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Spin Boltzmann equation for nonrelativistic spin-1/2 fermions
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We derive the spin Boltzmann equations for spin-1/2 fermions in a nonrelativistic model with four-fermion
contact interaction which conserves spin degrees of freedom. A great advantage of the model is that the spin
matrix elements in collision terms can be completely worked out and be put into such a compact form that one
can clearly see how spins are coupled in particle scatterings. A semiclassical expansion in the Planck constant
has been made and the on-shell part of the spin Boltzmann equation up to the next-to-leading order is derived.
At the leading order the equilibrium spin distribution can be obtained from the vanishing of the collision term
for the spin density. The spin chemical potential emerges as a natural consequence of spin conservation. The
off-shell part of the spin Boltzmann equation is also discussed. The work can be extended to more sophisticated
interaction such as nuclear force in order to apply to spin polarization phenomena in heavy-ion collisions at low
energies.

DOI: 10.1103/PhysRevC.106.054909

I. INTRODUCTION

Very large orbital angular momenta (OAM) are generated
in noncentral heavy-ion collisions which can be partially con-
verted into the spin polarization of hadrons along the direction
of OAM or with respect to the reaction plane [1–3]. This effect
is called the global spin polarization or global polarization for
short. The global polarization of � hyperons (including �)
has been measured for the first time by the STAR collabo-
ration in Au + Au collision at 200 GeV and lower energies
[4,5]. The data show that the global polarization is about
1.08 ± 0.15% (�) and 1.38 ± 0.30% (�) with a decreasing
behavior with the collision energy.

Several theoretical methods have been developed for the
global polarization. These theoretical methods can be roughly
put into three categories. One category is related to the quan-
tum statistical theory for particle systems with spin degrees
of freedom in equilibrium [6–11] [for a recent review, see,
e.g., Ref. [12]]. One category is the microscopic transport
theory based on kinetic or Boltzmann equations for spin
degrees of freedom [13–23] in terms of covariant Wigner
functions [24–28] (see, e.g., Refs. [29,30] for recent reviews).
Another category is relativistic spin hydrodynamics [10,31–
39] (see Ref. [32] for a review), which incorporates spin de-
grees of freedom into conventional relativistic hydrodynamics
applied to the strong interaction matter in heavy-ion collisions
[40–43]. There are many phenomenological studies of the
global and local polarization using these theoretical methods
to describe experimental data [38,44–59] (for recent reviews,
see, e.g., Refs. [60–62]).

Recently the HADES collaboration measured the global �

polarization in Ag + Ag collisions at 2.55 GeV and Au + Au
collisions at 2.4 GeV [63], while the STAR collaboration
measured the same observable in Au + Au collisions at 3
GeV [64]. Combining all these low energy measurements

with the high energy ones, the � polarization is observed
to continue the increasing trend with decreasing collision en-
ergy down to 2.4 GeV. At these collision energies of O(mN ),
where mN is the nucleon mass, the relativistic effect is small
and nonrelativistic theory can be a proper approximation.
Experimental data can be described by models such as ul-
trarelativistic quantum molecular dynamics (UrQMD) and
Boltzman-Uehling-Uhlenbeck (BUU) models [65,66]. These
models are based on Boltzmann equations for hadrons which
do not incorporate spin degrees of freedom.

In this paper, we will derive the spin Boltzmann equa-
tion for spin-1/2 fermions in a nonrelativistic model with
four-fermion contact interaction similar to the Nambu–Jona-
Lasinio (NJL) model in relativistic theory [67,68]. The
nonrelativistic model has a feature that the particle’s spin is
decoupled from its momentum and is conserved in the interac-
tion. This is very different from a relativistic system in which
the particle’s spin and momentum are entangled. The method
is based on a previous work by one of us about the relativistic
system of spin-1/2 fermions [19]. A great advantage of the
current nonrelativistic model is that the spin matrix elements
in collision terms can be completely worked out and be put
into such a compact form that one can clearly see how spins
are coupled in two-to-two scatterings of particles. This is not
the case in the relativistic theory [19]. The current work can
be extended to nucleon-nucleon interaction via nuclear force
and then can be applied to the global polarization in heavy-ion
collisions at low energies.

This paper is organized as follows. In Sec. II, we briefly
introduce Green’s functions in the closed-time-path (CTP)
formalism. In Sec. III, we derive the Kadanoff-Baym (KB)
equation from the Schwinger-Dyson equation in a quasi-
particle approximation. In Sec. IV, we derive the on-shell
part of the spin Boltzmann equation at the leading and
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next-to-leading order in h̄. In Sec. V, the off-shell part of the
KB equation is discussed. A summary of the results is given
in the final section.

II. GREEN’S FUNCTIONS FOR FERMIONS IN CTP
FORMALISM

We consider a nonrelativistic system of spin-1/2 fermions.
A general form of the Lagrangian with four-fermion interac-
tion can be written as [69]

L =
∫

d3xψ†
α (t, x)

(
ih̄

∂

∂t
+ h̄2

2m
∇2

)
ψα (t, x)

− 1

2

∫
d3xd3x′ψ†

α (t, x)ψ†
β (t, x′)

×Vαα′,ββ ′ (x, x′)ψβ ′ (t, x′)ψα′ (t, x), (1)

where α, β = ± denote spin states, Vαα′,ββ ′ (x, x′) is the spin-
dependent potential, and repeated indices imply a summation
if not explicitly stated. Let us consider the contact interaction
of the NJL type [67,68],

Lint = −g0

∫
d3x[ψ†

α (t, x)ψα (t, x)]2

− gσ

∑
i

∫
d3x

[
ψ†

α (t, x)σ i
αβψβ (t, x)

]2
, (2)

which corresponds to the potential in the form

Vαα′,ββ ′ (x, x′)

= 2δ(3)(x − x′)

(
g0δαα′δββ ′ + gσ

∑
i

σ i
αα′σ

i
ββ ′

)
. (3)

In Eqs. (2) and (3), σ i (or equivalently σi) with i = 1, 2, 3
are Pauli matrices in spinor space which are also denoted
as σ = (σ1, σ2, σ3). We can see that the above nonrelativistic
interaction involves two types of vertices: 1 and σ i. In con-
trast, the relativistic NJL model [19] includes fives types of
vertices that correspond to 16 Clifford algebra: 1, γ μ, γ 5,
γ 5γ μ, σμν , for Dirac spinors. The most significant feature
of the relativistic theory is that the spin is entangled with
momentum, while it is not so in the nonrelativistic theory.
How the nonrelativistic and relativistic NJL models are related
is a complicated problem which needs a systematic nonrela-
tivistic expansion in small parameters such as the momentum
to mass ratio. This is beyond the scope of the current work and
deserves a future study.

