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Microscopic description of the torque acting on fission fragments
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When two fragments are created in a fission decay, any torque due to nuclear and Coulomb interaction can
change the fragment’s angular momentum. This paper explores the character and magnitude of the angular
momentum as a function of the initial conditions around the scission point using the time-dependent Hartree-
Fock theory. To understand the torque acting on the fragments, the Frozen Hartree-Fock method is also used
to determine the collective potential at scission. Two 2*°Pu fission channels (*2Sn + '%®Ru and **Ba + *°Sr)
are studied. These two channels cover different shapes (spherical, quadrupole, and octupole deformation) of
the fragments. It is found that the angular momentum generated by the Coulomb interaction after fission is
mainly collective, while this is not the case for the angular momentum generated at scission. The competition
between rotational modes (bending, wriggling, and twisting) is discussed and shows that the angular momentum

is generated mainly perpendicular to the fission axis.
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I. INTRODUCTION

The generation of angular momentum in fission has several
mechanisms at different stages of the fission process. One
source is the fluctuations that build up during the shape evo-
lution between the initial configuration and the scission [1-4].
At the scission point, the fragments are deformed and tend
to be aligned with the fission axis. Such polarization of the
fragment creates an angular momentum [5,6] due to the un-
certainty principle [7]. Once the fragments are separated, the
Coulomb force can create a torque leading to an additional
angular momentum [8—10]. This last effect is found to have
large theoretical uncertainties [10—12].

Recently, a new method has been proposed to extract
the angular distribution microscopically in static [13,14] and
dynamic [15,16] density functional theory. While the pro-
jection is a powerful tool to extract exactly the distribution
of a discrete observable in a quantum N-body wave func-
tion, the calculation still suffers from limitations due to the
theory producing that state. In a mean-field dynamic calcu-
lation, the fluctuations of the mean field are not taken into
account, which prevents the self-consistent description of the
Coulomb-induced rotation. To overcome that limitation would
require the use of a beyond mean-field method such as a
stochastic treatment [17,18] of the fission.

In this work, it is assumed that fluctuations built during
the descent of the system from the saddle to the scission lead
to a pair of fragments at a given deformation, distance, and
orientation at scission. The goal of the present calculation
is to investigate the last stage of fission using the frozen
Hartree-Fock (FHF) method [19,20] (equivalent to the sudden
approximation [21-24]) and the time-dependent Hartree-Fock
(TDHF) method [25,26] to understand the mechanism respon-
sible to the generation of angular momenta during and after
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the scission. Nevertheless, the present paper will not discuss
the source and the amplitude of the initial fluctuations of the
orientation angle of the fragments. This limits the conclusion
of the present work to only qualitative results.

II. METHOD

To understand the rotation during the scission, different
TDHEF trajectories are computed for a variety of scission con-
figurations. In a three-dimensional Cartesian grid discretized
with N, = N, =30, N; =130 and a mesh spacing dx =
0.8 fm, two fragments are placed at a distance D between their
center of mass on the z axis. The heavy (H) and light (L)
fragments are rotated to form an angle 6y (6 ) with the z axis.
The rotation is performed on the y axis such that the principal
axis of deformation of the fragments stays in the x-z plane.
When both fragments are deformed an additional rotation of
an angle ¢ is performed for the light fragment around the
fission axis (z axis). Combinations of 6y, 6., and ¢ cover
all the possible relative orientations of the fragments. The
wave function of the fragments can overlap at short distances
D, in which case the Gram-Schmidt antisymmetrization pro-
cedure is used before performing the TDHF evolution. The
initial wave function is obtained from a static Hartree-Fock
calculation; then the initial velocity and angular momentum
of the fragments start at zero. The TDHF dynamics and static
calculations are obtained using the SLY4D functional [27] with
a simplified version of the LISE code [28] without pairing. The
time evolution is done using the Runge-Kutta method at the
order 4 with a time step At = 0.3 fm/c.

Two final-state channels are studied with different defor-
mations to disentangle the different mechanisms. The first is
the 132Sn + '%Ru channel where the heavy fragment is taken
as spherical and the light one is superdeformed. The other
is the '*Ba + %°Sr for which the heavy fragment has an oc-
tupole deformation and the light one has a strong quadrupole
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TABLE I. Quadrupole and octupole deformation parameters and
rigid moment of inertia of the four nuclei considered in this study.
The rigid moment of inertia is obtained on an axis perpendicular to
the main deformation axis of the nucleus. The excitation energy E*
of the deformed state is also shown. Note that the deformed wave
functions are in the ground state except '®Ru, which is in a local HF
minimum.
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deformation. For each system, two cases are discussed, one
at a large distance where only the Coulomb interaction makes
the fission fragments interact with each other, and one at a
smaller distance for which the fragments touch and form a
neck that supports a nuclear interaction between the frag-
ments.

