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Heavy-light susceptibilities in a strongly coupled quark-gluon plasma
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Quark number susceptibilities as computed in lattice QCD are commonly believed to provide insights into the
microscopic structure of QCD matter, in particular its degrees of freedom. We generalize a previously constructed
partonic T -matrix approach to finite chemical potential to calculate various susceptibilities, in particular for
configurations containing a heavy charm quark. At vanishing chemical potential and moderate temperatures, this
approach predicts large collisional widths of partons generated by dynamically formed hadronic resonance states
which lead to transport parameters characteristic for a strongly coupled system. The quark chemical potential
dependence is implemented into the propagators and the in-medium color potential, where two newly introduced
parameters for the thermal and screening masses are fixed through a fit to the baryon number susceptibility, χB

2 .
With this setup, we calculate heavy-light susceptibilities without further tuning; the results qualitatively agree
with the lattice-QCD (lQCD) data for both χ uc

11 and χ uc
22 . This implies that the lQCD results are compatible with

a significant content of broad D-meson and charm-light diquark bound states in a moderately hot quark-gluon
plasma.

DOI: 10.1103/PhysRevC.106.055201

I. INTRODUCTION

In ultrarelativistic heavy-ion collisions, a new state of
matter—quark-gluon plasma (QGP)—can be created, at tem-
peratures of almost 109 times the surface temperature of the
sun, rendering the nuclear fireballs the hottest matter cre-
ated in the laboratory to date. The QGP is a fundamental
realization of a many-body system governed by the strong
nuclear force described by quantum chromodynamics (QCD).
Its properties, as deduced from heavy-ion collision experi-
ments to date [1–4], suggest it to be a strongly coupled liquid
with transport properties near conjectured lower bounds set by
quantum mechanics. From the theoretical side, first-principle
information can be obtained from numerical simulations of
the space-time discretized partition function of QCD at finite
temperature, referred to as lattice QCD. At vanishing baryon
chemical potential, μB = 0, lattice-QCD (lQCD) computa-
tions have achieved accurate results for the equation of state
(EoS) of QCD matter [5,6] and revealed that the transition be-
tween hadronic matter and the QGP is a smooth crossover [7].
However, there are several quantities that are currently not ac-
cessible to lQCD computations and are not straightforward to
extract from euclidean space-time. Nevertheless, high-quality
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lQCD “data” provide valuable benchmarks and insights for
microscopic model calculations that, in turn, can be deployed
to the phenomenology of heavy-ion collisions.

The strategy of utilizing lQCD data as “numerical experi-
mental data” for model building has been widely applied in the
literature, including calculations of the EoS [8–10], quarko-
nium correlation functions [11–16], and/or heavy-quark (HQ)
free energies [17,18]. Taking advantage of the progress in
lQCD [5,6,19–22], we have developed a thermodynamic T -
matrix approach [23,24] which is rooted in three sets of
lQCD data: the HQ free energy, Euclidean quarkonium cor-
relator ratios, and the EoS for Nf = 2 + 1 light-quark flavors.
The lQCD results were instrumental in constraining the in-
put parameters for the T -matrix approach, in particular its
in-medium driving kernel and the effective thermal-parton
masses, and subsequently enabled controlled studies of spec-
tral and transport properties of the QGP [23,25,26].

In addition, quark-number susceptibilities [27–30]—
derivatives of the partition function with respect to chemical
potentials of different quantum numbers such as baryon num-
ber, isospin, and/or strangeness—have proved to be a rich
source of information for effective models (see, e.g., Ref. [31]
for a recent review). They can probe aspects of the chiral
transition, the EoS (e.g., its hadron-chemistry and extension to
finite μB), and its fluctuation properties, related to the effective
degrees of freedom of the charge carriers. In the present paper,
we are mostly interested in the latter aspect in the context
of the thermodynamic T -matrix approach mentioned above.
For moderate QGP temperatures, it predicts the emergence of
broad hadronic bound states whose role in the EoS gradually
increases as the pseudocritical temperature (Tpc) is approached
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from above. These states, which are generated from a lad-
der resummation of the in-medium interaction kernel, play a
key role in producing large (resonant) interaction strength for
elastic parton scattering, which entails transport parameters
characteristic for a strongly coupled system [23]. The diagonal
charm-quark susceptibility, χ c

2 , was calculated previously in
the T -matrix approach in Ref. [16], where the free and internal
energies were used as potential proxies. In particular, it was
found that sizable charm-quark widths, �c � 100–200 MeV,
can lead to a significant enhancement over the zero-width
quasiparticle result.