The Lagrangian (1) with the interaction part (2) is invariant
under the global SU(2) transformation defined as

ψ ′
α = Uαβψβ, ψ ′†

α = ψ
†
βU †

βα, (4)

which means the spin is conserved. The kinetic term of the
Lagrangian (1) and the g0 term of the interaction Lagrangian

(2) are obviously invariant under the SU(2) transformation.
Let us look at the gσ term[
ψ ′†

α σ i
αβψ ′

β

][
ψ ′†

α1
σ i

α1β1
ψ ′

β1

] = [
ψ†

γU †
γασ i

αβUβλψλ

]
× [

ψ†
γ1

U †
γ1α1

σ i
α1β1

Uβ1λ1ψλ1

]
= Vi jVik

[
ψ†

γ σ
j

γ λψλ

][
ψ†

γ1
σ k

γ1λ1
ψλ1

]
= [

ψ†
γ σ

j
γ λψλ

][
ψ†

γ1
σ

j
γ1λ1

ψλ1

]
, (5)

where we have used the property of SU(2) transformation
U †σiU = Vi jσ j with Vi j denoting an SO(3) matrix. Corre-
sponding to the SU(2) invariance of the Lagrangian, the
Noether charge and current for spin are given by

Qspin
i = h̄

2
ψ†σiψ, Jspin

i j = ih̄2

4m
(∇ jψ

†σiψ − ψ†σi∇ jψ ), (6)

which satisfy the conservation equation

∂

∂t
Qspin

i + ∇ jJ
spin
i j = 0. (7)

Note that the Noether charge is a spin vector while the Noether
current is a tensor.

The fermion fields can be quantized as

ψ (x) =
∫

d3p
(2π h̄)3

e−ip·x/h̄
∑
s=±

a(s, p)χ (s),

ψ†(x) =
∫

d3p
(2π h̄)3

eip·x/h̄
∑
s=±

a†(s, p)χ†(s), (8)

where x ≡ (x0, x) ≡ (t, x), p ≡ (p0, p) ≡ (ωp, p) with ωp =
p2/(2m), p · x ≡ ωpt − p · x, a(s, p) and a†(s, p) are anni-
hilation and creation operators associated with p and the
spin state s, respectively, and χ (s) is the spin state (Pauli
spinor) which satisfies (n · σ )χ (s) = sχ (s) with n being the
spin quantum direction n = (sin θ cos φ, sin θ sin φ, cos θ ).
The anticommutators of a(s, p) and a†(s, p) are given by

{a(s1, p1), a†(s2, p2)} = (2π h̄)3δs1s2δ
(3)(p1 − p2),

{a(s1, p1), a(s2, p2)} = {a†(s1, p1), a†(s2, p2)} = 0, (9)

which lead to equal-time anticommutators for fermion fields

{ψα (t, x), ψ†
β (t, x′)} = δαβδ(3)(x − x′),

{ψα (t, x), ψβ (t, x′)} = {ψ†
α (t, x), ψ†

β (t, x′)} = 0. (10)

Now we define the two-point Green’s function in the CTP
formalism [70,71] (see, e.g., Refs. [72–75] for reviews) as

GC
αβ (x1, x2) = 〈TC[ψα (x1)ψ†

β (x2)]〉, (11)

where TC denotes the time-ordered product on the CTP, and
the angular brackets denote averages weighted by the density
operator at the initial time ρ(t0). Note that our definition for
the Green’s function is different from Ref. [69] without the
additional factor i = √−1. Depending on whether the two
space-time points are on the positive or negative time branch,
there are four types of two-point functions

GF
αβ (x1, x2) = G++

αβ (x1, x2) = 〈T ψα (x1)ψ†
β (x2)〉,

GF
αβ (x1, x2) = G−−

αβ (x1, x2) = 〈TAψα (x1)ψ†
β (x2)〉,
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G<
αβ (x1, x2) = G+−

αβ (x1, x2) = −〈ψ†
β (x2)ψα (x1)〉,

G>
αβ (x1, x2) = G−+

αβ (x1, x2) = 〈ψα (x1)ψ†
β (x2)〉, (12)

where +/− stands for the positive/negative time branch,
respectively, and T and TA denote the time-ordered and
reverse-time-ordered product, respectively. Note that only
three out of four types of two-point functions in Eq. (12) are
independent due to the identity

GF + GF = G< + G>. (13)

We can choose (GF , G<, G>) as three independent two-point
functions. Equivalently we can also choose (GR, GA, GS ) as
independent ones

GR = GF − G< = θ (t1 − t2)(G> − G<),

GA = GF − G> = θ (t2 − t1)(G< − G>),

GS = G< + G>, (14)

where GR and GA are retarded and advanced two-point func-
tions.

