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A data-driven idea is presented to test if light nuclei and hypernuclei obey the coalescence-inspired sum rule,
i.e., to test if the flow of a light nucleus or hypernucleus is the summed flow of each of its constituents. Here,
the mass difference and charge difference among the constituents of light nuclei and hypernuclei are treated
appropriately. The idea is applied to the available data for

√
sNN = 3 GeV fixed-target Au+Au collisions at the

Relativistic Heavy Ion Collider (RHIC), published by the STAR Collaboration. It is found that the sum rule for
light nuclei is approximately valid near midrapidity (−0.3 < y < 0), but there is a clear violation of the sum rule
at large rapidity (y < −0.3). The Jet AA Microscopic Transport Model (JAM), with baryonic mean-field plus
nucleon coalescence, generates a similar pattern as obtained from the experimental data. In the present approach,
the rapidity dependence of directed flow of the hypernuclei 3

�H and 4
�H is predicted in a model-independent way

for
√

sNN = 3 GeV Au+Au collisions, which will be explored by ongoing and future measurements from STAR.

DOI: 10.1103/PhysRevC.106.054907

I. INTRODUCTION

Collectivity is a phenomenon observed over a wide range
of collision energies for various heavy-ion collision systems.
The azimuthal anisotropy of emitted particles is characterized
by Fourier decomposition of final-state particle momenta with
respect to the reaction plane [1,2]. The first- and higher-order
coefficients of the azimuthal anisotropy, also known as di-
rected flow (v1), anisotropic flow (v2), and so on, describe a
collective motion of particles. The azimuthal anisotropies pro-
vide important information on the collective hydrodynamic
expansion and transport properties of the matter formed in the
collisions. They are also sensitive to the compressibility of the
nuclear matter and the nuclear equation of state at collision
energies of the order of a few GeV [3,4]. The anisotropic flow
coefficients of different identified particle species have been
measured extensively in experiments at RHIC [5–9] and the
LHC [10,11].

Apart from the identified particles, the measurements
of hypernuclei (3

�H, 4
�H) [12–16] and measured azimuthal

anisotropies for light nuclei (d , t , 3He, 4He) [17–26] have also
been reported in the past. Hypernuclei are natural hyperon-
baryon correlation systems, and can serve as an excellent
probe of hyperon-baryon interactions in high-energy heavy-
ion collisions. Measurements of hypernuclei produced in the
collisions have lately been of increasing interest. On the other
hand, at lower collision energies, a larger anisotropic flow is
measured for light nuclei compared to protons [19–25,27,28],
suggesting possible advantages of studying light nuclei. The
STAR Collaboration reported the scaling of light nuclear el-
liptic flow according to nuclear mass number (A), in a reduced
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transverse momentum (pT ) range pT /A < 1.5 GeV/c over
a wide range of collision energies,

√
sNN = 7.7–200 GeV

[24]. This observation favors the interpretation that the light
nuclei are formed at these energies and kinematics via coales-
cence of nucleons. However, the true production mechanism
of light nuclei and hypernuclei is not yet fully understood
and remains under active research [29–33]. In the coalescence
mechanism, light nuclei or hypernuclei are formed by the
binding of nucleons or hyperons when they come close to
each other in both coordinate and momentum space during
the time of kinetic freezeout [34–36]. The interaction between
the produced expanding fireball and the spectator remnants
becomes more significant at lower beam energies due to the
longer passing time of the colliding ions. The flow signals
are strongly affected by the relatively slowly passing spec-
tators, and hence one might get important insights into the
collision dynamics and the nucleon coalescence behavior. Re-
cently, the STAR Collaboration has observed a breakdown of
A scaling for flow of light nuclei away from midrapidity in√

sNN = 3 GeV Au+Au collisions [28].
In the traditional A scaling for light nuclei and hypernuclei

(e.g., Ref. [28]), each constituent nucleon or hyperon is on
equal footing, which ignores the fact that the constituents have
different masses and electric charges, whereas the resulting
flow of nuclei through coalescence mechanism depends on
the mass and charge of the constituents. The mass difference
between proton and neutron may be negligibly small, but due
to the charge difference, the Coulomb effect must be larger
than the mass effect. In this paper, a novel data-driven method
is discussed, which tests the coalescence-inspired sum rule
for light nuclei and hypernuclei, considering different con-
stituents according to their mass and charge.

