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Comprehensive simulation of heavy-ion collisions at nonzero baryon chemical potential

A. De ,* J. I. Kapusta ,† M. Singh ,‡ and T. Welle §

School of Physics & Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA

(Received 10 June 2022; accepted 25 October 2022; published 17 November 2022)

We present results of hydrodynamic modeling of Au-Au collisions from
√

sNN = 7.7 to 200 GeV. Our simu-
lations have three novel components. First, we use a Linear EXtrapolation of Ultratrelativistic nucleon-nucleon
Scattering to nucleus-nucleus collisions (LEXUS) inspired Monte Carlo initial-state model. Second, we use a
crossover equation of state at finite baryon densities without a critical point. Finally, we use departure functions
derived from the quasiparticle theory of transport coefficients for hadronic matter at nonzero baryon densities.
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I. INTRODUCTION

The Beam Energy Scan (BES) at the Relativistic Heavy-
Ion Collider (RHIC) made the nonzero baryon chemical
potential region of the quantum chromodynamics (QCD)
phase diagram accessible to experiments. BES collides gold
nuclei at a range of beam-energies and consequently scans
different regions of the QCD phase diagram. Experimental
programs at the Facility for Antiproton and Ion Research
(FAIR) in Darmstadt and at the Nuclotron based Ion Collider
fAcility (NICA) in Dubna also collide ions at similar energies.
These experimental programs complement each other and en-
sure that a broad region of the QCD phase diagram is covered.

Lattice QCD calculations have shown that the deconfined
partons in a cooling quark-gluon plasma (QGP) change phase
to a hadron gas by a smooth crossover when the net baryon
density is zero [1–3]. This is expected for Pb + Pb collisions
at the Large Hadron Collider (LHC) and for

√
sNN = 200

GeV Au + Au collisions at RHIC. This is in contrast to the
first-order phase transition expected between the two phases
at high baryon densities [4–6]. This first-order phase transition
line in the QCD phase diagram is expected to end in a critical
point where there will be a second-order phase transition.
One of the main goals of the BES program is to quantify the
location and dynamics of the first- and second-order phase
transitions in QCD. To achieve this goal, we would need
phenomenological modeling of these experiments to extract
relevant physics insights from these experiments.

Significant progress has been made toward phenomeno-
logical description of high-energy heavy-ion collisions where
net baryon densities are close to zero. References [7–10]
provide recent reviews on modeling ultrarelativistic heavy-
ion collisions. The standard model of heavy-ion collisions
comprises a prehydrodynamic phase, a hydrodynamic phase,
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and a posthydrodynamic phase. The prehydrodynamic phase
is usually modeled by approximating the colliding nuclei as
being infinitely thin in the beam direction [11,12]. The is
justified because of significant Lorentz contraction. A variety
of initial-state models are in popular use for these high-energy
collisions [13–20]. The energy density profile from the pre-
hydrodynamic phase provides the initial conditions for the
hydrodynamic phase. The expanding matter is simulated by
relativistic viscous fluid dynamics. Apart from the energy
and momentum conservation equations of the hydrodynamics,
one also needs to know the equation of state (EOS) of the
nuclear matter. Typically, in the high-energy regime, the EOS
is obtained by matching the high-temperature EOS from lat-
tice QCD with low temperature EOS from hadron resonance
gas models using a parametrization [21,22] or a switching
functions [23]. As the fluid expands, the mean free paths
become large and hydrodynamics is no longer an appropriate
theory for describing the system. At this stage we switch to the
kinetic theory description. Hadron distributions are obtained
from the fluid by matching the energy-momentum tensor of
the fluid with the energy-momentum distribution function of
hadrons using the Cooper-Frye prescription [24]. Viscous cor-
rections to the fluid energy-momentum tensor are matched
to the nonequilibrium corrections to the particle distribution
functions using departure functions. The hadrons produced
collide with each other and resonances decay, eventually
leading to the chemical freezeout followed by the kinetic
freezeout, at which point all the particles free stream to
detectors.

Extending the standard model of heavy-ion collisions to
BES energies with nonzero baryon densities poses challenges.
A recent report by the BEST collaboration discusses these
issues in detail [25]. We will deal with some of the issues here.

The assumption of ultrarelativistic colliding nuclei being
infinitely thin no longer holds as the collision energies are
much lower. Consequently, the initial-state dynamics changes
from being approximately two dimensional to being fully
three dimensional. This necessitates dynamical initialization
[26–29] of hydrodynamics. For this, we need a 3 + 1 di-
mensional space-time and momentum distribution of initial
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energy and charge sources. The assumption of longitudinal
boost invariance is no longer a good approximation. There
are some initial-state models which deal with these issues
[26–28,30,31].

Here we propose a new LEXUS-inspired 3D initial
state. LEXUS stands for linear extrapolation of ultrarela-
tivistic nucleon-nucleon scattering to nucleus-nucleus col-
lisions; the model was introduced in Ref. [32]. LEXUS
treats nucleus-nucleus collisions as superposition of individ-
ual nucleon-nucleon collisions. It uses parameterized data
from nucleon-nucleon collisions and extrapolates it to de-
scribe nucleus-nucleus collisions. LEXUS was originally
formulated in momentum space. Here we use a Monte Carlo
sampling of nucleon positions and treat nuclear collisions as
a sequence of binary nucleon-nucleon collisions to obtain
spatial information. Energy loss in each binary collision is
given by a distribution from LEXUS which is fit to nucleon-
nucleon collision data. The idea is to use known results from
nucleon-nucleon collisions to fix the free parameters of the
model.

As the baryon charge densities are nonzero, one needs to
keep track of an additional U (1) charge conservation along
with the usual energy-momentum conservation of fluid dy-
namics. Also, an equation of state is required where the
thermal quantities are also a function of baryon potential in
addition to being functions of temperature. Some progress
has been made in this direction recently. These calculations
usually extrapolate lattice calculations to Taylor expansion
coefficients in some order of chemical potential over temper-
ature [33–38]. In this work we employ a crossover EOS [23]
which matches parameterized perturbative QCD EOS at high
temperatures without a critical point to hadron resonance gas
EOS at low temperatures using a switching function.

Departure functions need modifications to account for the
additional U (1) charge. They have largely been calculated at
zero baryon densities [39,40]. We calculate and implement
departure functions calculated using quasiparticle theory [41]
at finite baryon chemical potentials and within the relaxation
time approximation.