Besides the diagonal susceptibilities, χ c
2,4, lQCD compu-

tations are also available for off-diagonal heavy-light combi-
nations, χuc

11 and χuc
22 [32,33]. Model calculations have thus far

focused on off-diagonal susceptibilities in the Nf = 2 + 1 sec-
tor, i.e., χus

11 or χud
11 . In perturbative hard-thermal loop (HTL)

calculations [34], the latter have been found to vanish, but they
are expected to become nonvanishing at order g6 (including
an additional logarithmic dependence) [35]. Within Polyakov
loop-extended Nambu–Jona-Lasinio (PNJL) models [36,37]
and the hadron resonance gas (HRG) model [38,39], χus

11 has
been found to be negative, in agreement with lQCD data,
indicating the importance of hadronic degrees of freedom in
the vicinity of Tpc. The analysis of the off-diagonal heavy-
light susceptibilities from lQCD [32,33] using a schematic
model of a mixture of HRG and free charm-quark degrees of
freedom suggest a similar interpretation in the charm sector.
The formation of heavy-light resonance states in the QGP
has been put forward in earlier works [25,40–42] as a key
ingredient to evaluate the HQ diffusion coefficient, which re-
quires a large nonperturbative contribution in order to describe
open heavy-flavor observables in heavy-ion collisions [43,44].
It is therefore important to investigate the manifestation of
heavy-light correlations in the off-diagonal heavy-light sus-
ceptibilities for which very few calculations are available to
date [39]. In particular, we are not aware of a strongly coupled
approach beyond mean-field approximations. In the present
study we employ the T -matrix approach, which realizes a
strong-coupling scenario through the dynamical formation of
hadronic states as the QGP temperature decreases toward Tpc.

The remainder of the paper is organized as follows. In
Sec. II, we briefly recall the basic components of the T -matrix
formalism as developed earlier and then introduce the proce-
dure to extend it to finite μq and μc. In Sec. III, we calculate
and discuss the results of susceptibilities, using the light-light
sector to constrain the μB-dependent potential parameters,
and then focus on the heavy-light susceptibilities and their
interpretation in the context of lQCD data. In Sec. IV, we
conclude and indicate future lines of investigation.

II. T -MATRIX FORMALISM AT FINITE CHEMICAL
POTENTIAL

The theoretical framework used in this work is ther-
modynamic T matrix developed in Refs. [23,24] for the
quark-gluon plasma. It is based on a Dyson-Schwinger
type setup for in-medium one- and two-body propaga-
tors, where the scattering kernel is approximated through a
three-dimensional (3D) reduction of the 4D Bethe-Salpeter

equation. This enables closed-form solutions and facilitates
constraints of the in-medium potential through lQCD data
for the HQ free energy. For the “strongly coupled scenario”
(SCS), which we will focus on here, the in-medium potential
is significantly larger than the free energy, with long-range
remnants of the confining force surviving well above Tpc,
where they play a central role for the long-wavelength prop-
erties of the QGP (such as transport coefficients).