It is hard to measure each and every constituent of a light
nucleus or hypernucleus in an experiment. Hence, the idea is
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to combine different light nuclei and hypernuclei, then com-
pare the combinations so that they have identical constituents,
i.e., the combinations are compared at the same mass and
same charge at the constituent level. The method is discussed
in detail in the next section (Sec. II). Under this method,
the sum rule is tested using the STAR measurements avail-
able for light nuclei from

√
sNN = 3 GeV Au+Au collisions.

A nuclear transport model named the Jet AA Microscopic
Transport Model (JAM) [37] with a baryonic mean-field [38]
plus nucleon coalescence calculations is found to be quite
successful in describing the measured v1 and v2 for light
nuclei from

√
sNN = 3 GeV Au+Au collisions [28]. The sum

rule has also been tested with the same JAM model and the
calculations agree with the results obtained from the STAR
data at

√
sNN = 3 GeV Au+Au collisions.

The data-driven method predicts the rapidity dependence
of v1 for hypernuclei such as 3

�H and 4
�H in

√
sNN = 3 GeV

Au+Au collisions. STAR has collected large data sets at var-
ious beam energies, both in fixed target and collider modes
as part of Phase II of the Beam Energy Scan program [39],
and these detailed measurements will serve as a good testing
ground for the analysis proposed in the present work.

In the next section, details of the method are outlined. Re-
sults are discussed in Sec. III. Section IV presents a summary.

II. METHOD

A. Coalescence-inspired sum rule in a data-driven approach

In the proposed approach, it is assumed that light nuclei
and hypernuclei are predominantly formed via coalescence
of the constituent nucleons or � hyperons, and it is also
assumed that the anisotropic flow correlation is imposed be-
fore hadronization [12,24], i.e., well before formation of the
nuclei under consideration. The abundantly produced light nu-
clei and hypernuclei reported by experimental collaborations
to date are d (pn), t (pnn), 3He(ppn), 4He(ppnn), 3

�H(pn�),
and 4

�H(pnn�). The A scaling for light nuclei and hypernu-
clei follows from the coalescence mechanism. The different
constituents of light nuclei and hypernuclei in this scaling
behavior are treated equally, which ignores the fact that
in general, the constituents have different masses, charges,
and strangeness. In the following method, the coalescence-
inspired sum rule for light nuclei and hypernuclei can be
tested where the constituents are considered depending upon
their masses, charges, and strangeness, i.e., the method
does not ignore the mass difference, charge difference, and
strangeness difference of the constituents. A similar approach
was developed in earlier work [40], which focused on hadron
formation via coalescence in heavy-ion collisions.

The first step in the present method is to select a kinematic
region where the aforementioned assumptions of the sum rule
can be tested, which involves a test of the equality

v1(light (hyper)nucleus) =
∑

i

v1(Ni ), (1)

where the sum runs over the v1 for the nucleon or � hyperon
constituents, Ni.

The next step of the method is to combine different
light nuclei and hypernuclei, then compare the combinations,

TABLE I. Differences between the combinations formed from
various light nuclei and hypernuclei. Each index represents a dif-
ference of two combinations with identical constituents, i.e., for all
cases, the constituent-level mass difference is �m = 0, the charge
difference is �q = 0, and the mass number difference is �A = 0.
Not all indices shown here are linearly independent. A set of linearly
independent combinations can be found using linear algebra; one
possible such set is 1, 2, 3, 6, and 7.