The Wigner function is the building-block of the quantum
transport theory since it is the quantum analog of the parti-
cle distribution in phase space. The Wigner function can be
obtained by taking the Fourier transformation with respect to
the distance of two space-time points in a two-point function.
Then the Wigner functions for G<

αβ (x1, x2) and G>
αβ (x1, x2) are

defined by

G<
αβ (x, p) =

∫
d4yeip·y/h̄G<

αβ (x1, x2)

= −
∫

d4yeip·y/h̄
〈
ψ

†
β

(
x − y

2

)
ψα

(
x + y

2

)〉
,

G>
αβ (x, p) =

∫
d4yeip·y/h̄G>

αβ (x1, x2)

=
∫

d4yeip·y/h̄
〈
ψα

(
x + y

2

)
ψ

†
β

(
x − y

2

)〉
, (15)

where p · y ≡ ωpy0 − p · y, x1 = x + y/2, and x2 = x − y/2.
In nonequilibrium, we do not know G<

αβ (x, p) and
G>

αβ (x, p) exactly due to unknown ensemble averages. How-
ever, using Eq. (8), we can make an ansatz for their forms in a
power expansion of h̄. Inserting Eq. (8) to Eq. (15), the leading
order contributions to the Wigner functions have the form

G<(0)
αβ (x, p)

= −(2π h̄)δ

(
p0 − p2

2m

) ∑
s1,s2=±

χα (s1)χ†
β (s2) f (0)

s1s2
(x, p),

G>(0)
αβ (x, p)

= (2π h̄)δ

(
p0 − p2

2m

) ∑
s1,s2=±

χα (s1)χ†
β (s2)

× [
δs1s2 − f (0)

s1s2
(x, p)

]
, (16)

where p ≡ (p0, p) ≡ (ω, p) with p0 or ω being an in-
dependent variable, and the matrix valued spin-dependent

distribution (MVSD) at O(h̄0) is defined as [19]

f (0)
s1s2

(x, p) =
∫

d3q
(2π h̄)3

exp

[
i
1

h̄

(
−p · q

m
t + q · x

)]

×
〈
a†

(
s2, p − q

2

)
a
(

s1, p + q
2

)〉
. (17)

One can check that G≶(0)(x, p) are Hermitian matrices be-
cause f (0)∗

s1s2
= f (0)

s2s1
, i.e., f (0) is a Hermitian matrix in spin

space. The first order contributions at O(h̄1) are assumed to
have the form

h̄G<(1)
αβ (x, p) = h̄G>(1)

αβ (x, p) = −h̄(2π h̄)δ

(
p0 − p2

2m

)

×
∑

s1,s2=±
χα (s1)χ†

β (s2) f (1)
s1s2

(x, p), (18)

where f (1)
s1s2

(x, p) is unknown and can be determined by solv-
ing the evolution equations. We assume f (1)∗

s1s2
= f (1)

s2s1
, which

means f (1) and then G≶(1)(x, p) are Hermitian matrices in
spin space. Note that in Eq. (18) we only include on-shell
contributions to G≶(1)(x, p) which are proportional to δ[p0 −
p2/(2m)]. In principle there are off-shell contributions which
are proportional to δ′[p0 − p2/(2m)]. We will address off-
shell contributions in Sec. V separately.

Combining Eqs. (16) and (18) we obtain G≶(x, p) up to
O(h̄),

G<(x, p) = G<(0)(x, p) + h̄G<(1)(x, p) + O(h̄2)

= −(2π h̄)δ

(
p0 − p2

2m

)

×
∑

s1,s2=±
χα (s1)χ†

β (s2) fs1s2 (x, p),

G>(x, p) = G>(0)(x, p) + h̄G>(1)(x, p) + O(h̄2)

= (2π h̄)δ

(
p0 − p2

2m

)

×
∑

s1,s2=±
χα (s1)χ†

β (s2)[δs1s2 − fs1s2 (x, p)]. (19)

Here, the MVSD fs1s2 (x, p) is given by

fs1s2 (x, p) = f (0)
s1s2

(x, p) + h̄ f (1)
s1s2

(x, p) + O(h̄2)

= δs1s2 f (x, p) + τs1s2 · t(x, p) + O(h̄2), (20)

where τ = (τ1, τ2, τ3) and t(x, p) =
[t1(x, p), t2(x, p), t3(x, p)] denote Pauli matrices and the
polarization vector in (s1, s2) space, respectively. It is
important to note about the difference between τ and σ, the
former is defined in (s1, s2) space or spin space while the
latter is defined in spinor space. It can be easily checked
that G≶(x, p) are Hermitian. For convenience we can write
G≶(x, p) as

G≶(x, p) = −(2π h̄)δ

(
p0 − p2

2m

)
g≶(x, p), (21)

where g≶(x, p) denotes the part of G≶(x, p) without the delta
function and it can be decomposed in terms of 1 and Pauli
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matrices σ in spinor space,

g<(x, p) ≡
∑

s1,s2=±
χ (s1)χ†(s2) fs1s2 (x, p)

= f (x, p) + σ · S(x, p),

g>(x, p) ≡ −
∑

s1,s2=±
χ (s1)χ†(s2)[δs1s2 − fs1s2 (x, p)]

= f (x, p) + σ · S(x, p) − 1. (22)

These components can be extracted by taking traces

f (x, p) = 1
2 Tr[g<(x, p)], S(x, p) = 1

2 Tr[σg<(x, p)]. (23)

So S(x, p) is given by

S(x, p) = 1

2

∑
s1,s2=±

χ†(s2)σχ (s1) fs1s2 (x, p)

= 1

2

∑
s1,s2=±

(n1τ1 + n2τ2 + n3τ3)s2s1 fs1s2 (x, p)

= niti(x, p), (24)

where we have used

χ†(s2)σχ (s1) = (n1τ1 + n2τ2 + n3τ3)s2s1

=
(

n3 n1 − in2

n1 + in2 −n3

)
s2s1

. (25)

Here, (n1, n2, n3) are three basis vectors given by

n1 = (cos φ cos θ, sin φ cos θ,− sin θ ),

n2 = (− sin φ, cos φ, 0),

n3 = (sin θ cos φ, sin θ sin φ, cos θ ). (26)

Note that n3 = n is the direction of the spin quantization.