Let us briefly review the relevant ingredients employed
in our previous the papers [23,24]. Progress in our previous
papers essential to this work is that we have developed a
method that can evaluate the grand potential (negative pres-
sure) nonperturbatively, where bound-state contributions to
the pressure can be included dynamically. This method lends
itself to extendimg the calculation of the pressure to finite
chemical potential and then taking the relevant derivatives
to obtain the susceptibilities. The method is based on the
Luttinger-Ward formalism [45], within which the grand poten-
tial (or negative pressure, � = −P) in the T -matrix approach
has been formulated as

� = ∓
∑

Tr{ln(−G−1) + [(G0)−1 − G−1]G} ± �, (1)

where G0 are “bare” parton propagators and G = ([G0]−1 −
�)−1 is the corresponding dressed propagator with self-
energy � encoding the medium modifications. The first two
terms are commonly associated with the one-particle contri-
bution to the pressure, while the Luttinger-Ward functional
(LWF), �, encodes the contribution from the correlated many-
body physics. In particular, the LWF can account for the
physics of dynamically generated bound states if the t-channel
ladder diagrams with an extra factor 1/ν are resummed as

� = 1

2

∑
Tr

{
G

[
V + 1

2
V G0

(2)V + · · ·

+ 1

ν
V G0

(2)V G0
(2) · · ·V + · · ·

]
G

}
(2)

= −1

2
ln

[
1 − V G0

(2)

]
. (3)

The two-particle propagator, G0
(2), is defined as G0

(2) =
−β−1 ∑

ωn
G(iEn − ωn)G(−iωn), which is the energy convo-

lution of two dressed one-particle propagators G. The V in the
above equation is the interaction kernel, which is the two-body
potential in this framework. The 1/ν factor in Eq. (3) renders
the resummation nontrivial, for which a matrix-log method
[third line of Eq. (3)] has been developed in Ref. [23,24]
to overcome this difficulty. The self-consistent self-energy
� should be a functional derivative of the LWF δ�/δG =
� [46,47]. Taking this derivative with the expression in
Eq. (3), we obtain the self-energy schematically expressed via
the T -matrix as

� =
∫

d p̃ T G, T = V + V G0
(2)T . (4)

The T -matrix equation is an integral equation that resums the
ladder diagrams without the 1/ν factor, and also includes the
physics of bound states matching those in the LWF. The above

055201-2



HEAVY-LIGHT SUSCEPTIBILITIES IN A STRONGLY … PHYSICAL REVIEW C 106, 055201 (2022)

two equations (4) form a self-consistency problem, which we
have solved through numerical iterations.

To calculate susceptibilities, we need to extend the T -
matrix formalism to finite chemical potentials. In this work,
we focus on the light-quark (μq) and charm-quark (μc) chem-
ical potentials. The pertinent dependencies need to be added to
the propagators and the two-body potential, V , which are the
two most important components of the T -matrix approach. At
a finite μq and μc, the “bare” quark propagators take the form

G0
i (z, p) = 1

z − εp ± μi
, εp =

√
M2

i + p2 (5)

with i = q, c for light or charm quarks, respectively. For sim-
plicity, the strange quark is treated as a light flavor degenerate
with u and d quarks. The gluon propagator does not have an
explicit μi dependence. However, for all effective thermal-
parton masses, Mi, we allow for an additional μq dependence
as

Mi = M0
i

√
1 + bm

(μq

T

)2
+ MV

i , (6)

where the M0
i denote temperature-dependent perturbative

masses at μq = 0 which are adjusted in Ref. [24] by fit-
ting the QGP EoS from lattice QCD. The functional form
of the μq dependence of the masses is motivated by HTL
calculations at finite chemical potential [48]; in practice, we
will be able to fix the parameter bm close to its perturba-
tive value of 1/π2 (for Nf =Nc = 3) while fitting the baryon
number susceptibility, χB

2 , computed in lQCD [27,28], via a
temperature-dependent parameter bs in the Debye mass [see
Eq. (8) below] to encode nonperturabtive effects in the po-
tential screening. The MV

i mass terms are self-consistently
generated from the infinite-distance limit of the in-medium
potential as discussed in Ref. [24]. They will acquire an in-
trinsic μq dependence through the potential depending on μq.