Index �v1 combination

1 p(p) + d (pn) − 3He(ppn)
2 p(p) + t (pnn) − 4He(ppnn)
3 d (pn) − 1

2
4He(ppnn)

4 d (pn) + 3He(ppn) − p(p) − 4He(ppnn)
5 t (pnn) + 3He(ppn) − d (pn) − 4He(ppnn)
6 3

�H(pn�) − d (pn) − �(�)
7 4

�H(pnn�) − t (pnn) − �(�)

which have identical constituents, i.e., the combinations be-
ing compared have the same mass and same charge at the
constituent level. For example, p(p) + d (pn) has the identical
constituent nucleons as 3He(ppn). Therefore, the consistency
of the sum rule can be investigated experimentally by testing
the equality

v1[p(p)] + v1[d (pn)] = v1[3He(ppn)]. (2)

Here, both left and right sides have the identical constituent
nucleon content of ppn. Hence at the constituent level, the
mass difference, the charge difference, and the mass number
difference between left and right sides are �m = 0, �q = 0
and �A = 0, respectively. However, the three nucleons here
are distributed differently within the two light nuclei on the
left side. For convenience of discussion, such combinations
are expressed in terms of a difference, �v1. For example,
Eq. (2) can be written as

�v1(�m = 0, �q = 0, �A = 0)

= v1[p(p)] + v1[d (pn)] − v1[3He(ppn)]. (3)

Different terms in Eqs. (2) and (3) should be evalu-
ated in a common region of rapidity ymin � y � ymax and
transverse momentum per constituent nucleon (pT /A)min �
pT /A � (pT /A)max. A common y − pT /A region is required
if the coalescence mechanism is applicable. In other words, if
one measures v1 of p, d , and 3He in ymin � y � ymax as a func-
tion of transverse momentum pp

T , pd
T and p

3He
T , respectively,

then Eq. (3) should be evaluated in the kinematic region where

(pT /A)min < (pp
T ), (pd

T /2), (p
3He(ppn)
T /3) < (pT /A)max.

Similar to the combinations in Eq. (3), various combina-
tions are arranged in Table I where each index represents a
difference between two combinations having identical con-
stituents. The sum rule can be investigated experimentally in
a model-independent way by each index as shown in Table I.
The result given by any of the indices can be cross checked
by other indices. Indices 1–5 are constructed from light nuclei
only whereas index 6 and index 7 contain hypernuclei (3

�H
and 4

�H) along with nonstrange light nuclei. In indices 6 and
7, the � hyperon is balanced in such a way that the net
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TABLE II. The vectors constructed from each combination in Table I. These vectors are formulated in the R8 vector space where the basis
is formed by the light nuclei and hypernuclei discussed here, namely, p, d , t , 3He, 4He, �, 3

�H, and 4
�H.

Index �v1 combination Vector

1 p(p) + d (pn) − 3He(ppn) v1 = {1, 1, 0, –1, 0, 0, 0, 0}
2 p(p) + t (pnn) − 4He(ppnn) v2 = {1, 0, 1, 0, –1, 0, 0, 0}
3 d (pn) − 1

2
4He(ppnn) v3 = {0, 1, 0, 0, –1/2, 0, 0, 0}

4 d (pn) + 3He(ppn) − p(p) − 4He(ppnn) v4 = {–1, 1, 0, 1, –1, 0, 0, 0}
5 t (pnn) + 3He(ppn) − d (pn) − 4He(ppnn) v5 = {0, –1, 1, 1, –1, 0, 0, 0}
6 3

�H(pn�) − d (pn) − �(�) v6 = {0, 1, 0, 0, 0, 1, –1, 0}
7 4

�H(pnn�) − t (pnn) − �(�) v7 = {0, 0, 1, 0, 0, 1, 0, –1}

strangeness, �S, is also zero. It is indeed very interesting
to investigate the charge and strangeness dependence of the
sum rule by constructing similar combinations having same
or similar mass at the constituent level but different electric
charge and strangeness. However. this is beyond scope of this
paper.

The proposed experimental test of the sum rule for light
nuclei and hypernuclei can be applied to a variety of collision
systems at a wide range of collision energies. The sum rule
test can also be applied to other flow harmonics, such as
v2. It is to be noted here that the present method tests the
simplified version of the sum rule where the light nucleus
or hypernucleus v1 is the simple addition of its constituents
v1. However, corrections for higher-order terms in the sum
rule might be important when the v1 magnitude is sufficiently
larger. One should keep in mind that the higher-order terms
contain v1(n), which cannot be measured in experiment. The
higher-order corrections are not included in the present work.