This is a comprehensive heavy-ion collision simulation at
finite baryon chemical potential meant to be seen as a baseline
study. The organization of this paper is as follows. The initial-
state model is given in Sec II. We begin with a short summary
of the original LEXUS paper. This helps in understanding the
various model choices we make in the LEXUS inspired 3D
initial state. We discuss the EOS used in Sec. III. We calculate
the departure functions at finite baryon chemical potentials in
Sec. IV. Finally, we give our comparisons with data in Sec. V
and our conclusions in Sec. VI.

II. LEXUS INSPIRED 3D INITIAL STATE

A. Summary of the original LEXUS model

We begin by giving a brief summary of the original LEXUS
model [32]. Knowledge of the original LEXUS paper is not
required to understand this paper but it helps to understand
the various motivations and inspirations of the LEXUS-based
3D model proposed in this paper.

In the absence of an ab initio QCD calculation for
nuclear collisions, LEXUS served as a baseline study com-
pared to other phenomenological models of initial states.
When LEXUS was first published, it described the rapidity
and transverse momentum distributions of baryons in cen-
tral sulfur-sulfur and lead-lead collisions at the SPS pretty
well. LEXUS relies only on the data from nucleon-nucleon
collisions which is extrapolated to form a model of nucleus-
nucleus collisions.

The salient features of LEXUS are as follows:

(i) In LEXUS, nucleons are arranged in rows. When
the projectile and the target rows pass through each
other, all the nucleons in one row collide with all the
nucleons in the other row. The main object of interest
in LEXUS is the two particle rapidity distribution
Wmn for the mth projectile nucleon and nth target
nucleon immediately after their collision. The Wmn is
a result of a collision of a projectile nucleon, which
has already undergone n − 1 previous collisions and a
target nucleon, which has undergone m − 1 previous
collisions. For a projectile nucleon with rapidity y′

P
colliding with a target nucleon of rapidity y′

T resulting
in two nucleons with rapidities yP and yT , we have

Wmn(yP, yT ) =
∫

dy′
Pdy′

T W P
mn−1(y′

P )W T
m−1n(y′

T )

× K (y′
P + y′

T → yP + yT ). (1)

Here y is the momentum rapidity. The collision kernel
K is chosen to be Markovian. In the original LEXUS
model, this kernel was chosen to be

K (y′
P + y′

T → yP + yT ) = λKinelastic

+ (1 − λ)Kelastic, (2)

where

Kinelastic = cosh(yP − y′
T )

sinh(y′
P − y′

T )

cosh(y′
P − yT )

sinh(y′
P − y′

T )
(3)

and

Kelastic = δ(y′
P − yP )δ(y′

T − yT ). (4)

The cosh function is chosen for the distribution be-
cause, in a high-energy nucleon-nucleon collision,
the distribution of outgoing nucleons is flat in lon-
gitudinal momentum (or, in other words, hyperbolic
cosine in rapidity). The coefficient λ is the fraction
of nucleon-nucleon collisions that are inelastic and
nondiffractive.

(ii) LEXUS arrives at the following expression for the
final baryon rapidity distribution arising from the pro-
jectile participants:

dNP

dy
(y, b) =

AP∑
m̄=1

m̄∑
m=1

AT∑
n=1

W P
mn(y)

×
∫

d2sP

σNN
PT

n (sT )PP
m̄(sP ). (5)
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Here σNN is the nucleon-nucleon cross section which
was chosen to be a constant, and the sP and sT refer
to the transverse positions. There is a symmetrical
contribution from the target participants. The P was
chosen to be a binomial distribution, subject to the
condition that the nucleons follow the Woods-Saxon
distribution.

(iii) Transverse momentum is put into LEXUS in the
form of a random walk in the transverse momentum
space. The average transverse momentum squared of
a baryon after k collisions is k〈p2

T 〉NN , where 〈p2
T 〉NN

is the average in a nucleon-nucleon collision.
(iv) There was no hydrodynamic evolution used in the

original LEXUS model. The rapidity and transverse
momentum distributions of baryons obtained from
this model compared favorably to experimental data
available at the time. There were comparisons made
for multiplicity of negatively charged hadrons and
their rapidity and transverse momentum distributions.

B. LEXUS-inspired 3D initial state

As in LEXUS, we assume that the nucleons follow straight-
line trajectories, striking nucleons from the other nucleus that
lie in their path and interacting with them like two nucleons
will interact in free space. The model does not distinguish
between neutrons and protons. The original LEXUS model
was formulated in momentum space but for our Monte Carlo
model, we need to specify the coordinate space information.

We sample the nucleonic positions randomly from a Woods
Saxon distribution,

ρ(r) = ρ0

1 + exp[(r − R)/a]
. (6)

Here R is the nuclear radius, ρ0 is the density at the center
of the nucleus, and a is the nuclear skin thickness. Once
the nucleonic positions are specified, Lorentz contraction is
applied in the beam direction. We initialize all the nucleons
with the beam rapidity and no transverse motion. In the future,
this can be easily generalized to include transverse flow. If the
two nuclei are moving with opposite velocities of vz and the
radius of the nucleus is R, then the overlap time of the two
nuclei is

τoverlap = 2R

γ vz
= 2R

sinh(ybeam)
. (7)

Here γ is the Lorentz factor and ybeam =
arccosh[

√
sNN/(2mN )] is the beam rapidity. The collision

energy per nucleon pair is
√

sNN . The mass of the proton is
mN = 0.938 GeV. Longitudinal thickness in the overlap leads
to a considerable overlapping time of τoverlap ∼ 2–3 fm for
lower BES energies. The target and the projectile nucleons
are initialized with velocities

vProjectile
z = tanh(ybeam), (8)

vTarget
z = − tanh(ybeam). (9)

For the target moving to the left and the projectile moving
to the right, we set max{zProjectile

i } = min{zTarget
j } = 0 at time

t = 0. In other words, we set the zero of time to be t = 0 at

the moment when the right-most projectile nucleon crosses
the left-most target nucleon. The longitudinal position of this
nucleon pair is defined to be z = 0. This particular nucleon
pair may or may not collide depending on their positions in
the transverse reaction plane. The nucleons travel in a straight
line and collide with other nucleons within a fixed nondiffrac-
tive inelastic scattering cross section. We use the geometric
interpretation of the nucleon-nucleon cross section and the
transverse positions of the nucleons to determine whether a
collision takes place. The total nucleonic scattering cross sec-
tion is chosen to be a constant 42 mb, which is approximately
the average of the total nucleon cross section for the collision
energies considered in this paper. We only accept 60% of the
collisions because that is the percentage of total collisions that
are inelastic and nondiffractive [42]. Only the nondiffractive
inelastic collisions source into hydrodynamic evolution.