III. KADANOFF-BAYM EQUATION

The time evolution of a many-body quantum system in nonequilibrium is described by the KB equation [76] (see, e.g.,
Ref. [77] for a review). The KB equations can be derived from the Dyson-Schwinger equations for two-point Green functions
on the CTP,

−i

(
ih̄

∂

∂t1
+ h̄2

2m
∇2

x1

)
GC (x1, x2) = h̄δ

(4)
C (x1 − x2) + h̄

∫
C

d4x′�C (x1, x′)GC (x′, x2),

−iGC (x1, x2)

(
−ih̄

←−
∂

∂t2
+ h̄2

2m

←−∇ 2
x2

)
= h̄δ

(4)
C (x1 − x2) + h̄

∫
C

d4x′GC (x1, x′)�C (x′, x2), (27)

where the index C stands for the CTP, δ
(4)
C (x1 − x2) and �C (x1, x′) are the δ function and self-energy on the CTP, respectively.

Note that GC and �C are 2 × 2 matrices in the spinor space. In the case that (t1, t2) are on (+,−) time branch, Eq. (27) can be
put into the conventional coordinate form

−i

(
ih̄

∂

∂t1
+ h̄2

2m
∇2

x1

)
G<(x1, x2) = h̄

∫
d4x′[�R(x1, x′)G<(x′, x2) + �<(x1, x′)GA(x′, x2)], (28)

−i

(
−ih̄

∂

∂t2
+ h̄2

2m
∇2

x2

)
G<(x1, x2) = h̄

∫
d4x′[GR(x1, x′)�<(x′, x2) + G<(x1, x′)�A(x′, x2)], (29)

where �R and �A are the retarded and advanced self-energy, respectively. Performing the Wigner transform for above equations,
we obtain (

ih̄
1

2
∂t + i

h̄

2m
p · ∇x + p0 − p2

2m
+ h̄2

8m
∇2

x

)
G<(x, p) = Icoll (30)

and (
−ih̄

1

2
∂t − i

h̄

2m
p · ∇x + p0 − p2

2m
+ h̄2

8m
∇2

x

)
G<(x, p) = I†

coll, (31)

where Icoll and I†
coll are given by

Icoll = ih̄[�R(x, p)G<(x, p) + �<(x, p)GA(x, p)] + 1
2 h̄2[{�R(x, p), G<(x, p)}P.B. + {�<(x, p), GA(x, p)}P.B.], (32)

I†
coll = ih̄[GR(x, p)�<(x, p) + G<(x, p)�A(x, p)] + 1

2 h̄2[{GR(x, p), �<(x, p)}P.B. + {G<(x, p), �A(x, p)}P.B.]. (33)

Here, the Poisson bracket of two matrices is defined as

{A, B}PB ≡ ∂t A∂p0 B − ∂p0 A∂t B − (∇xA · ∇pB − ∇pA · ∇xB). (34)

We see that I†
coll can be obtained by interchange of � and G from Icoll, and vice versa. With the relations for O = G, �,

[OR]† = −OA, [O≶]† = [O≶], (35)
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one can check that I†
coll is really the Hermitian conjugate of Icoll. Taking the sum and difference of Eqs. (32) and (33), we obtain

an equation for the dispersion relation or the on-shell equation(
p0 − p2

2m
+ h̄2

8m
∇2

x

)
G<(x, p) = 1

2
(Icoll + I†

coll ), (36)

and the evolution equation

h̄
(
∂t + p

m
· ∇x

)
G<(x, p) = −i(Icoll − I†

coll ). (37)

Equations (36),(37) are some of the main results in this paper and the starting point for the derivation of Boltzmann equations.
In the quasiparticle picture, the retarded and advanced self-energies and two-point functions can be approximated as

OR/A(x, p) = 1

2π i

∫
dk0

1

k0 − p0 ∓ iε
[O>(x, k0, p) − O<(x, k0, p)] = ±1

2
[O>(x, p) − O<(x, p)] + OR/A

pr , (38)

where O ≡ G, �, and the principal part OR/A
pr is related to off-shell effects that modify the dispersion relation of the quasiparticle

which we will not consider in this paper. Using Eq. (38), the collision terms (32) and (33) can be simplified as

Icoll = 1
2 ih̄[�>(x, p)G<(x, p) − �<(x, p)G>(x, p)] + 1

4 h̄2[{�>(x, p), G<(x, p)}P.B. − {�<(x, p), G>(x, p)}P.B.] (39)

and

I†
coll = 1

2 ih̄[G>(x, p)�<(x, p) − G<(x, p)�>(x, p)] + 1
4 h̄2[{G>(x, p), �<(x, p)}P.B. − {G<(x, p), �>(x, p)}P.B.]. (40)

With collision terms (39) and (40), Eq. (37) is our starting point for the derivation of Boltzmann equations.
The Boltzmann equations for f (x, p) and S(x, p) can be obtained by taking a trace of Eq. (37) and a trace of Eq. (37)

multiplied by σ as

h̄

(
∂t + 1

m
p · ∇x

)
Tr(G<) = 2ImTr(Icoll ), (41)

h̄

(
∂t + 1

m
p · ∇x

)
Tr(σG<) = 2ImTr(σIcoll ). (42)

From Eq. (19) we know that there is an on-shell δ function δ[p0 − p2/(2m)] in both sides of the above equations, therefore one
can drop these δ functions and derive equations for f (x, p) and S(x, p) without δ functions.

IV. SPIN BOLTZMANN EQUATIONS: ON-SHELL PARTS

In this section we consider the contact interaction of the NJL type, one of the simplest cases for interaction. The interaction
Lagrangian is given in Eq. (2). The collision term Icoll in Eq. (39) and I†

coll in Eq. (40) depend on the self-energy �> and �<

whose Feynman diagrams are shown in Fig. 1. The self-energies can be written as

�>(x, p) = 4
∑
c1,c2

gc1gc2

∫
d4 p1

(2π h̄)4

d4 p2

(2π h̄)4

d4 p3

(2π h̄)4
(2π h̄)4δ(4)(p+p3 − p1−p2)Tr[�(c2)G>(p1)�(c1)G<(p3)]�(c2)G>(p2)�(c1)

− 4
∑
c1,c2

gc1gc2

∫
d4 p1

(2π h̄)4

d4 p2

(2π h̄)4

d4 p3

(2π h̄)4
(2π h̄)4δ(4)(p + p3 − p1 − p2)

×�(c2)G>(p1)�(c1)G<(p3)�(c2)G>(p2)�(c1), �<(x, p) = �>[G> ↔ G<], (43)

where gc1 and gc2 can be g0 or gσ , and we have suppressed the x dependence of G< and G>. If gc is gσ , a summation over i for
�(σ ) = σi is implied.