The initial Hartree-Fock (HF) wave functions are obtained
with the SKY3D code [29]. The SKY3D code has been slightly
modified to induce an initial octupole deformation at the be-
ginning of the HF process. By choosing carefully the initial
deformation for these systems, the HF calculation converges
to the final deformations shown on Table I. The values ob-
tained are comparable to the ones that emerge in microscopic
models for the asymmetric fission of the actinide in typ-
ical static [14,30,31] and dynamical calculations [32-35],
i.e., a spherical heavy fragment or one with an octupole
deformation, and a light fragment with a large quadrupole
deformation.

The deformations parameters are computed as
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III. RESULTS

A. 240Pu — 13ZSn + 108Ru
1. Large distance effect of the Coulomb repulsion

Figure 1 shows the dynamics of the postscission evolu-
tion of the fragments '*>Sn + !%Ru starting at a distance
D =17 fm and a light fragment rotated by an angle of 25°
[see Fig. 1(a)]. The Coulomb repulsion produces a torque on
the light fragment that causes it to rotate, as can be seen in
Figs. 1(b) and 1(c). In Figs. 1(b) and 1(c), the local angular
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FIG. 1. Evolution of fissioning fragment '*2Sn (left)+ '®Ru
(right) initially at a distance D = 17 fm. The '®Ru fragment is ini-
tially rotated by an angle 8 = 25°. (a)—(c) show the contour line at
densities p = 0.03, 0.08, and 0.13 fm ™" at the time t= (0, 400, 1000)
fm/c. The angular momentum density [the y component of Eq. (4)] is
shown by the color scale. (d) The evolution of the angular momentum
as a function of time and distance D is shown for the heavy fragment
(dashed line) and the light fragment (continuous line). The proton,
neutron, and total angular momentum are shown with blue squares,
green crosses, and red lines, respectively. The black line with bullets
shows the angular momentum computed with Eq. (5). In the present
case, all the components of the angular momentum are close to zero
for the heavy fragments.

momentum,

3 = 7 S (@O (F = Fem) X (B — Pem) +§) Op|B5(1)),
' @)

is shown for the y direction in the y = 0 plane. r¢y, and pem
are, respectively, the position and momentum of the center of
mass of the fragments. @y is the projector operator on the
half-space containing the fragment F. The division between
the fragments is chosen as the plane z = 0. Different prescrip-
tions for the position of the plane of division would lead to
small changes of the angular momentum when the fragments
touch each other but give the same results when they are well
separated. In Fig. 1(d), the integral of J,(r) in the whole space
is shown as a function of time for protons, neutrons, and
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FIG. 2. Frozen Hartree-Fock potential as a function of the orien-
tation angle 6, of the light fragment and the distance D between the
center of mass of the *>Sn and '®®Ru fragments.

the sum of the two. The total angular momentum can also
be extracted from the angular velocity 6 assuming that the
moment of inertia J, is that of a rigid body,

with 6(¢) the angle between the principal axis of deformation
of the fragment and the z axis. As expected the spherical heavy
fragment does not rotate and then has zero intrinsic angular
momentum. For the light fragment, the initial tilted orientation
let the Coulomb potential create a torque in the fragment that
tends to increase the 6 angle resulting at a large distance
by a value of the intrinsic spin of 11 /. This value is large
and probably exaggerated in the present calculation due to the
assumption of a large initial angle 6 . As can be seen in Fig. 3
the final angular momentum depends strongly on the initial
angle. Obviously, the torque disappears for initial values of
6. = 0 and 90°.

The potential responsible for the torque is shown in Fig. 2.
The potential is computed with the frozen Hartree-Fock
method [19,20]. With that method, both fragments are placed
in the same lattice and the energy is computed from the sum
of the densities of the two fragments. Note that in the present
case, the Gram-Schmidt antisymmetrization procedure is not
applied. The antisymmetrization would modify strongly the
shape of the potential at short distances making it incompat-
ible with the corresponding dynamical results as shown in
Appendix. A better method to obtain the potential would be
to use the density-constrained Hartree-Fock theory [19] but it
has been found too demanding in terms of calculations and
complicated to converge in the present case.

The potential is defined to be O for the angle 6;, = 0,

V (6L, D) = Erur(6L, D) — Epnr(6L = 0, D). (6)

This frozen potential for D > 17 fm shows that the 6, = 90°
configuration is more stable than the 0° one. Immediately after
the scission, the difference of energy is about 10 MeV. As the
fragments move apart, V (A, D) decreases as D™, as expected
for a quadrupole Coulomb interaction.