The model assumes that the nucleons from one nucleus
strike nucleons from other nucleus that lie in their path and
interact with them exactly as they would in free space. The
longitudinal coordinate and time of binary collision is deter-
mined by the space-time location of the nucleons crossing
each other with z = 0 and t = 0 defined above. The transverse
coordinates are defined as

xbinary-collision = (xP + xT )/2, (10)

ybinary-collision = (yT + yT )/2. (11)

Here (xT , yT ) and (xP, yP ) are the transverse positions of the
participating target and projectile nucleons, respectively.

Participating nucleons continue on their trajectory with
reduced momentum from the point of binary collision. Nu-
cleons can undergo multiple collisions and can even reverse
direction if it they have undergone significant momentum
change from a collision. These binary collision positions can
be turned into space-time rapidity coordinates. Figure 1 shows
the binary collision positions for a

√
sNN = 200 GeV and

a
√

sNN = 11.5 GeV Au + Au collision, at zero impact pa-
rameter. One can see the effect of Lorentz transformation
in the spread in space-time rapidity η = tanh−1(z/t ) of the
binary collision locations. There is greater Lorentz contraction
at

√
sNN = 200 GeV, consequently binary collision locations

occupy a narrower region in space-time rapidity η.
Let us now describe the rapidity and proper time depen-

dence of the energy and net baryon density deposition. The
energy lost in a single binary collision is sampled from the
probability distribution

P(yloss ) = cosh
(
2ytotal

rest-frame − yloss
)

sinh
(
2ytotal

rest-frame

) − sinh
(
ytotal

rest-frame

) . (12)

The absolute value of the incoming nucleon’s rapidity in the
pair rest frame is ytotal

rest-frame and the rapidity loss in a given
binary collision is yloss. The probability distribution is chosen
to be a cosh distribution as explained in the previous sec-
tion and is inspired from Eq. (3). The relation between Eq. (3)
and the above distribution is explained in Appendix A. The
distribution is normalized to 1. This distribution function is
approximately the same distribution function that was used in
the original LEXUS paper. Such distributions have also been
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FIG. 1. Binary collision locations for a Au + Au collision at√
sNN = 200 GeV (a) and at

√
sNN = 11.5 GeV (b).

used in Refs. [26,43,44]. We sample the rapidity lost yloss in
the range [0, ytotal

rest-frame], where

ytotal
rest-frame = |ytarget| + |yprojectile|. (13)

The rapidity lost in a single binary collision yloss deter-
mines the amount of energy sourced into the hydrodynamic
equations. The energy that is deposited in the binary collision
is distributed as a Gaussian in rapidity space. We make this
choice because the rapidity distribution of particles produced
in nucleon-nucleon collisions is approximately Gaussian as
evidenced in the Landau model [45]. The width is

σ 2
η = 8

3

c2
0

1 − c4
0

ln

( √
sb

2mN

)
= ln

( √
sb

2mN

)
. (14)

Here
√

sb signifies the center of mass energy in a particular
binary collision. The speed of sound squared c2

0 = 1/3 is a
good fit for nucleon-nucleon collision data [46]. The energy
deposition from the collisions in the hydrodynamic phase
occurs after a fixed time tthermalize = 0.5 fm. The energy de-
position at {τc, ηc, xc, yc} with a width of ση is instantaneous
in the τ, η coordinate. The original LEXUS model has no free
parameters. Here, in the LEXUS inspired 3D initial state, the
thermalization time for deposited energies and participants is
the only free parameter. Importantly, there is no normalization
factor associated with the initial distribution of energy. Once
the two-particle yloss is sampled, it is equally subtracted from
the rapidity of the colliding nucleons before the collision. That

means that even if the target nucleus is moving to the left and
projectile nucleus is moving to the right initially, depending
on the magnitude of yloss sampled in any given collision, the
projectile might up end up moving to the left or the target to
the right.

Once a nucleon has undergone a collision and has
deposited some of its energy, it is called a participant. Par-
ticipants can undergo further collisions. We assume that all
participants, after they have undergone their last binary col-
lision, will deposit their energy and baryon charge into the
quark-gluon plasma. The nucleons that have not taken part in
any binary collisions, called spectators, are allowed to pass
through. The energy and baryon charge from participants are
deposited after they are propagated for 	τ = 0.5 fm after
their last collision. This means that the participants will have
propagated to different positions (based on their individual
energies) before being absorbed into the produced matter.

Figures 2 and 3 show the distribution of collision energy
deposition and participant locations in laboratory t − z and
Milne τ − η coordinates for Au + Au collisions at 200 GeV
and 11.5 GeV, respectively, at zero impact parameter. The
left-hand plots in Figs. 2 and 3 represent the positions of
the binary collision energy distributions for the two collision
energies. The right-hand plots of the same figures represent
the positions of participants for the two beam energies. One
can see the effects of Lorentz contraction in the spread in the
space-time rapidity and z coordinate of the binary collision en-
ergy depositions and participants. For the 200-GeV collision,
there is a wider interval in rapidity around midrapidity, where
binary collision energy deposition is independent of rapidity.
This is a check that at higher energies, the Bjorken model
is a more accurate approximation. This is also visible when
one compares the t − z plots for the two energies. The extent
of the deposition regions depicted in the plots is 1σ of the
aforementioned Gaussian distribution mentioned in Eq. (14).
One can see the fading of the plots at the edges of these
deposition regions, which just signifies the tailing of energy
depositions. The τ − η plots start from τ = 0.5 fm/c, which
is a consequence of the parameter choice of τthermalize we
explained earlier.

The different participant position profiles for the two en-
ergies is due to the difference in energies. For 200-GeV
collisions, even after binary collisions, nucleons possess con-
siderable energy that could be one or two orders of magnitude
greater than their rest mass. Consequently, they still traverse
at speeds close to the speed of light and graze the light cone
as is evident in the figure. On the other hand, for 11.5-GeV
collisions, participant nucleons possess energy of the order of
their rest mass and therefore travel at much lower velocities.
This is why they are more uniformly spread in the rapidity
direction.