A. Leading order

Using Eqs. (19), (43), and (39) in Eqs. (41) and (42) and performing an integration of p0 over 0 to +∞, we obtain the
Boltzmann equations for the scalar and polarization part of the distribution at the leading order

h̄

(
∂t + 1

m
p · ∇x

)
f

(0)
p = 4h̄(g0 − 3gσ )2

∫
d3p1

(2π h̄)3

d3p2

(2π h̄)3

d3p3

(2π h̄)3
(2π h̄)4δ(4)(p + p3 − p2 − p1)

× [
f

(0)
1 f

(0)
2

(
1 − f

(0)
3

)(
1 − f

(0)
p

) − (
1 − f

(0)
1

)(
1 − f

(0)
2

)
f

(0)
3 f

(0)
p

− (
1 − f

(0)
3 − f

(0)
p

)
S(0)

1 · S(0)
2 + (

1 − f
(0)
1 − f

(0)
2

)
S(0)

3 · S(0)
p

]
, (44)
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FIG. 1. Feynman diagrams for �>(x, p) (upper panel) and �<(x, p) (lower panel). In the NJL model the wavy lines attached with two
solid circles represent vertices 2gc1�

(c1) (left) and 2gc2�
(c2) (right).

h̄

(
∂t + 1

m
p · ∇x

)
Sa,(0)

p = 4h̄(g0 − 3gσ )2
∫

d3p1

(2π h̄)3

d3p2

(2π h̄)3

d3p3

(2π h̄)3
(2π h̄)4δ(4)(p + p3 − p2 − p1)

× {[(
1 − f

(0)
p

)
f

(0)
1 f

(0)
2 + f

(0)
p

(
1 − f

(0)
1

)(
1 − f

(0)
2

)]
Sa,(0)

3

− [(
1 − f

(0)
3

)
f

(0)
1 f

(0)
2 + f

(0)
3

(
1 − f

(0)
1

)(
1 − f

(0)
2

)]
Sa,(0)

p + S(0)
1 · S(0)

2

(
Sa,(0)

p − Sa,(0)
3

)}
, (45)

where f i ≡ f (x, pi ), f p ≡ f (x, p), Si ≡ S(x, pi ), Sp ≡ S(x, p), and the index ‘(0)’ denotes the leading order. If the system

has no polarization at the leading order, i.e., S(0)
i = 0 for i = 1, 2, 3, p, Eq. (44) is reduced to the conventional Boltzmann

equation for f , with Eq. (45) for Sa being trivially satisfied (both sides are vanishing). If we assume polarized distributions are
much smaller in magnitude than unpolarized ones, i.e., |S(0)

i |  f j for i, j = 1, 2, 3, p, then we can neglect quadratic terms
of polarized distributions in Eq. (44) relative to terms with only unpolarized distributions and neglect cubic terms of polarized
distributions in Eq. (45) relative to linear terms. In this case the vanishing of the collision term in Eq. (44) gives the equilibrium
condition for unpolarized distributions

f
(0)
1 f

(0)
2

(
1 − f

(0)
3

)(
1 − f

(0)
p

) = (
1 − f

(0)
1

)(
1 − f

(0)
2

)
f

(0)
3 f

(0)
p . (46)

Similarly we can also obtain the equilibrium condition for unpolarized distributions from the vanishing of the collision term in
Eq. (45) [(

1 − f
(0)
p

)
f

(0)
1 f

(0)
2 + f

(0)
p

(
1 − f

(0)
1

)(
1 − f

(0)
2

)]
Sa,(0)

3 = [(
1 − f

(0)
3

)
f

(0)
1 f

(0)
2 + f

(0)
3

(
1 − f

(0)
1

)(
1 − f

(0)
2

)]
Sa,(0)

p , (47)

which leads to

S(0)
3(

1 − f
(0)
3

)
f

(0)
3

= S(0)
p(

1 − f
(0)
p

)
f

(0)
p

, (48)

using the equilibrium condition (46). The equilibrium condition (46) implies that f
(0)
p follows the Fermi-Dirac distribution

f
(0)
p = 1

exp [β(ωp − μ)] + 1
. (49)
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If we assume the ratio in Eq. (48) is a constant vector c which is related to the spin potential μspin, then at the leading order the
MVSD in Eq. (20) has the form

f (0)
s1s2

(x, p) = δs1s2 f
(0)
p + f

(0)
p

(
1 − f

(0)
p

)
τs1s2 · μspin + O(h̄), (50)

where the components of μspin are μi
spin = ni · c (i = 1, 2, 3) with three directions (n1, n2, n3) being given by Eq. (26). Since we

have assumed |S(0)
i |  f j , i.e., |μspin|  1, f (0)

s1s2
can be put into an approximated matrix form

f (0)(x, p) ≈ 1

exp[β(ωp − μ) − τ · μspin] + 1
. (51)

Here, τ = (τ1, τ2, τ3) are Pauli matrices in spin space. The MVSD in Eq. (51) is the equilibrium distribution for fermions with
spin degrees of freedom.