For the two-body potential, V , figuring in Eq. (3) and the
T matrix, we keep the form introduced in Ref. [24], which
is evaluated in momentum space and dressed with relativistic
corrections. In coordinate space and in the static limit, and
with the constant term −(4/3)αsmd + σ/ms subtracted, it is
given by

V (r) = −4

3
αs

e−md r

r
+ σ

e−msr−(cbmsr)2

ms
. (7)

The parameters of the potential are taken from the strongly
coupled solution (SCS) in Ref. [24]. The only addition here
is a μq dependence to the original Debye screening mass by
using the ansatz

md = m0
d

√
1 + bs

(μq

T

)2
, (8)

where m0
d is the T -dependent zero-chemical potential value

fixed in Ref. [24] essentially in fits to the HQ free energy.
Also this ansatz is motivated by the HTL results of Ref. [48]
with bs being our second parameter in fitting to χB

2 [28]. Note
that the screening of the string term is not independent but will
be determined by md according to the relation ms ∝ (σm2

d )1/4;
cf. Sec. III D 1 of Ref. [24].

With the additional ingredients specified in the three
equations above, the T -matrix approach is generalized to
finite chemical potential. We first self-consistently evalu-
ate the coupled system of Dyson-Schwinger equations for
the single-parton propagators and their two-body T -matrices
in all available color channels and up to L = 5 partial
waves. Then, using the same procedure as in our original
work [24], the pressure, P(μq, μc), can be calculated as
a function of μq and μc using the matrix-log resumma-
tion technique for the Luttinger-Ward functional introduced
in Refs. [23,24]. We define the dimensionless pressure as
P̂(μ̂q, μ̂c) = P(μ̂qT, μ̂cT )/T 4, where the μ̂i = μi/T are also
dimensionless. The susceptibilities are obtained from the nu-
merical derivatives of the pressure P̂ with respect to μ̂q and
μ̂c. Since μq = (1/3)μB, the second-order baryon number
susceptibility follows from quark-number susceptibility as

χB
2 = ∂2P̂

∂μ̂2
B

= 1

9

∂2P̂

∂μ̂2
q

. (9)

Likewise, we obtain the off-diagonal heavy-light susceptibili-
ties as

χqc
nm = ∂n+mP̂

∂μ̂n
q∂μ̂m

c

. (10)

In Ref. [33], χuc
nm is explicitly shown (rather than χ

qc
nm). Since

the u, d , and s quarks are treated as degenerate in our work,
we have for the case n = 1 the relation

χuc
1m = ∂1+mP̂

∂μ̂u∂μ̂m
c

= 1

3

∂1+mP̂

∂μ̂q∂μ̂m
c

. (11)

For n = 2, we have the approximate relation

χuc
2m = ∂2+mP̂

∂μ̂u∂μ̂m
c

≈ 1

3

∂2+mP̂

∂μ̂2
q∂μ̂m

c

, (12)

where we neglect small terms like χudc
11m, χusc

11m, χdsc
11m. Using χBC

mn
data from Ref. [33] we have verified that these terms lead to
less than 20% difference at T = 0.194 GeV (the lowest T in
our work), and that they are negligible at higher temperature.

III. NUMERICAL RESULTS

In our numerical evaluation of the chemical-potential
derivatives, we start by self-consistently evaluating the pres-
sure, P̂(μ̂q, μ̂c), on a grid of 12 pairs of values for the light-
and charm-quark chemical potentials (all combinations of
μ̂q = 0, 0.2 and μ̂c = 0.2, 0.4, 0.6, 0.8), for a given input of
the bm and bs parameters (we work in a “quenched-charm”
approximation as was done in the lQCD computations of
Ref. [33], where charm quarks are not part of the bulk
medium). Utilizing a polynomial ansatz for the pressure,

P̂(μq, μc) = P̂0 + χ
q
2

2
μ̂2

q + χ c
2

2
μ̂2

c + χ c
4

4!
μ̂4

c

+ χuc
11

1! 1!
μ̂qμ̂c + χuc

22

2! 2!
μ̂2

qμ̂
2
c + χuc

13

1! 3!
μ̂qμ̂

3
c (13)

(where P̂0 denotes the scaled pressure at vanishing chemical
potentials), we fit its coefficients to the numerically computed
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FIG. 1. Results for the temperature dependence of the parameters
bs and bm (introducing a μq dependence for the screening mass in the
potential and for the thermal parton masses in the EoS, respectively)
following from the fit shown in the upper panel of Fig. 2.

results from the T -matrix approach. Note that the suscepti-
bilities defined by the derivatives to the pressure are also the
coefficients of its Taylor expansion in terms of μq and μc.
The fits are truncated at fourth order in μ̂c and second order
in μ̂q, corresponding to the minimal orders required to extract
the susceptibilities considered in this work. The μ̂q value is
chosen sufficiently small as to render higher orders negligible,
while the relatively large upper value of μ̂c is required to
generate sufficient sensitivity to the response in charm-quark
fluctuations.