C. Initializing hydrodynamics

We use the publicly available hydrodynamic solver MU-
SIC [47]. In this section, we describe how we initialize our
hydrodynamical equations.

Each binary collision energy deposition carries the follow-
ing information in order to fully quantify the source terms for
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FIG. 2. Binary collision energy deposition in the Cartesian (a) and Milne (b) coordinates. Participant nucleon locations in the Cartesian
(c) and Milne (d) coordinates. The plots are for a zero impact parameter

√
sNN = 200 GeV Au + Au collision.

FIG. 3. Same as Fig. 2 but for a
√

sNN = 11.5 GeV Au + Au collision.
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the hydrodynamic evolution.

τc, xc, yc, ηc, ση, E , pz. (15)

Here E is the energy deposited and pz is the momentum of the
center of mass of the binary collision. Participants have the
following information.

τ, x, y, η, E , pz. (16)

Here E is the remaining energy of the nucleon and pz is the
momentum with which it was traveling at the time it was
dissolved into the dense matter. Each of them has a baryonic
charge of +1.

These baryon energy and participant depositions act as
sources for the hydrodynamic equations

∂νT μν = Sμ
source(τ, x), (17)

∂μJμ
B = ρB,source(τ, x). (18)

The source terms for these equations are provided by our
initial-state model.

The energy-momentum source Sμ is obtained from all the
energy-momentum depositions as

Sμ
source =

∑
i

pμ
i fsmear. (19)

Here pμ
i = (Ei, 0, 0, pz,i ) is the energy-momentum of binary

collisions events and of the participants at the local space-time
point. We use a Gaussian smearing profile fsmear given by

fsmear = 1

N
exp

[
− (xi − xc)2 + (yi − yc)2

σ 2
⊥

− (ηi − ηc)2

σ 2
η

]
,

(20)
with

N = 	τ (2π )(3/2)σ 2
⊥τiση. (21)

Here (τi, xi, yi, ηi ) are local the space-time coordinates on the
hydro grid, 	τ is the time-step size on the hydrodynamic
solver, and the transverse smearing width σ⊥ is chosen to be
0.5 fm. The energy-momentum source from the participants
can be similarly obtained using Eq. (19), with the space-time
positions of the collisions being replaced by the final positions
of the participants. For the participants, the transverse smear-
ing width σ⊥ is kept the same as 0.5 fm while the longitudinal
smearing width ση is chosen to be 0.2.

The baryon current source ρB has contributions from every
participant given by

ρB,source =
∑

i

bi
uμ pμ

i

pτ
i

fsmear

=
∑

i

bi

[
u0 + u3 pz,i

Ei

]
fsmear. (22)

The local fluid four-velocity is given by uμ and bi is the
baryonic charge.

III. THE EQUATION OF STATE

The equation of state used in the hydrodynamic stage of the
model is taken from Ref. [23]. The pressure is expressed as

the sum of contributions from a hadron resonance gas (HRG)
model with an excluded volume correction, and a model ob-
tained from perturbative QCD as

P(T, μB) = [1 − S(T, μB)]PHRG(T, μB)

+ S(T, μB)PpQCD(T, μB). (23)

The function S(T, μB) takes values between 0 and 1 and
parameterizes the degree to which the hadronized and de-
hadronized phases contribute. Its functional form is given by

S(T, μB) = exp

[
−

(
T 2

T 2
0

+ μ2
B

μ2
0

)− r
2
]
. (24)

The constants T0 = 177.12 MeV and r = 5, which is re-
stricted to integers, are determined by fitting to lattice values
at T = 0. We take μ0 = 3πT0. This function is constructed to
be strictly increasing in T and μB. It is smooth and infinitely
differentiable so as not to introduce discontinuities which
would cause a phase transition.

The function PHRG(T, μB) is the pressure for an ideal gas
of hadron resonances with an excluded volume from each
particle proportional to its total energy. The proportionality
constant ε0 = 1.15 GeV/fm3 is determined from a fit to lattice
values. We include all hadrons composed of u, d , and s quarks
as listed by Ref. [48].

The function PpQCD(T, μB) is the standard EOS deter-
mined from perturbative QCD involving three flavors of
massless quarks [49] with slight modifications. The first
is that the renormalization scale for the running coupling
is given by M = CM

√
(πT )2 + (μB/3)2, with the constant

CM = 3.352 determined via fit to lattice data. Second, since
the running coupling depends on M through the quantity t =
ln(M2/�2

MS
), there will be a divergence at low temperatures,

where the pressure should only depend on the HRG model
anyway. To regulate this divergence, t is replaced with t =
ln(C2

S + M2/�2
MS

), with the constant CS = 4.28 again being
determined from fitting. The �MS is taken to be 290 MeV.

From P(T, μB), the baryon number, entropy and energy
densities can be determined from

s =
(

∂P

∂T

)
μB

, nB =
(

∂P

∂μB

)
T

, (25)

ε = T s + μBnB − P (26)

For the purposes of our model, T, μB, P, and s are tabulated
as functions of nB and ε through numerical root finding.

IV. DEPARTURE FUNCTIONS

To first order in a departure from equilibrium the quasipar-
ticle distribution function for species a is

fa = f eq
a (1 + φa), (27)

where f eq
a is the distribution function in thermal and chemical

equilibrium. In what follows we use a relativistic Boltzmann
distribution,

f eq
a = exp[−(Ea − μa)/T ], (28)
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where μa = baμB and ba is the baryon number of species a.
To match the viscous and thermal conduction contributions to
the energy-momentum tensor and baryon current the φa must
have the form

φa = −Aa∂ρuρ − Ba pν
aDν

(μB

T

)
+ Ca pμ

a pν
a

(
Dμuν + Dνuμ + 2

3	μν∂ρuρ
)
. (29)

The functions Aa, Ba, and Ca only depend on momentum p
while the 4-velocity uμ only depends on space-time coordi-
nate x. Detailed studies were carried out at zero baryon density
[50] and later extended to nonzero baryon density [41]. One
can express the departure from equilibrium as

fa(Ea, T, μB) = f eq
a

(
E0

a , T 0, μ0
B

) + δ fa

= f eq
a

(
Ea, T 0, μ0

B

) + δ f̃a. (30)

Here E0
a denotes the equilibrium single particle energy and Ea

the total nonequilibrium energy; it is the latter which is con-
served in the particle collisions. It is the δ f̃a which determine
the transport coefficients, not the δ fa. They are related by

δ fa =
[

1 − T (∂Ea/∂T )σ
Ea − μa + T (∂μa/∂T )σ

]
δ f̃a, (31)

where σ is the entropy per baryon. If there are no mean fields
(scalar or vector) present, then (∂Ea/∂T )σ = 0 and δ fa = δ f̃a.
This is the situation we assume here.