B. Next-to-leading order

At next to leading order, the Boltzmann equation for the unpolarized distribution reads

h̄

(
∂t + 1

m
p · ∇x

)
f

(1)
p = Iscalar

qc [ f (0), f (1)] + Iscalar
PB [ f (0)], (52)

where the subscript ‘qc’ represents the quasiclassical contribution and ‘PB’ represents the contribution from the Poisson bracket

term. The quasiclassical part can be obtained from Eq. (44) by replacing all zeroth order distributions f
(0)
i and S(0)

i by f i =
f

(0)
i + f

(1)
i and Si = S(0)

i + S(1)
i , respectively, and expanding it to the first order, the result is

Iscalar
qc

[
f (0), f (1)

] = 4h̄(g0 − 3gσ )2
∫

d3p1

(2π h̄)3

d3p2

(2π h̄)3

d3p3

(2π h̄)3
(2π h̄)4δ(4)(p + p3 − p2 − p1)

×{
f

(1)
1

[
f

(0)
2 + f

(0)
3 f

(0)
p − f

(0)
2 f

(0)
3 − f

(0)
2 f

(0)
p

] + f
(1)
2

[
f

(0)
1 + f

(0)
3 f

(0)
p − f

(0)
1 f

(0)
3 − f

(0)
1 f

(0)
p

]
− f

(1)
3

[
f

(0)
p + f

(0)
1 f

(0)
2 − f

(0)
p f

(0)
1 − f

(0)
p f

(0)
2

] − f
(1)
p

[
f

(0)
3 + f

(0)
1 f

(0)
2 − f

(0)
3 f

(0)
1 − f

(0)
3 f

(0)
2

]
− (

1 − f
(0)
3 − f

(0)
p

)
S(0)

1 · S(1)
2 − (

1 − f
(0)
3 − f

(0)
p

)
S(1)

1 · S(0)
2 + (

1 − f
(0)
1 − f

(0)
2

)
S(1)

3 · S(0)
p

+ (
1 − f

(0)
1 − f

(0)
2

)
S(0)

3 · S(1)
p + S(0)

1 · S(0)
2

(
f

(1)
3 + f

(1)
p

) − (
f

(1)
1 + f

(1)
2

)
S(0)

3 · S(0)
p

}
. (53)

We see in each term there is only one first order distribution with all other distributions being of zeroth order. One can prove

Iscalar
PB [ f (0)] = 0, (54)

for the scalar part of the Boltzmann equation.
In order to prove Eq. (54), we use the following property for the trace of Pauli matrices:

Tr[σiσ j · · · σk] = (−1)nTr[σk · · · σ jσi], (55)

where the n is number of Pauli matrices. To prove the above relation, we insert C2 = −1 between Pauli matrices

(−1)nTr[CσiCCσ jC · · ·CσkC] = (−1)nTr
[
σ T

i σ T
j · · · σ T

k

] = (−1)nTr[σk · · · σ jσi], (56)

where C = iσ 2 and CσC = σT .
With Eq. (56) we consider the quantities in the Poisson bracket collision term Iscalar

PB [ f (0)],

I1 = gc1gc2Im[Tr(�(c2)G1�
(c1)G3)Tr(�(c2)G2�

(c1)Gp)], I2 = gc1gc2ImTr(�(c2)G1�
(c1)G3�

(c2)G2�
(c1)Gp). (57)

Note that Gi (i = 1, 2, 3, p) can be either G≶(x, pi ) or derivatives of G≶(x, pi ). We know that Gi contain the scalar and
polarization parts, so we can express Gi = ∑

bi=1,0 Gi(bi ), where Gi(1) denotes its scalar part and Gi(0) denotes its polarization
part. Let us work on I1,

I1 = gc1gc2Im[Tr(�(c2)G1�
(c1)G3)Tr(�(c2)G2�

(c1)Gp)]

= gc1gc2

∑
b1,b2,b3,b

Im{Tr[�(c2)G1(b1)�(c1)G3(b3)]Tr[�(c2)G2(b2)�(c1)Gp(b)]}

= gc1gc2

∑
n=odd

Im{Tr[�(c2)G1(b1)�(c1)G3(b3)]Tr[�(c2)G2(b2)�(c1)Gp(b)]}

↓ insert C2

054909-7



WEN-BO DONG, YI-LIANG YIN, AND QUN WANG PHYSICAL REVIEW C 106, 054909 (2022)

= gc1gc2

∑
n=odd

(−1)nIm{Tr[�(c1)G1(b1)�(c2)G3(b3)]Tr[�(c1)G2(b2)�(c2)Gp(b)]}

= −gc1gc2

∑
n=odd

Im{Tr[�(c2)G1(b1)�(c1)G3(b3)]Tr[�(c2)G2(b2)�(c1)Gp(b)]}, (58)

where n = b1 + b2 + b3 + b is the number of scalar parts in two traces, and we have interchanged c1 ↔ c2 in the last equality
since a summation over c1 and c2 is implied. Note that even or odd n also indicates even or odd number of Pauli matrices in two
traces, respectively. Only when n is odd does the product of two traces have an imaginary part. By comparing the last equality
with the second one of Eq. (58) we arrive at I1 = 0. For I2, we have

I2 = gc1gc2ImTr(�(c2)G1�
(c1)G3�

(c2)G2�
(c1)Gp) = gc1gc2

∑
b1,b2,b3,b

ImTr[�(c2)G1(b1)�(c1)G3(b3)�(c2)G2(b2)�(c1)Gp(b)]

= gc1gc2

∑
n=odd

ImTr[�(c2)G1(b1)�(c1)G3(b3)�(c2)G2(b2)�(c1)Gp(b)]

↓ insert C2

= gc1gc2

∑
n=odd

(−1)nImTr[�(c1)G2(b2)�(c2)G3(b3)�(c1)G1(b1)�(c2)Gp(b)]

= −gc1gc2

∑
n=odd

ImTr[�(c2)G1(b1)�(c1)G3(b3)�(c2)G2(b2)�(c1)Gp(b)], (59)

where n = b1 + b2 + b3 + b is the number of scalar parts in the trace, in the final equality we have interchanged c1 ↔ c2 and
G1(b1) ↔ G2(b2) since a summation over c1 and c2 is implied and there is a symmetry in the labels 1 and 2 (in the integration
over p1 and p2 and the summation over b1 and b2). The odd/even n also corresponds to odd/even number of Pauli matrices
inside the trace. Only when n is odd does the trace have an imaginary part. By comparing the last equality with the second one
of Eq. (59), we obtain I2 = 0.