Section III applies the proposed method to light nuclei in√
sNN = 3 GeV Au+Au collisions from STAR. At present,

there are no published anisotropic flow measurements for 3
�H

and 4
�H in

√
sNN = 3 GeV Au+Au collisions. Therefore, the

sum rule cannot be investigated for indices 6 and 7 at this time.
Indices 6 and 7 can be exploited to predict the v1 of 3

�H and
4
�H in

√
sNN = 3 GeV Au+Au collisions:

v1[3
�H(pn�)] = �v1 + v1[d (pn)] + v1[�(�)], (4)

v1[4
�H(pnn�)] = �v1 + v1[t (pnn)] + v1[�(�)], (5)

where �v1 is the difference in v1 between identical constituent
combinations. The �v1 is the measure of the sum rule check.
In an ideal scenario where the sum rule holds, �v1 should
be zero. In this case, a global �v1 is obtained by fitting the
�v1 calculations from other indices of Table I. One should fit
the �v1 from a set of independent indices only. The indices
of Table I are not all linearly independent. A set of linearly
independent indices can be found by employing linear algebra
as discussed in Sec. II B.

B. Evaluation of linearly independent combinations

This section is dedicated to figuring out the linearly
independent light nuclei and hypernuclei combinations as pre-
sented in Table I. There are six independent measurements (v1

of �, p, d , t , 3He, and 4He), using them seven combinations
are made up (see Table I), and hence each combination must

not be independent. A set of linearly independent combina-
tions is necessary to estimate the global �v1 which is useful
to get an overall estimation of the sum rule test and predict v1

of 3
�H and 4

�H [see Eqs. (4) and (5)]. The global �v1 can be
obtained by fitting the �v1 measurements of the independent
combinations. To make the fit reliable, one has to use the
independent data points in the fitting. Because any sort of
correlations among the fitted data points can make the fitting
procedure biased.

To find sets of linearly independent combinations among
the seven combinations, linear algebra is employed where the
present problem is mapped into a linear vector space. The
same method of linear algebra was used to identify indepen-
dent hadron combinations in a previous work [40]. Here, it
is assumed that light nuclei and hypernuclei along with the
� hyperon used in this approach form a basis B = { p, d , t ,
3He, 4He, �, 3

�H, 4
�H } of a eight-dimensional vector space,

R8, where the elements of B are called basis vectors in this
space. This assumption is well justified since the experimen-
tal measurements of v1 of each light nucleus, hypernucleus,
� hyperon are independent and can represent independent
basis vectors of a vector space. All the combinations or in-
dices made up from them are vectors in that space (R8),
and together constitute a set of vectors, V = {v1, v2, . . . , vr},
where r is the total number of vectors in the set (in this case
r = 7). The vectors for all the combinations are presented in
Table II.

The set of vectors, V = {v1, v2, . . . , vr} is linearly depen-
dent if there exists a set of nonzero scalars (β1, β2, . . . , βr )
such that

r∑

i=1

βivi = 0, (6)

where 0 is a null vector in the same space. In other words,
the vectors are linearly dependent if at least one vector can be
expressed as a linear combination of the others. The vectors in
V are linearly independent when all the coefficients in Eq. (6)
are zero [41].

Each vector of V can be represented as a column matrix
of dimension 8× 1, where 8 is the dimension of the vector
space in the present case. This implies that Eq. (6) is a matrix
equation where the seven vectors together form a matrix, M,
of dimension 8 × 7 and the scalars β1, β2, . . . , β7 constitute a
column matrix, B, with dimensions 7 × 1, i.e.,

MB = O, (7)
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FIG. 1. Calculations of �v1 based on index 1 (see Table I) for√
sNN = 3 GeV Au+Au collisions at 10–40 % centrality, where the

v1 of 3He(ppn) is subtracted from the combined v1 of p(p) and d (pn)
as shown in Eq. (3). p(p) + d (pn) has the same nucleon content as
3He(ppn). Experimental measurements as well as the JAM (mean-
field)+coalescence calculations of v1 are taken from Ref. [28].

where O is a null matrix of dimensions 8 × 1. The matrix
M should be expressed in row-reduced echelon form by sev-
eral row and column operations to solve the matrix equation,
Eq. (7). At the end, Eq. (7) with the row-reduced form of M
evaluates the scalars β1, β2, . . . , β7.