We first tune the parameters bm and bs to reproduce the
baryon-number susceptibility, χB

2 (T ), computed on the lattice
(where μ̂c is set to zero). Note that in our definition χB

2
is dimensionless (corresponding to χB

2 /T 2 in the convention
where pressure and chemical potentials are not scaled by
powers of temperature). As we mentioned above, it turns out
that we can fix the bm parameter, which characterizes the μq

dependence of the effective parton masses, at the perturbative
value of 1/π2, while introducing a temperature dependence
into bs to allow for nonperturbative screening effects [48]. The
magnitude of bs turns out to be significantly larger than its
perturbative value (which is also 1/π2), especially when ap-
proaching Tpc from above; see Fig. 1 (and the resulting baryon
susceptibility in the upper panel of Fig. 2). This suggests that
at the highest temperature considered here, T = 400 MeV,
nonperturbative effects in the μq dependence of the potential
are still significant, which may not be surprising as the poten-
tial itself still carries significant contributions from the string
interactions (see also Fig. 3 below). We have geared our fit of
χB

2 toward the lQCD data of the Hot-QCD Collaboration [28]
(denoted as “lat1”), since their results were the basis for our
self-consistent fits of the EoS in our previous work [24]. The
lQCD data for χ2

B from the Wuppertal-Budapest group [27]
(denoted by “lat2”) are somewhat smaller.

The resulting μq dependence of the two-body potential
is displayed in Fig. 3. Since the density of the partons in
the medium increases with μq, the potential exhibits an ex-
pected increase in screening at fixed temperature. However,
this effect appears to be relatively moderate: e.g., at μq/T =
1, the increase in md amounts to only ≈10–20 %. Recall-
ing the relation between the color-Coulomb Debye mass

FIG. 2. Upper panel: our fit to the baryon susceptibility, χB
2 , of

the lQCD data by the Hot-QCD Collaboration (“lat1”) [28]; also
shown are the results of the Wuppertal-Budapest group (“lat2”) [27].
Middle panel: our predictions for the diagonal charm susceptibil-
ities χ c

2 (solid line) and χ c
4 (dashed line), compared to Nf = 2 +

1 Hot-QCD and Nf = 2 + 1 + 1 Wuppertal-Budapest lQCD data;
also shown is our result when neglecting charm-quark widths and
heavy-light correlations (dotted line). Lower panel: heavy-light sus-
ceptibilities χ uc

mn/χ
c
2 with 1σ error band compared to Hot-QCD lQCD

data [33].

and the screening mass of the string term, ms ∝ (σm2
d )1/4,

and the infinite-distance value of the potential, V (r = ∞) =
−(4/3)αsmd + σ/ms [24], we find that the long-range part
of the potential is only suppressed by ≈5–10 %. While the
predominant impact of the finite chemical potential origi-
nates from the parton propagators, Eq. (5), the additional μq

dependence of the potential and quark masses is essential
to achieve a good fit to χB

2 . This indicates that the quark
number susceptibilities are sensitive to microscopic physics at
finite μB.