It is useful to know the contributions to the pressure, energy
density, baryon density, entropy density, and heat capacity
from a single species of particle.

Pa = T
∫

d�a f eq
a =

∫
d�a

p2

3Ea
f eq
a

εa =
∫

d�aEa f eq
a

nBa = bana = baPa

T

T sa = 1

3T

∫
d�a p2 f eq

a − μBnBa, (32)

where

d�a = (2sa + 1)
d3 pa

(2π )3
. (33)

A. Shear viscosity

The shear viscosity is

η = 2

15

∑
a

∫
d�a

p4

Ea
f eq
a Ca. (34)

The usual simplifying assumption when computing the depar-
ture distribution during particlization is that Ca is independent
of energy and of particle species [39,51]. Integration by parts
gives

Ca = η/w

2T 2
, (35)

where enthalpy density is w = T s + μBnB = ε + P. This
generalizes the oft-used formula

Ca = η/s

2T 3
(36)

to nonzero baryon density.
In the relaxation time approximation

Ca = τa(Ea)

2T Ea
. (37)

Numerical results from the linear σ model suggest that
τa(Ea) ∝ Ea [52]. This makes physical sense since higher
momentum or higher mass particles should take longer to
reach kinetic equilibrium. If this is the case, and if one takes
τa(Ea) = τ ′Ea with τ ′ a constant, then

Ca = τ ′

2T

τ ′ = η

2T w
, (38)

where τ ′ has units of 1/energy2 and is independent of species.
This may be used to inform the thermal conductivity and bulk
viscosity.

B. Thermal conductivity

The formula for the thermal conductivity associated with
the baryon current is

λ = 1

3

( w

nBT

)2 ∑
a

ba

∫
d�a

p2

Ea
f eq
a Ba. (39)

Due to energy-momentum conservation, if we have a partic-
ular solution Bpar

a to the integro-differential equation arising
from the Boltzmann equation we can generate another solu-
tion as Ba = Bpar

a − b, where b is a constant independent of
particle species a. This freedom is resolved by the Landau-
Lifshitz condition of fit which requires that δT 0 j = 0 in the
local rest frame. The result is that

b = 1

3T w

∑
a

∫
d�a p2 f eq

a Bpar
a , (40)

where

3T w =
∑

a

d�a p2 f eq
a . (41)

Substitution into expression (39) gives

λ = 1

3

(
w

nBT

)2 ∑
a

∫
d�a

p2

Ea

(
ba − nBEa

w

)
f eq
a Bpar

a . (42)

The simplest approximation is to take Bpar
a = const, as in

the case of the shear viscosity. However, it is easily shown that
this results in λ = 0. Alternatively, with this approximation
one gets b = Bpar

a , and so Ba = 0 and again λ = 0.
In the relaxation time approximation

Bpar
a = τa(Ea)

Ea

(
ba − nB

w
Ea

)
. (43)
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To be consistent with expression (35) one uses τa(Ea) =
τ ′Ea. Then

b = τ ′

3T w

[∑
a

ba

∫
d�a p2 f eq

a − nB

w

∑
a

∫
d�a p2Ea f eq

a

]
.

(44)

After some manipulation of integrals and using thermody-
namic identities this can be written as

b = τ ′T
w2

[
s
∑

a

bawa − nBw − nBT
∂w

∂T

]
(45)

and then as

b = τ ′T
w2

[T s(T χT μ + μBχμμ)

− T nB(T χT T + μBχT μ) − nBw]. (46)

Here the susceptibilities are

χxy = ∂2P(T, μ)

∂x∂y
. (47)

Finally,

Ba = τ ′
(

ba − nB

w
Ea

)
− b(T, μB). (48)

Unfortunately the expression for Ba is not a simple pocket
formula as it is for Ca.

Using Boltzmann statistics, the integrals we need are

∑
a

b2
a

∫
d�a

p2

Ea
f eq
a = 3T 2χμμ

∑
a

ba

∫
d�a p2 f eq

a = 3T 2(T χT μ + μBχμμ + nB)

∑
a

∫
d�a p2Ea f eq

a = 6T 2w

+ 3T 2
(
T 2χT T + 2T μBχT μ

+ μ2
Bχμμ

)
, (49)

which results in

λ = τ ′T 2

[(
s

nB

)2

χμμ − 2

(
s

nB

)
χT μ + χT T

]

= τ ′
(

T

nB

)2

w det χv2
σ = ηT

2

det χ

n2
B

v2
σ , (50)

where vσ is the speed of sound (see below) and

det χ = χT T χμμ − χ2
T μ. (51)

C. Bulk viscosity

The bulk viscosity is

ζ = 1

3

∑
a

∫
d�a

p2

Ea
f eq
a Aa. (52)

In the relaxation time approximation the particular solution is

Apar
a = τa

3T

{
p2

Ea
− 3

[
v2

nEa + (
v2

s − v2
n

)
μa

]}
, (53)

where for brevity of notation, we have defined

v2
n =

(
∂P

∂ε

)
n

= sχμμ − nBχμT

T det χ

v2
s =

(
∂P

∂ε

)
s

= nBχT T − sχμT

μB det χ

v2
σ =

(
∂P

∂ε

)
σ

= v2
nT s + v2

s μBnB

w
. (54)

Of course waves do not physically propagate at constant n or
s, only at constant σ .

