoscalar cor-
rections) obtained from SLAC (open boxes), JLab (solid points),
and CLAS (crosses). The red bands display 1σ uncertainties for the
LFHQCD EMC model. The number in parentheses next to the exper-
iment name in the legend is the normalization factor that multiplies
all the data points ηexp in Eq. (61).

B. Results

For the figures in this section (Figs. 2–6), the published
data from SLAC was obtained from Ref. [3], JLab from
Refs. [26,27], CLAS from Ref. [28], MARATHON from
Ref. [29], and BONuS from Ref. [30]. Furthermore, we re-
moved all isoscalar corrections to all experimental data used
in this paper.

There are strong parallels in the expressions for F A
2 in

this model and the SRC-based model in Ref. [28]. Specif-
ically, both models have expressions for F A

2 which involve
“free,” ZF p

2 + NF n
2 , and medium modified contributions. Fur-

thermore, in both models, the medium modified contribution
depends on two parameters that capture the effects of a nuclear
medium on the proton and neutron, multiplied by a function
that is nucleus-independent (the approach of using a nucleus
independent universal function was also used in Ref. [31],
which controlled off-shell correlations). Motivated by this, we
determined the relationships between our δrp and δrn values
and the ap

2 and an
2 values given in Ref. [28]:

ap
2 = 1

Z

σA(Q2, x)

σd (Q2, x)

∣∣∣∣∣
Q2>1.5, 1.5 � x �2

,

an
2 = 1

N

σA(Q2, x)

σd (Q2, x)

∣∣∣∣∣
Q2>1.5, 1.5 � x �2

, (62)

ap
2 = δrp

δr(2H )
, an

2 = δrn

δr(2H )
, (63)

where A is the atomic number, Z is the number of neutrons,
σA is the cross section of nucleus A, σd is the cross section of
deuterium, and the evaluation of Q2 is in units of GeV2.
ap

2 and an
2 are the per-proton and per-neutron SRC scaling

coefficients, which are interpreted as the relative abundance of
high-momentum nucleons in the measured nucleus relative to
deuterium; they take into account the kinematic plateaus due
to SRCs in inclusive QE scattering. With this parallel between
both models in mind, our results for δr(p,n) from fitting are
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 [32]

FIG. 7. Comparison between deuterium EMC ratio predicted by
the LFHQCD model (blue line) and by the universal function (orange
line) parametrized in Segarra et al. [32]. The blue and orange shaded
regions are the 1σ uncertainty bands for the LFHQCD model and
universal function, respectively.

subject to the same relation between ap
2 and an

2:

ap
2

an
2

= δrp

δrn
= N

Z
. (64)

Figure 7 shows a comparison between the universal function
in Ref. [28], parametrized in Ref. [32], and the LFHQCD
EMC model. They both agree within uncertainty within
0.35 < x < 0.7. Our values, along with values from Refs.
[28,33], for δrp and δrn are tabulated in Table I. Figures 8 and
9 plot δrp and δrn from Table I as a function of mass number,
A.

VI. TEST FOR SRC DOMINANCE

From Eq. (51), we see that δr(n,p) is proportional to the
nuclear potential |U(n,p)|, which is also proportional to the
virtuality. We can determine |U(n,p)| from our fitted δr(p,n)

values by using Eq. (50), and noting that the energy difference
� between the nucleon ground state |N〉 and the first excited

[28]
[33]

FIG. 8. Plotted δrp values as a function of mass number A from
Table I (Schmookler et al. [28], Hen et al. [33]).

state |X 〉 is approximately equal to the 500 MeV, the Roper
resonance. For A � 4, δr(p,n) values range from 0.035 to
0.078, thus, 70 MeV � |U(n,p)| � 156 MeV. We decompose
the nuclear potential into mean-field and SRC contributions

U(n,p) = Umean + USRC (65)

Using a value of 50 MeV for the absolute value of the mean
field [34], obtained from the nuclear shell model, we find the
model is consistent with the intuition that high virtuality is due
to SRCs; by “high” virtuality, we mean virtuality greater than
the typical average virtuality due to the nuclear mean field.
The arguments presented here cannot be used for nuclei with
A < 4, as the mean field is undetermined.