Next, we turn to the diagonal charm susceptibilities, χ c
2

and χ c
4 , shown in the middle panel of Fig. 2. Since they are

essentially independent of μq, they are genuine predictions
of the T -matrix calculations at μq = 0 where all parameters
were fixed in our previous work [24]. The result for χ c

2 shows
good agreement with the Hot-QCD lattice results, while the
Wuppertal-Bielefeld results are somewhat lower (we recall
that the latter have been computed in Nf = 2 + 1 + 1 fla-
vor QCD, i.e., including dynamical charm quarks, while our
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FIG. 3. The effects of the finite-μq screening on the in-medium
two-body potential in the color-singlet channel resulting from our fit
to the baryon susceptibility, χB

2 (solid lines: μq = 0; dashed lines:
μq = T ).

results are closer to the quenched-charm approximation as
adopted in the Hot-QCD computations). In particular, the T -
matrix results are significantly larger than calculations using a
quasiparticle approximation with the same charm-quark pole
mass as in the T matrix; in other words, the finite-width effects
in the charm-quark spectral functions (with �c � 0.5 GeV)
and the interaction effects in the Luttinger-Ward functional
of the pressure (including broad D-meson and heavy-light
diquark bound states for temperatures below T � 250 MeV)
are essential for the agreement with the lQCD data. In view
of this, it appears rather nontrivial that also the fourth-order
derivative is in approximate agreement with the lQCD data,
which exhibit a close agreement between χ c

2 and χ c
4 (we have

also verified that residual numerical uncertainties are rather
significant in our extraction of χ c

4 : e.g., when reducing the
numerical tolerance from 5 to 4 digit accuracy, χ4

c is reduced
by ca. 10% toward higher temperatures).

Finally, we turn to the off-diagonal susceptibilities, which
are commonly normalized by χ c

2 to achieve a (partial) can-
cellation of the HQ mass effects. It turns out that the fit of
the χ coefficients to the pressure, Eq. (13), which we have
numerically computed on a finite number of mesh points in
the μ̂q-μ̂c plane, allows for several minima where the devia-
tions between fitted and calculated data are of order 10−5 or
below. Since this is small compared to our current numerical
accuracy, the different minima are a priori equally likely to
represent the “true” solution. To lift this degeneracy, we there-
fore impose a constraint, χuc

13 = χuc
11 , motivated by lQCD data

(and related to the expectation that the contribution of par-
ticles with charm-number larger than 1 is negligible) [32], to
find the minimum compatible with this condition (in principle,
we could then release it again and find a local minimum with
χuc

13 ≈ χuc
11 , but for simplicity we focus on the results with the

constraint χuc
13 = χuc

11 ). We reiterate that we have not “refit” the
two “b” parameters which were solely fixed through the light-
quark susceptibilities (cf. the second paragraph in Sec. II).
Therefore, the resulting heavy-light susceptibilities can also
be regarded as predictions of the model, with the numerical
caveat outlined above. The pertinent results are shown in the
lower panel of Fig. 2 in terms of χuc

11/χ c
2 and χuc

22/χ c
2 , where

FIG. 4. The imaginary part of the charm-light quark T -matrix in
the S-wave color-singlet channel at four temperatures. One recog-
nizes the emergence of D-meson-like resonance as the temperature
approaches Tpc from above.

the error band illustrates the 1σ band of the fit, indicating
that the extraction of χuc

22 (and other fourth-order coefficients)
is rather challenging in this calculation (the uncertainty is
much smaller for χuc

11 ). Again, we find a fair semiquantitative
agreement with lQCD data, which generally supports the role
of nonperturbative physics in the QGP near Tpc. The strongly
coupled features of the system, such as large scattering rates of
the partons (which suppress the single-parton contributions)
and the related onset of heavy-light bound-state formation
(which enhance the correlated parton contributions, cf. Fig. 4)
do not lead to apparent discrepancies with charm-quark sus-
ceptibilities computed in lQCD. The only other calculation we
are aware of is a mean-field hadron-quark crossover model
which predicts a positive χuc

11 [39], while the χus
11 calculated in

that work is negative and in agreement with lQCD data, thus
we find no obvious connection between those two quantities.
On the other hand, the HTL perturbative analysis of Ref. [34]
finds vanishing off-diagonal us and ud susceptibilities while
in the PNJL calculations of Refs. [36,37] the results for χus