In order to satisfy the Landau-Lifshitz condition of fit we
must allow for the functional form

Aa = Apar
a − aE Ea − aBba. (55)

Here

aE = XBZB − YBZE

YE XB − XEYB

aB = YE ZE − XE ZB

YE XB − XEYB
, (56)

where

XE = T
(
T 2χT T + 2μBT χT μ + μ2

Bχμμ

)
XB = T (T χT μ + μBχμμ)

YE = T (T χT μ + μBχμμ)

YB = T χμμ (57)

and

ZE =
∑

a

∫
d�aEaApar

a f eq
a

ZB =
∑

a

ba

∫
d�aApar

a f eq
a . (58)

As in the case of thermal conductivity, one should take
τa = τ ′Ea to be consistent with the standard result for the
shear viscosity. This leads to complicated formulas for ZE and
ZB. To evaluate the lengthy integrals it is useful to have the
identities

T
∂

∂μB
f eq
a = ba f eq

a

T 2 ∂

∂T
f eq
a = (Ea − μa) f eq

a

T

(
T

∂

∂T
+ μB

∂

∂μB

)
f eq
a = Ea f eq

a , (59)

which are valid for Boltzmann statistics. The results are

ZB/T τ ′ = nB + (
1 − v2

n − v2
s

)
μBχμμ + (

1 − 2v2
n

)
T χT μ

− (
v2

n + v2
s

)
T μBχT μμ − v2

nT 2χT T μ − v2
s μ

2
Bχμμμ

(60)
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and

ZE/T τ ′ = 2w + (
1 − 3v2

n

)
T 2χT T

+ 2
(
1 − 2v2

n − v2
s

)
T μBχT μ

+ (
1 − v2

n − v2
s

)
μ2

Bχμμ

− v2
nT 3χT T T − (

2v2
n + v2

s

)
T 2μBχT T μ

− (
v2

n + 2v2
s

)
T μ2

BχT μμ − v2
s μ

3
Bχμμμ. (61)

The bulk viscosity can be expressed in terms of the equa-
tion of state and susceptibilities, but the expression is very
long and not displayed here.

D. Relaxation time for baryon current

Now the question is how to choose the relaxation time for
the baryon current τB. This is the time constant that appears in
the Cattaneo equation [53,54]. Properly speaking the baryon
diffusion constant is DB and has units of length (in natural
units with c = 1).

DB = λT

χμμ

(
nB

w

)2

= κB

T χμμ

. (62)

Collective baryon fluctuations travel with speed v2
B = DB/τB

[53,54]. This means that τB > DB in order that signals not
travel faster than the speed of light. Using the above formulas
for λ and τ ′ we have

DB = η

2

(
T

w

)2 det χ

χμμ

v2
σ . (63)

This expression is simplified if all the particles are assumed to
have a constant relaxation time [55]. The two expressions are
compared in Appendix B.

The two speeds vB and vσ cannot be too different, so we
choose them equal to obtain

τB = η

2

(
T

w

)2 det χ

χμμ

. (64)

V. RESULTS

Our goal is to conduct realistic heavy-ion collision
simulations at finite baryon chemical potential with a LEXUS-
inspired initial-state model, a crossover EOS without a critical
point, and departure functions derived using quasiparticle the-
ory at nonzero baryon chemical potential. In many regards,
it is a straightforward modeling of the heavy-ion simulations
to test our physics understanding of the initial state at fi-
nite baryon chemical potential and incorporating departure
functions that are specifically calculated for nonzero baryon
chemical potential. In this section we compare our simulations
with experimental data from RHIC. We calculate the single
particle spectra and the flow harmonics.

Our LEXUS-inspired model provides the initial conditions
for MUSIC. The produced matter is then hydrodynamically
evolved until freezeout which is assumed to occur on the
constant energy density surface 0.205 GeV/fm3. We use the
baryon diffusion constant and baryon relaxation times given
in Eqs. (63) and (64). The particle spectra are computed

TABLE I. η/s for various collision energies.

Collision energy (GeV) η/s

200 0.08
62.4 0.08
14.5 0.08
11.5 0.08
7.7 0.14

using the Cooper-Frye procedure and our new departure func-
tions. The Cooper-Frye procedure is performed using mode
3 in MUSIC and the obtained particle distributions undergo
resonance decays using mode 4 in MUSIC. All hadronic
resonances with mass less than 1.8 GeV in the PDG table
[48] were included in our study. No hadronic after-burner was
employed in this work. Effects of an hadronic afterburner is
left for future investigation.

Impact parameters are randomly sampled between 0 and
20 fm. The centrality is then determined by categorizing the
5% of events with the highest total energy as the 0–5% central
events, the next 5% events in terms of total energy as the
5–10% central events, and so on. This process is close to what
is done in experiments, which bin events on charged particle
multiplicity. Thus, the total energy in the initial state is used
as a proxy for the final multiplicity.

A. Hydrodynamic flow

One of the key signatures of flow in heavy-ion collisions is
the second harmonic coefficient of particle multiplicity v2,

dN

pT d pT dydφ
= dN

2π pT d pT dy

{
1 +

∑
n

2vn(y, pT )

× cos[nφ − n�n(pT )]

}
. (65)

The event-plane angles �n(pT ) are determined event by event
and given as

�n(pT ) =
[

tan−1

∑
i sin(nφi )∑
i cos(nφi)

]
/n. (66)

We compute the v2 flow harmonic as a function of pT . The
shear viscosity to entropy ratio η/s that we use is a constant
for a given collision energy and not T and μB dependent. The
ratio η/s was adjusted to match the pT -differential v2 data
for various collision energies in the 0–10% centrality class
as a function of pT , when departure functions are included.
Calculations without departure functions are done with same
value of η/s. Table I lists the η/s for various collision energies.

Figure 4 shows the pT -differential v2 for π+ at midrapidity
for the above-mentioned energies compared to STAR data.
Theoretical calculations are shown with the statistical error
band. There is good agreement between the simulation and the
experimental data. The agreement with STAR data for protons
for the 0–10% centrality class is also reasonable as shown in
Fig. 5.
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FIG. 4. The v2 for π+ for the centrality bin 0–10%. Shaded
areas represent statistical uncertainties. Experimental data are from
Refs. [56,57].

One can see that the agreement with the data ceases to
be very good beyond pT of about 1.5 GeV/c. That is to be
expected because hydrodynamics is a long-wavelength theory
and is not particularly effective for large pT .

The v2 is mainly driven by the initial geometry of the
system. Higher harmonics are more sensitive to small-scale
initial fluctuations. The v3 and v4 measurements for 200-
GeV collisions are available and are compared to the model
predictions in Figs. 6 and 7, respectively. Our results are in
good agreement with the experimental data for v3 and v4

as well.
Departure functions have a sizable effect on pT differential

vns. This effect is more pronounced as we go to lower colli-
sion energies where baryon densities are higher. Inclusion of
departure functions requires lower values of η/s to explain the
data.

We present our predictions for the π+ v3 and v4 for BES
energies in Fig. 8. These should be compared to BES mea-
surements when the data become available [59].