Employing the above method of linear algebra, it is found
that the seven indices of Table I are not linearly independent.
Therefore, the number of vectors in the set V can be reduced
repeatedly until an independent vector subset is identified. The
five indices 1, 2, 3, 6, and 7 are thus found to be linearly
independent. Note that other sets of independent combinations
can exist.

III. RESULTS AND DISCUSSIONS

The proposed method to test the coalescence sum rule
for light nuclei is applied to the STAR experimental data
for

√
sNN = 3 GeV Au+Au collisions. The JAM model with

baryonic mean field plus nucleon coalescence calculations

are quite successful in describing the measured v1 and v2

for light nuclei from
√

sNN = 3 GeV Au+Au collisions [28].
Therefore, the findings obtained from the experimental data
and the model are expected to be consistent. The JAM
model + coalescence can provide further understanding of
light nucleus formation, the coalescence-inspired sum rule,
and scaling behavior. The JAM model simulates nucleon pro-
duction from the initial collision phase to the final hadron
transport in Au+Au collisions. In the mean-field mode of
this model [38], nucleon evolution is performed by using
a momentum-dependent potential with the incompressibility
parameter, κ = 380 MeV. To simulate light nuclei, the JAM
mean-field mode employs a coalescence afterburner at a fixed
time of 50 fm/c. Each nucleon pair is boosted to the rest
frame, then the relative position (�r) and relative momentum
(�p) determines whether a light nucleus is formed. For exam-
ple, if �r < 4 fm and �p < 0.3 GeV/c, then the nucleon pair
is tagged as a d (pn) [42]. Other light nuclei with A > 2, such
as t (pnn), 3He(ppn), and 4He(ppnn), are formed by adding
up the constituent nucleons one by one as per the �r and
�p values in the rest frame. For more details of the model
calculations, see Ref. [28].

Figure 1 presents estimates of �v1 [Eq. (3)] as a func-
tion of rapidity, y, for

√
sNN = 3 GeV Au+Au collisions at

10–40 % centrality. �v1 is calculated by subtracting the v1

of 3He(ppn) from the combined v1 of p(p) and d (pn) as
described by index 1 in Table I. The calculations are per-
formed in a common region of y − pT /A space, −0.5 < y < 0
and 0.4 < pT /A < 1 GeV/c, using the v1 measurements for
light nuclei reported by STAR [28]. Calculations from JAM
mean field with coalescence are also shown here. Especially
near midrapidity, −0.3 < y < 0, �v1 is roughly consistent
with zero within the measured error bars, indicating that
the sum rule is followed approximately. However, moving
away from midrapidity (y = 0), �v1 magnitudes increase
gradually and deviate from zero. This implies a sum rule
violation, which is more prominent at larger rapidity mag-
nitudes (y < −0.3). The JAM mean-field with coalescence
calculations agree with the data-driven calculations within
uncertainties and hence exhibit a similar violation of the
sum rule.
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FIG. 2. Calculations of �v1 based on index 2 (left plot) and index 3 (right plot) (see Table I) for
√

sNN = 3 GeV Au+Au collisions at
10–40 % centrality. The experimental measurements and the JAM (mean-field)+coalescence calculations of v1 for each light nucleus are taken
from Ref. [28].
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FIG. 3. �v1 based on index 4 (left plot) and index 5 (right plot) (see Table I) for
√

sNN = 3 GeV Au+Au collisions at 10–40 % centrality.
The experimental measurements and the JAM (mean-field)+coalescence calculations of v1 for each light nucleus are taken from Ref. [28].

FIG. 4. �v1 as a function of pT /A for indices 1–5 of Table I in
√

sNN = 3 GeV Au+Au collisions at 10–40 % centrality. The calculations
are made in the rapidity region, −0.2 < y < −0.1. The experimental measurements v1 for each light nucleus are taken from Ref. [28].
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FIG. 5. Estimated �v1 slope (d�v1/dy) for indices 1, 2, and 3
(see Table I) in Au+Au collisions at

√
sNN = 3 GeV for 10–40 %

centrality.