We now derive the Boltzmann equation for the polarization distribution at the next-to-leading order. The contributions can be
grouped into the local (quasiclassical) and nonlocal parts of the collision term. The local part contains no space-time derivatives

and can be obtained from Eq. (45) by the replacement f
(0)
i → f i = f

(0)
i + f

(1)
i and S(0)

i → Si = S(0)
i + S(1)

i in the collision
term and then by expanding the collision term to the next-to-leading order. The nonlocal part comes from the Poisson bracket
term with space-time derivatives. Special care should be taken for the derivatives in ∂p0 and ∇p which act on the two-point
function G≶(x, p), giving terms with δ′(p0 − p2/2m). These terms belong to off-shell contributions which we will neglect in
this section and leave to the next section for treatment. Substituting Eq. (19) into Eq. (42), we obtain the on-shell Boltzmann
equation for the polarization distribution at the next-to-leading order

h̄

(
∂t + 1

m
p · ∇x

)
Sa,(1)

p = Ipol
qc [ f (0), f (1)] + Ipol

PB [ f (0)]. (60)

The explicit form of the local part (quasiclassical) of the collision term is given by

Ipol
qc [ f (0), f (1)] = 4h̄(g0 − 3gσ )2

∫
d3p1

(2π h̄)3

d3p2

(2π h̄)3

d3p3

(2π h̄)3
(2π h̄)4δ(4)(p + p3 − p2 − p1)

× {
Sa,(0)

3

[
f

(1)
p

(
1 − f

(0)
1 − f

(0)
2

) + f
(1)
1

(
f

(0)
2 − f

(0)
p

) + f
(1)
2

(
f

(0)
1 − f

(0)
p

)]
− Sa,(0)

p

[
f

(1)
3

(
1 − f

(0)
1 − f

(0)
2

) + f
(1)
1

(
f

(0)
2 − f

(0)
3

) + f
(1)
2

(
f

(0)
1 − f

(0)
3

)]
+ Sa,(1)

3

(
f

(0)
p + f

(0)
1 f

(0)
2 − f

(0)
p f

(0)
1 − f

(0)
p f

(0)
2

)
−Sa,(1)

p

(
f

(0)
3 + f

(0)
1 f

(0)
2 − f

(0)
3 f

(0)
1 − f

(0)
3 f

(0)
2

)
+ (

S(1)
1 · S(0)

2 + S(0)
1 · S(1)

2

)(
Sa,(0)

p − Sa,(0)
3

) + S(0)
1 · S(0)

2

(
Sa,(1)

p − Sa,(1)
3

)}
. (61)

One can check that Ipol
qc [ f (0), f (1)] is local and on shell.

The nonlocal part of the collision term contains on-shell and off-shell contributions, as we have mentioned, in this section we
focus on the on-shell contribution and will treat the off-shell one in Sec. V. The explicit form of the on-shell Poisson bracket
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term reads

Ipol
PB [ f (0)] ≈ 2h̄2(g0 − 3gσ )2εai j

∫
d3 p1

(2π h̄)3

d3 p2

(2π h̄)3

d3 p3

(2π h̄)3
(2π h̄)4δ(4)(p + p3 − p1 − p2)

{
S(0),i

3

[∇x
(

f
(0)
1 + f

(0)
2

) · ∇pS(0), j
p

− (∇p1 f
(0)
1 + ∇p2 f

(0)
2

) · ∇xS(0), j
p

] + (
1 − f

(0)
1 − f

(0)
2

)(∇p3 S(0),i
3 · ∇xS(0), j

p − ∇xS(0),i
3 · ∇pS(0), j

p

)}
. (62)

Here, we have neglected a term with

∂p0δ
(4)(p + p3 − p1 − p2)εai jS

(0), j
3

(
∂t + p

m
· ∇x

)
S j,(0)

p

in the integrand which is of order O(h̄2g4
couple ) by Eq. (45), while the terms in Eq. (62) are all of order O(h̄2g2

couple ), where
gcouple = g0 or gσ denotes the coupling constant. The collision term in Eq. (62) is nonlocal for it contains derivatives of space-
time. From Eq. (62), we see that the collision term vanishes if there is no polarization density at the leading order, i.e., Sa,(0)

p = 0.
This is the result of the non-relativistic coupling of the NJL type. In contrast it has been proved in Ref. [19] that the polarization
can be generated from the Poisson bracket term even without polarization density at the leading order in a relativistic NJL model.

V. SPIN BOLTZMANN EQUATIONS: OFF-SHELL PARTS

In this section we will investigate off-shell contributions. From Eqs. (36) and (37) G<(x, p) actually contains an off-shell part
G<

off (x, p) besides the on-shell part in Eq. (19) which we denote as G<
on(x, p), so do Icoll and I†

coll.
Now we try to derive the connection between G<

on(x, p) and G<
off (x, p). From Eq. (36) we obtain

G<
off (x, p) = 1

2p0 − p2/m
(Icoll + I†

coll ) + O(h̄2). (63)

Note that the on-shell part Ion
coll contains δ[p0 − p2/(2m)] which, combining [p0 − p2/(2m)]−1, gives the derivative of the delta-

function, δ′[p0 − p2/(2m)]. The explicit form of G<
off (x, p) can be determined by the collision term from Eq. (63) and is at least

of the same order as h̄G≶(1)
on in Eq. (18). We can express G<

off (x, p) as

G<
off (x, p) = G>

off (x, p) = −h̄(2π h̄)∂p0δ

(
p0 − p2

2m

) ∑
s1,s2=±

χ (s1)χ†(s2) f off
s1s2

(x, p)

= −h̄(2π h̄)∂p0δ

(
p0 − p2

2m

)
[ f off (x, p) + σ · Soff (x, p)] = −h̄(2π h̄)∂p0δ

(
p0 − p2

2m

)
σ · Soff (x, p), (64)

where we used f off (x, p) = 0 and

Sa
off (x, p) = 2(g0 − 3gσ )2εai j

∫
d4 p1

(2π h̄)3

d4 p2

(2π h̄)3

d4 p3

(2π h̄)3
(2π h̄)4δ(p + p3 − p2 − p1)