FIG. 5. The v2 for proton for the centrality bin 0–10%. Shaded
areas represent statistical uncertainties. Experimental data are from
Refs. [56,57].

FIG. 6. The v3 for
√

sNN = 200 GeV Au + Au collisions for
centrality 0 − 10%. Shaded areas represent statistical uncertainties.
Experimental data are from from Ref. [58].

B. Effect of the departure functions on hadron rapidity
and transverse momentum distributions

We are working under the assumption of an overlapping
period of applicability between hydrodynamic and kinetic
theories which lets us match the energy-momentum tensor and
baryon current from fluid dynamics to particle distributions
in the kinetic theory. We calculate pT spectra for pions and
protons with and without the use of departure functions. The
results are compared to experimental data. These comparisons
are shown in Figs. 9 and 10 for five collision energies. There
is an enhancement when we include the δ f terms, which
is to be expected, since there is an increase in the hadrons
being sampled because of the out-of-equilibrium corrections.
Corrections due to the δ f terms are more prominent for the
proton yield than for the pion yield. That makes sense because
the out-of-equilibrium corrections depend on the relaxation
times. We have taken the relaxation times to be proportional
to the mass of the hadronic species; hence, the contribution
of the δ f terms to the particle multiplicities are greater in the
proton yields compared to the pion yields.

In general, we expect our LEXUS-based initial-state model
to be more accurate for low-energy heavy-ion collisions com-
pared to high-energy heavy-ion collisions. The reason is that
we are treating nucleus-nucleus collisions as a sequence of
nucleon-nucleon collisions. One would surmise that as one
goes to higher and higher collision energies, there will be
additional physics from partonic degrees of freedom that are
missing from a LEXUS-based model. Our aim is to give a 3D
model for lower-energy collisions, so we should not be too
concerned about discrepancies at higher-energy collisions.

There are various other factors that might contribute to the
discrepancies with the data. We are not using an hadronic

FIG. 7. The v4 for
√

sNN = 200 GeV Au + Au collisions for
centrality 0–10%. Shaded areas represent statistical uncertainties.
Experimental data are from Ref. [58].
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FIG. 8. Predictions for v3 and v4 for π+ for the centrality bin
0–10%. Shaded areas represent statistical uncertainties.

afterburner in this work; this is because we want to focus on
the effects of the departure functions δ f . Using an hadronic
afterburner will require particle sampling and will increase the
computational cost to achieve similar statistics. The hadronic
rescatterings among light mesons and baryons largely blue-
shift the distributions and shift them to higher pT . This is the
pion wind effect that pushes the heavier particles to the high
pT region [63]. The effect should be more pronounced in the
case of protons than pions. If one compares Figs. 9 and 10,
then the difference with data is greater for protons. Hence, the
addition of hadronic rescatterings will have the desired effect.
The net proton rapidity distribution is expected to be widened
by scatterings with other hadrons.

FIG. 9. Pion transverse momentum distributions for Au + Au
collision for the centrality bin 0–5%. Experimental data are from
Refs. [60–62].

FIG. 10. Proton transverse momentum distributions for Au +
Au for the centrality bin 0–5%. Experimental data are from
Refs. [60–62].

We have not included contributions from weak decays of
baryons which STAR has included. This will also enhance the
proton multiplicity in our results.

We do not consider the possibility of transverse flow in the
initial state. The presence of collective flow in the initial-state
might necessitate increasing the η/s at lower energies. This
would lead to more entropy production, which will enhance
the multiplicities and bring them closer to the experimental
data.

We are not considering bulk viscosity for the sake of sim-
plicity. The presence of bulk viscosity would cause an increase
in the multiplicities of all the hadronic species. The inclusion
of bulk viscosity will involve more tuning of this work and is
deferred to future investigations.

This paper includes the effects of baryon number but not
electric charge. This calculation assumes that the ratio of
electric charge to baryon number is one-half. Consequently,
if it were not for the small difference in proton and neutron
masses, the Cooper-Frye procedure would produce the same
exact distribution for the two particles. As this mass difference
is very small, the proton to neutron ratio is almost 1 before
the resonance decays. In reality, before collisions, gold nuclei
have more neutrons than protons. During the collision, there
is a net conversion of neutrons to protons accompanied by
more negatively charged pions than positively charged ones,
but the proton to neutron ratio will be less than one. So,
conserving both baryon number and electric charge requires
that the proton to neutron ratio will be somewhere between
Z/A and 1, though in this calculation it is almost 1. This
was studied long ago [64]. Doing this better will require the
use of chemical potentials for electric charge and strangeness
in addition to baryon number, which is left for a future
investigation.
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FIG. 11. Pion pseudorapidity distributions for Au + Au for the
centrality bin 0–5%. Shaded areas represent statistical uncertainties.

We want to emphasize that, although there is some physics
missing in our initial state, our initial-state model is an ex-
trapolation of nucleon-nucleon collision data. There is no
additional normalization factor that has been introduced to
match the predicted multiplicities of hadrons with the ex-
perimental data. There is a common practice of introducing
normalization factors in initial-state models to match ex-
perimental data which represent unknown physics in the
initial-state model, which is not necessary in this model. For
better or worse,it is absolutely normalized.

Let us now turn our attention to the rapidity distributions.
The invariant yields of pions and protons as functions of
pseudorapidity are plotted in Figs. 11 and 12. Comparisons
have been made to show how the distributions differ with and
without the inclusion of departure functions. How they vary
with pseudorapidity is more relevant for low-energy collisions
where the Bjorken model is no longer a good approxima-
tion. Detailed experimental data is not yet available. If one
compares the π+ pseudorapidity distribution at 7.7 GeV and
at 200 GeV, then it is flatter at higher energies, which is a
consequence of the initial binary collision energy depositions
being flatter for higher energies. This is another affirmation
that the Bjorken model is a good model at higher energies.

The influence of departure functions is more pronounced
for proton distributions, as is evident in Fig. 12. The conse-
quences of the initial space-time conditions for participants
are shown in Figs. 2 and 3. The separation of participant
space-time deposition at higher collision energies leads to sep-
arate baryon pseudorapidity peaks present at higher energies,
whereas a more uniform space-time deposition of participants
at lower collision energies leads to the broader pseudorapidity
distribution of protons at lower energies.

FIG. 12. Proton pseudorapidity distributions for Au + Au for the
centrality bin 0–5%. Shaded areas represent statistical uncertainties.