Figure 2 presents �v1 as a function of y for index 2 and
index 3 of Table I, based on the STAR measurements [28]
for v1 of light nuclei at 0.4 < pT /A < 1 GeV/c in

√
sNN =

3 GeV Au+Au collisions at 10–40 % centrality. It is ob-
served that �v1 is again consistent with zero near midrapidity,
−0.3 < y < 0, within the measured uncertainties for both
indices. The magnitudes of �v1 increase as the rapidity mag-
nitude increases, and show a significant deviation from zero,
in particular at larger rapidity magnitudes (y < −0.3). Nev-
ertheless, the experimental errors are quite large, especially
away from midrapidity. The JAM mean-field with coalescence
calculations are consistent with the experimental data within
uncertainties. The systematic deviation of �v1 from zero at
large rapidity magnitude suggests a breakdown of the sum
rule. Recently, the STAR Collaboration has found that v1/A
for all light nuclei, including protons, approximately follows
A scaling near midrapidity, −0.3 < y < 0, and the scaling
behavior worsens at −0.4 < y < −0.3 [28]. The model cal-
culations are consistent with these findings from STAR.

Indices 4 and 5 of Table I have also been evaluated as
a function of y in 10–40 % centrality Au+Au collisions
at

√
sNN = 3 GeV, as presented in Fig. 3. All data cor-

respond to the same y − pT /A region: −0.5 < y < 0 and

0.4 < pT /A < 1 GeV/c. It is seen here that �v1 is close to
zero within errors for all rapidity bins. The current calcula-
tions have quite a large uncertainty, particularly at the larger
rapidity magnitudes.

Exploration of all the indices of Table I in pT space is
very interesting. Figure 4 shows the pT /A dependence of �v1

for indices 1–5 in 10–40 % centrality Au+Au collisions at√
sNN = 3 GeV. The calculations are made in the rapidity

region, −0.2 < y < −0.1. The calculated �v1 with pT /A is
close to zero within the available experimental uncertainties.
Nevertheless, the data point in 0.4 < pT /A < 0.6 GeV/c is
a little away from zero for Index 2 and 5, and it requires
further attention. It is clear that the sum rule for light nuclei is
approximately valid near midrapidity when investigated in pT

space as well.
Magnitudes of v1 become larger at larger rapidity magni-

tudes. Beam fragments from the target rapidity region (y <

−1.045, for
√

sNN = 3 GeV Au+Au collisions) can be trans-
ported to the hot collision zone and the produced medium
might be contaminated. Fragment contamination increases at
larger rapidity magnitudes and plays a role in determining
the flow of produced light nuclei. Since the fragments suffer
hard interactions and more of them while being transported
to the collision zone, they have different v1 than a nucleon
produced in the collision. The fragment contribution to light
nuclei formation is likely to be greater in the region of larger
rapidity magnitude and hence a simple coalescence-inspired
sum rule might be less valid there.

Only �v1 for index 1–5 of Table I have been discussed so
far. The other two indices (index 6 and 7) contain hydrogen
hypernuclei (3

�H and 4
�H) and v1 measurements for these

species are not yet available. Based on index 6 and 7, the
v1 for 3

�H and 4
�H in

√
sNN = 3 GeV Au+Au collisions are

predicted in the present work.
The slopes �v1(y) (d�v1/dy) for indices 1–5 of Table I

are evaluated for Au+Au collisions at
√

sNN = 3 GeV at
10–40 % centrality. In the ideal case where the sum rule holds,
d�v1/dy for all indices should be zero. Hence, the deviation
of d�v1/dy from zero is a measure of the sum rule violation.
In Fig. 5, d�v1/dy is shown for three linearly independent
indices, namely 1, 2, and 3 of Table I. The JAM mean-field
with coalescence calculations also show similar behavior. The

FIG. 6. Data-driven predictions of v1 of hypernuclei 3
�H (left plot) and 4

�H (right plot) for
√

sNN = 3 GeV Au+Au collisions at 10–40 %
centrality. The predictions use index 6 and 7 of Table I, with the v1 values taken from STAR measurements [28].
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1/
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FIG. 7. Data-driven predictions of v1 slope (dv1/dy) for the hy-
pernuclei 3