VII. NUCLEON CHARGE RADIUS CHECK

Using our values of δr(p,n), we can determine the effects
of medium modifications to the charge radius. The modified
electromagnetic Sachs form factor is

G̃N
EM(Q2) = F̃ N

1 (Q2) − Q2

2M2
F̃ N

2 (Q2), (66)

TABLE I. The δrp and δrn medium modifications used in this study and ones calculated from values in Schmookler et al. [28] and Hen
et al. [33] using Eq. (63). The uncertainties for δrp and δrn calculated from the references were propagated using Eq. (63).

This Work Schmookler et al. [28] Hen et al. [33]

Nucleus δrp δrn δrp δrn δrp δrn

2H 0.010 ± 0.003 0.010 ± 0.003
3He 0.031 ± 0.003 0.061 ± 0.006 0.016 ± 0.005 0.03 ± 0.01
3H 0.032 ± 0.006 0.016 ± 0.003
4He 0.040 ± 0.004 0.040 ± 0.004 0.04 ± 0.01 0.04 ± 0.01
9Be 0.044 ± 0.004 0.035 ± 0.003 0.045 ± 0.014 0.036 ± 0.012
12C 0.049 ± 0.003 0.049 ± 0.003 0.046 ± 0.015 0.046 ± 0.015 0.048 ± 0.016 0.048 ± 0.016
27Al 0.057 ± 0.003 0.053 ± 0.003 0.051 ± 0.016 0.047 ± 0.015
56Fe 0.074 ± 0.003 0.064 ± 0.003 0.053 ± 0.017 0.046 ± 0.015
63Cu 0.052 ± 0.003 0.044 ± 0.003 0.058 ± 0.019 0.049 ± 0.016
197Au 0.072 ± 0.004 0.048 ± 0.003 0.065 ± 0.021 0.044 ± 0.014
208Pb 0.078 ± 0.005 0.051 ± 0.003 0.062 ± 0.020 0.041 ± 0.013
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[28]
[33]

FIG. 9. Plotted δrn values as a function of mass number A from
Table I (Schmookler et al. [28], Hen et al. [33]).

where F N
1 is obtained from Eqs. (28) and (29), F̃ N

1 is obtained
from Eqs. (39) and (40), and M is the nucleon mass which
is approximately 938 MeV for the proton and neutron. The
elastic form factors F N

2 from LFHQCD are obtained from
Ref. [5],

F p
2 = χp[(1 − γp)Fτ=4 + γpFτ=6], (67)

F n
2 = χn[(1 − γn)Fτ=4 + γnFτ=6], (68)

where χp = 1.793 is the proton anomalous moment, χn =
−1.913 is the neutron anomalous moment, and γp and γn

are the higher Fock probabilities given as 0.27 and 0.38,
respectively, from Ref. [5]. It is important to note that in our
study, F N

2 is not modified by the nuclear medium because its
expression does not involve effective charges. The change in
the charge radius is given by√√√√dG̃N

EM(Q2)

dQ2

∣∣∣∣∣
Q2=0

/
dGN

EM(Q2)

dQ2

∣∣∣∣∣
Q2=0

. (69)

Using the largest values for δrp and δrn from our fits, we find
that, in the sample of nuclei that we have studied, the greatest

increase in the proton and neutron charge radius is by 0.48%
and 2.9%, respectively. These results are consistent with an
upper limit on the charge radius increase of 3.6% given in
Ref. [35].

VIII. SUMMARY AND DISCUSSION

The results presented here provide a new model for the
EMC effect using LFHQCD, motivated by a two-component
model of the nucleon. The model suggests that the EMC effect
is a result of the nuclear potential further breaking SU(6) sym-
metry. The effects of a nuclear medium are applied through
two free parameters, δrp and δrn, which modify the effective
charges of a proton and neutron with positive and negative
chiralities. The LFHQCD EMC model has strong parallels
with the phenomenological model presented in Ref. [28] in
that the nuclear structure functions have contributions from
uncorrelated nucleons and correlated nucleons in SRC pairs.
As such, the model displays a connection with the correlation
between the EMC effect and the SRC pair density. This model
leads to good description of the EMC effect for a variety
of nuclei, and gives results regarding changes to the proton
and neutron charge radii that are consistent with Ref. [35]. A
further study into the medium modification of nucleon wave
functions would lead to a complete description of nuclear
modifications in LFHQCD, as well as provide the first cor-
rections to this model. Additionally a study into the nuclear
potential’s A and Z dependence would provide useful insight
into the analytic form of δr(n,p). The degeneracy in the BLC
and PLC due to r = 3/2 leads to � = 0, meaning that the PLC
and BLC energy is degenerate, and is an unresolved issue.
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