×δ

(
p0

1 − p2
1

2m

)
δ

(
p0

2 − p2
2

2m

)
δ

(
p0

3 − p2
3

2m

)(
1 − f

(0)
1 − f

(0)
2

)
Si,(0)

3 S j,(0)
p , (65)

following Eq. (63) at the leading order. Actually G<
off in the form of Eq. (64) would be added to the left-hand side of Eq. (42) at

the next-to-leading order [since f off (x, p) = 0, there is no off-shell correction to Eq. (41)], while there is also the off-shell part
from the Poisson bracket term in the right-hand side. It can be shown that the off-shell terms in both sides of Eq. (42) are equal
at O(h̄2g2

couple ) and thus drop out from the equation to leave Eq. (60) for the on-shell part.
From Eq. (37), we obtain

h̄

(
∂t + 1

m
p · ∇x

)
G<

on(x, p) = −i(Icoll − I†
coll ) − h̄

(
∂t + p

m
· ∇x

)
G<

off (x, p) = −i
(
Ion
coll − Ion†

coll

) − i
(
Ioff
coll − Ioff†

coll

)
− h̄

1

2p0 − p2/m

(
∂t + p

m
· ∇x

)
(Icoll + I†

coll ) + O(h̄3). (66)

Now we act the operator in the left-hand side of Eq. (29) to the right-hand side of Eq. (28) and obtain(
−ih̄

∂

∂t2
+ h̄2

2m
∇2

x2

)
Icoll(x1, x2) = O(

h̄2g4
couple

)
. (67)

Note that the operator only acts on Green’s functions in Icoll (32) instead of self-energies since only Green’s functions depend on
x2, which gives a contribution of O(h̄2g4

couple ) using Eq. (29). Taking a Wigner transform of Eq. (67) we obtain an equation for
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Ion
coll and Ioff

coll

Ioff
coll = 1

2p0 − p2/m
ih̄

(
∂t + p

m
· ∇x

)
Icoll + O(

h̄2g4
couple

) + O(
h̄3g2

couple

)
, (68)

where the first term is at least of O(h̄2g2
couple ). Taking a Hermitian conjugate of the above equation leads to

Ioff†
coll = − 1

2p0 − p2/m
ih̄

(
∂t + p

m
· ∇x

)
I†
coll + O(

h̄2g4
couple

) + O(
h̄3g2

couple

)
. (69)

Substituting Eqs. (68) and (69) into Eq. (66) we arrive at an equation for the on-shell part of the two-point function

h̄
(
∂t + p

m
· ∇x

)
G<

on(x, p) = −i
(
Ion
coll − Ion†

coll

) + O(
h̄2g4

couple

) + O(
h̄3g2

couple

)
. (70)

The above equation for on-shell parts is the foundation for discussions in Sec. IV, in which the index “on” has been suppressed
for notational simplicity. In this section we have resumed the use of index “on” to denote G≶

on(x, p) and Ion
coll.

Let us analyze Ioff
coll in Eq. (68). From Eq. (39), Icoll has two parts: one is the local term or quasiclassical term Iqc which is at

least of O(h̄), and the other is the nonlocal term with Poisson brackets IPB which is at least of O(h̄2). The leading contribution of
Ioff
coll is of O(h̄2g2

couple ) from IPB containing derivatives ∂p0 and ∇p acting on G≶(x, p), while the contribution from G<
off in Eq. (64)

to Ioff
coll through the expansion of Iqc is of O(h̄2g4

couple ) which is in higher order. Note that the leading contribution in Ioff
coll from IPB

is in the same order as the first term in the right-hand side of Eq. (68). So at O(h̄2g2
couple ), Eq. (68) gives a constraint for MVSD

f (0) or equivalently f
(0)

and S(0) in addition to Eqs. (44) and (45).

VI. COMMENTS ON NUCLEAR FORCE THROUGH OBEP

In order to apply our theory to a non-relativistic nucleon
system in low energy collisions, one has to go beyond the
contact interaction of the NJL type and consider nuclear force
as interaction. The main features of nuclear force can be ef-
fectively described by one boson exchange potential (OBEP)
[78,79]. The OBEPs through scalar, pseudoscalar, and vector
meson exchanges have terms with operators σ1 · σ2, L · S, and
S12 defined as L ≡ −ir × ∇, S ≡ (σ1 + σ2)/2, and

S12 ≡ 1

r2
[3(σ1 · r)(σ2 · r) − r2σ1 · σ2], (71)

where r ≡ x − x′. So OBEPs are nonlocal and contain cou-
plings between spin and coordinate (equivalently spin and
momentum). In this case the spin is not a conserved quantity
as in the NJL-like model. It may be converted from local
orbital angular momentum or local vorticity [17,20]. The ex-
tension to the OBEP is much more complicated and beyond
the scope of this work. It will be reserved for a future study.

VII. SUMMARY

We derive spin Boltzmann equations for nonrelativistic
spin-1/2 fermions from the KB equation in the CTP formal-
ism. The nonrelativistic model is similar to the NJL model
with four-fermion contact interaction which conserves spins
in particle scatterings. The great merit of the model is that the

spin matrix element in the collision term can be completely
worked out and be put into a compact form. One can clearly
see how spins are coupled in two-to-two scatterings of par-
ticles. In contrast it is hard to envisage the structure of the
spin matrix element which is much more complicated in the
relativistic theory [19].

Starting from the non-relativistic Lagrangian, the KB equa-
tion is derived from the Dyson-Schwinger equation defined
on the CTP. The spin Boltzmann equations for the particle
number and spin distribution are derived based on Wigner
functions and the KB equation. Since the spin polarization
is a quantum effect, we make an expansion in the Planck
constant h̄ for all quantities in the spin Boltzmann equation.
At the leading order, the equilibrium spin distribution can be
obtained under the condition of the vanishing collision term
for the spin phase space density. A spin chemical potential
emerges in the equilibrium spin distribution which is a natural
consequence of spin conservation. The off-shell parts of spin
Boltzmann equations are also discussed. The work can be
extended to a system of nucleons which interact via nuclear
forces in low energy heavy-ion collisions.
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