�H and 4
�H from

√
sNN = 3 GeV Au+Au collisions at

10–40 % centrality.

reason to report d�v1/dy only for independent indices is to
fit the independent points to extract a global trend of the
deviation of the calculated �v1 slope from zero. A constant
fit of d�v1/dy in Fig. 5 yields C = 0.15 ± 0.007. This is
an overall measure of the sum rule violation, and has been
taken into account in the present data-driven prediction of v1

for hypernuclei 3
�H and 4

�H from
√

sNN = 3 GeV Au+Au
collisions.

Figure 6 reports predictions of v1 for hypernuclei 3
�H and

4
�H in the reduced transverse momentum range 0.4 < pT /A <

1 GeV/c in
√

sNN = 3 GeV Au+Au collisions at 10–40 %
centrality. The predictions are derived from Eqs. (4) and (5) in
a model-independent way, i.e., the terms in these equations are
taken from STAR measurements [28,43].

The predicted v1 slope (dv1/dy) for 3
�H and 4

�H at
0.4 < pT /A < 1 GeV/c from

√
sNN = 3 GeV 10–40 % cen-

tral Au+Au collisions is reported in Fig. 7. The v1 slopes
are obtained by fitting the data-driven results for 3

�H and
4
�H as shown in Fig. 6. The extracted slope values are
dv1/dy (3

�H) = 1.012 ± 0.282 and dv1/dy (4
�H) = 1.274 ±

0.289. The STAR Collaboration has already collected large
data samples that will provide greatly increased statistics
for hypernuclei. Current predictions of v1 and dv1/dy for
3
�H and 4

�H will serve as a baseline for ongoing and future
measurements.

IV. SUMMARY

Light nuclei and hypernuclei carry important informa-
tion on the collective motion of the produced nuclear matter

in heavy-ion collisions. However, their production mecha-
nism remains uncertain. Light nuclei and hypernuclei can be
formed by coalescence of nucleons and � hyperons, which are
close to each other in both coordinate and momentum space.
Atomic mass number scaling for light nuclei, a consequence
of the coalescence mechanism, is found to hold approximately
near midrapidity, whereas departures from this scaling be-
havior appear to occur, with marginal statistical significance,
away from midrapidity [28]. This traditional scaling pattern
involves dividing the anisotropic flow coefficients of a light
nucleus or hypernucleus by its number of constituent baryons.
This scaling ignores the mass and charge differences among
the constituents, which can be expected to influence the coa-
lescence mechanism. In this paper, an approach is discussed
to test the coalescence-inspired sum rule for light nuclei and
hypernuclei in a data-driven way, where each constituent is
balanced appropriately in terms of mass and charge. In this
approach, various light nuclei and hypernuclei are combined,
and then the combinations having identical constituents are
compared, i.e., comparisons are made for the same mass and
same charge at the constituent level. The method is applied
to STAR flow measurements for light nuclei from

√
sNN = 3

GeV Au+Au collisions. It is observed that the sum rule is
valid approximately near midrapidity, −0.3 < y < 0, and it is
violated away from midrapidity, y < −0.3, with 1.84σ sta-
tistical significance. The JAM mean-field with coalescence
calculations also are consistent with the data-driven results.
There is an overall consistency between the calculations pre-
sented here regarding the sum rule and STAR findings on A
scaling for light nuclei. The v1 of hypernuclei 3

�H and 4
�H

is predicted in a data-driven way over a reduced transverse
momentum range 0.4 < pT /A < 1 GeV/c for

√
sNN = 3 GeV

Au+Au collisions at 10–40 % centrality. The predicted v1

slope is dv1/dy = 1.012 ± 0.282 and 1.274 ± 0.289 for 3
�H

and 4
�H, respectively. The STAR Collaboration has acquired

large data samples that will provide greatly increased statistics
for hypernuclei over a range of collision energies. The current
predictions will serve as a baseline for these upcoming hyper-
nuclear v1 measurements.
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