11
are negative but tend to underpredict the lQCD data; in par-
ticular, fluctuations beyond the mean-field level were found to
be essential to improve the agreement with lQCD data [36].
In a very recent HRG analysis [38], the inclusion of an ex-
tended set of strange-baryon resonances as predicted by the
quark model, in combination with excluded-volume correc-
tions, can reproduce the lQCD results up to T � 170 MeV,
where the interplay of mesonic and baryonic contribution,
which have opposite signs [36], is critical. Our calculations
also include such effects through the dynamical formation
of mesonic and diquark resonances in the attractive color
channels (color singlet and antitriplet, respectively; cf. Fig. 4),
However, the resonance correlations dissolve as temperature
increases, which is essential for the agreement with lQCD data
at higher temperature.

We have also attempted to calculate the heavy-light sus-
ceptibilities using the “weakly coupled solution” (WCS) of
Ref. [24] (where the interquark potential is close to the HQ
free energy); however, the results were quantitatively rather
inconclusive (i.e., numerically unstable) due to the sharp spec-
tral functions (with small widths) in the parton propagators,
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which compromises the numerical accuracy. Nevertheless, the
sign of χuc

22/χ c
2 appears to turn negative at low temperature;

χuc
11/χ c

2 is more stable and of the same sign as in the SCS
plotted in Fig. 2, albeit of smaller magnitude. Further scrutiny
of this finding is in order to better establish the degree to
which heavy-light susceptibilities are sensitive to the under-
lying color forces.

IV. CONCLUSIONS AND PERSPECTIVE

Employing a thermodynamic T -matrix approach to the
QGP extended to finite chemical potential, we have per-
formed calculations of various quark-number susceptibilities
in a strongly coupled scenario. Toward this end we have
introduced two additional model parameters into our frame-
work which quantify the leading order corrections in μq to
the screening mass of the interaction kernel and the bare
light-parton masses of the bulk medium. They have been fit
to reproduce the temperature dependence of the lQCD data
for the second-order baryon susceptibility, χB

2 . The additional
screening of the in-medium potential at finite μq turns out
to be rather moderate. The resulting diagonal charm-quark
susceptibilities, χ c

2 and χ c
4 , which do not depend on the ad-

ditional fit parameters and thus can be considered predictions
of our approach, show fair agreement with the lQCD re-
sults. In particular, the large collisional widths inherent in
the charm-quark spectral functions, as well as bound-state
correlations close to Tpc, are instrumental in this agreement
(as demonstrated by a calculation with quasiparticle charm
quarks, which falls short of the lQCD data). We have also
computed the off-diagonal charm susceptibilities, χuc

11/χ c
2 and

χuc
22/χ c

2 , for which very few results exist in the literature.
Our calculations lead to fair agreement with pertinent lQCD
data; most notably, when approaching Tpc from above, we
find increasingly negative values of χuc

11/χ c
2 , which to our

knowledge has not been reported before in a microscopic

model approach. Our findings imply that a strongly coupled
system where large collisional widths are driven by the emer-
gence of near-threshold resonances in attractive heavy-light
color channels and produce a small HQ diffusion coefficient,
2πT Ds � 2–5 [23], remains a viable realization of the sQGP
at moderate temperatures.

Several future developments are in order to further scru-
tinize our understanding of these mechanisms. The current
T -matrix formalism only accounts for mesonic and diquark
channels; while the latter is a building block of baryons,
the inclusion of genuine three-body interactions remains to
be elaborated, which is particularly interesting in view of
charm-baryon production in nuclear collisions at the Large
Hadron Collider and its implementation in recombination
models [44]. Furthermore, the effects of spin-spin and spin-
orbit interactions should be studied; they are dictated by a
quantitative hadron spectroscopy in vacuum and are presum-
ably essential to construct a smooth cross-over from partonic
to hadronic bulk matter. Finally, the development in the
present paper paves the way for deploying the T -matrix for-
malism into the finite-μq plane of the QCD phase diagram,
where it could help us to understand the microscopic interac-
tions underlying the transport and spectral properties of QCD
matter as produced in heavy-ion collisions at lower energies
and in neutron stars and their mergers. Work in some of these
directions is in progress.
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