VI. CONCLUSIONS

The BES program at RHIC has conducted Au + Au heavy-
ion collisions at center-of-momentum collision energies from
7.7 to 200 GeV with the estimated baryon chemical potential
ranging from 20 to 420 MeV [65]. In order to understand the
experimental results and in order to “detect” the presence of
the QCD critical point, we need high precision simulations at
lower collision energies. This work is a baseline simulation to
such studies.

We used an initial state inspired by LEXUS. The input is
the measured binary nucleon collision cross section. We em-
ploy dynamical initialization of the hydrodynamic solver. The
hydrodynamic solver used in this paper is MUSIC [47]. We
use departure functions calculated at finite baryon chemical
potential within the relaxation time approximation. The EOS
used is a crossover equation of state without a critical point.

We compared the transverse momentum–dependent flow
coefficients v2 and the single particle transverse momentum
distributions with the STAR data. Although we find reason-
able agreement with v2 for five collision energies between 7.7
and 200 GeV, our model underestimates the transverse mo-
mentum distributions with respect to experimental data. We
discuss the possible sources of these discrepancies. We believe
that including an hadronic afterburner, and accounting for a
nonzero bulk viscosity, considering initial flow in the initial
state, the hadronic multiplicities predicted with our framework
will have a reasonable agreement with experimental data.

Obviously, a future direction is to incorporate hadronic
scatterings and a bulk viscosity. It will be interesting to see the
application of our initial-state model to asymmetric collision
systems like Cu + Au, 3He + Au, and d + Au and see how
the boost invariance is broken in this framework. One should
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also investigate how to include flow in the initial state and
try to probe the rapidity dynamics at lower energies. We also
present our predictions for higher flow harmonics which can
be compared to the data when they become available [59]. Of
course, we as a community also need to find a way to simulate
hydrodynamics across a critical point and across a first-order
phase transition, and only then we will have a full physics un-
derstanding of heavy-ion collisions at finite baryon densities.
We will report on progress in this direction in forthcoming
publications.
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APPENDIX A: ENERGY LOSS DISTRIBUTION IN 3D
INITIAL STATE

The normalized collision kernel in LEXUS is given in
Eq. (3). The probability of two nucleons with rapidities y′

p and
y′

T colliding to give nucleons with rapidities yP and yT ,

P(y′
P + y′

T → yP + yT ) ∝ cosh(yP − y′
T ) cosh(y′

P − yT )

= 1
2 [cosh(yP − y′

T + y′
P − yT )

+ cosh(yP − y′
T − y′

P + yT )].
(A1)

Recall that

ytotal
rest-frame = y′

P − y′
T , (A2)

yloss = y′
P − y′

T − (yP − yT ). (A3)

Also, in pair rest frame, y′
P + y′

T = 0 and as both the nucleons
lose yloss/2 units in rapidity, yP + yT = 0. So,

P(yloss ) ∝ cosh(yP − y′
T ) cosh(y′

P − yT )

= 1
2

[
cosh

(
2ytotal

rest-frame − yloss
) + 1

]
≈ 1

2 cosh
(
2ytotal

rest-frame − yloss
)
. (A4)

Normalizing this gives us the distribution in Eq. (12).

APPENDIX B: COMPARING THERMAL
CONDUCTIVITIES

Reference [55] uses the baryon diffusion constant

κB = 1
3τnB

[
coth

(μB

T

)
− 3T nB

w

]
, (B1)

where τ is an energy-independent relaxation time common
to all particles. For numerical studies they take τ = CB/T
and vary the dimensionless parameter CB. Where does this
expression for κB come from and how does it compare to ours?

First note the relationship

κB =
(T nB

w

)2

λ. (B2)

Expression (B1) begins with quantum statistics. In that case
[41]

λ = 1

3

( w

nBT

)2 ∑
a

∫
d�a

p2

Ea

τa(Ea)

Ea

×
(

ba − nB

w
Ea

)2
f eq
a

(
1 − f eq

a

)
. (B3)

This expression already enforces the condition of fit. When
the relaxation time is the same constant for all particles the
particular solution Eq. (43) automatically satisfies the condi-
tion of fit without any need for a nonzero additive constant b
even with quantum statistics. To see that rewrite

λ = τ

3

( w

nBT

)2 ∑
a

ba

∫
d�a

p2

E2
a

(
ba − nB

w
Ea

)
f eq
a

(
1 − f eq

a

)

− τ

3

( w

nBT 2

) ∑
a

∫
d�a

p2

Ea

(
ba − nB

w
Ea

)
f eq
a

(
1 − f eq

a

)
.

(B4)

For an equilibrium Fermi-Dirac distribution function

T
∂

∂μB
f eq
a = ba f eq

a

(
1 − f eq

a

)
(B5)

and

T

(
T

∂

∂T
+ μB

∂

∂μB

)
f eq
a = Ea f eq

a

(
1 − f eq

a

)
. (B6)

so that the second contribution to λ above is zero. Hence one
can use the simpler expression

λ = τ

3

( w

nBT

)2 ∑
a

ba

∫
d�a

p2

E2
a

(
ba − nB

w
Ea

)
f eq
a

(
1 − f eq

a

)
.

(B7)
Now

∑
a

ba

∫
d�a

p2

Ea
f eq
a

(
1 − f eq

a

) = 3T nB, (B8)

whereas the other integral

∑
a

b2
a

∫
d�a

p2

E2
a

f eq
a

(
1 − f eq

a

)

cannot readily be expressed in terms of thermodynamic func-
tions. Therefore Ref. [55] assumed massless particles to
express the integral as

∑
a

b2
a

∫
d�a f eq

a

(
1 − f eq

a

) = T χμμ, (B9)
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which results in

κB = 1
3τnB

[
T χμμ

nB
− 3T nB

w

]
. (B10)

The above formula is also true for massless particles obeying
Boltzmann statistics. For massless quarks obeying quantum
statistics which all have the same chemical potential

T χμμ

nB
=

(
1 + μ2

B/3π2T 2

1 + μ2
B/9π2T 2

)
T

μB
, (B11)

whereas for massless quarks obeying Boltzmann statistics

T χμμ

nB
= coth

(μB

T

)
. (B12)

It is the latter which is used in Ref. [55], resulting in Eq. (B1).
In contrast, our expression is

κB = τ ′ T
4

w
det χ v2

σ = η

2

T 3

w2
det χ v2

σ . (B13)
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