It should be noted that the TDHF calculation preserves the
expectation value of the total angular momentum. It is initially
zero since no boost is applied. The heavy fragment has no

final angular momentum, and the orbital angular momentum
Ais equal to —Ji . This angular momentum results in a small
velocity for the fragments in the x direction, positive for the
light fragment and negative for the heavy in the present case.
The resulting small shift of position of the fragment in the x
direction is visible in Fig. 1(c). In practice, due to the numeri-
cal implementation, the total angular momentum deviates less
than 0.1 7 from 0.

It is interesting to compare the TDHF results with the
simpler model of Ref. [12]. In that model, damping of the
quadrupole deformation plays an important role, which re-
duces the final angular momentum created by the Coulomb
from about 5 7 to 2 7. In the present calculation, no damped
vibration of the quadrupole deformation is found. The large
quadrupole deformation persists throughout the Coulomb sep-
aration phase.

In Fig. 1, the total J, and J;"* present two different
behaviors. The first one increases continuously from O to a
final value of 11.3 % while the rigid calculation oscillates
and saturates at a value around 9.5 %. The oscillations have
been found to be due to the excitation of the low-energy
quadrupole vibration that squeezes the nuclei in the z axis and
so changes the orientation of the principal axis. The difference
between the two asymptotic values is interpreted as follows:
Some parts of the angular momentum are stored in an internal
motion of the nucleon inside the mean field and do not lead
to a contribution to the collective rotation of the fragment. A
more pronounced effect of this noncollective rotation will be
presented in the following case.

2. Short distance effect of the nuclear interaction

The impact of the nucleus-nucleus potential is visible in
Fig. 4 for which the fragments are initially placed at a center-
of-mass separation D = 15 fm. The fragments not only feel
the torque due to the Coulomb repulsion but also a stronger
torque in the opposite direction that is due to the attractive
nucleus-nucleus interaction. The torque can be deduced from
the potential of Fig. 2 at a short distance. The complex dy-
namics of the two fragments result in a bending mode' with
an angular momentum of 3.7 7 for the heavy fragment and -8.6
B for the light. The light fragment keeps its large deformation
during the process and a major part of the angular momentum
is collective. Nevertheless, the excitation of a large variety of
modes due to the neck breaking complicates the analysis of
the angular momentum generated in the fragments. Indeed,
comparison with Fig. 1 shows that a larger part of the angular
momentum is internal to the nuclei: (i) in Fig. 4(c) the angular
momentum is not evenly spread on the surface of nuclei; (ii)
the rigid angular momentum has larger oscillations; and (iii)
protons and neutrons exchange continuously about 1 7 of
angular momentum, which may be due to the excitation of
a scissor mode.

As in the Coulomb case, the results depend on the ini-
tial angle, as can be seen in Fig. 3. The top panel of that

!"The angular momentum of each fragment are in opposite direction
and perpendicular to the fission axis.
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FIG. 3. Final angular momentum in the y axis for the heavy
fragment (black dashed line) and the light fragment (green solid line)
as a function of the initial angle 6, starting at a distance D = 17 fm
(triangles) and D = 15 fm (bullet) in the case of the fission output
1328n + '%Ru (top) and '**Ba + *°Sr (bottom).
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FIG. 4. Same as Fig. 1 for an initial distance D =15 fm
and 6;, = 25°.
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FIG. 5. Frozen Hartree-Fock potential as a function of the orien-
tation angle 6y of the heavy fragment and the distance D between the
center of mass of the '**Ba and *°Sr fragments with 6, = —6y (top)
and 6 = 0 (bottom). All of the calculations are obtained with ¢ = 0.

figure shows that the generated angular momentum depends
almost linearly on the initial angle until an angle of about 30°
for which the fragment stop touching each other and so the
Coulomb torque dominate leading to a situation similar to the
D = 17 fm case.

The rotation of the heavy fragment is even more peculiar.
The initial fragment is spherical, but the neck and the transfer
of a small number of nucleons (1.5 neutrons and 0.8 protons
from the light to the heavy fragment) lead to a small defor-
mation that breaks the spherical symmetry. Then, the rapid
movement of the neck along the x axis just before scission
induces a rotation of the heavy fragment. The quasispherical
fragment has a final angular momentum of 3.7 A. Surprisingly,
protons contribute the most to angular momentum, although
their rigid moment of inertia is lower. A slow transfer of an-
gular momentum from neutrons to protons was also observed.
No explanation for this effect has been found. The angular
momentum assuming a rigid fragment is not shown in Fig. 4
because shape fluctuations cause the main axis to oscillate
with large amplitudes, resulting in nonphysical rigid angular
momentum.

B. *'Pu — "“Ba +Sr
1. Dependence of the potential with the orientation

With both fragments deformed, the nucleus-nucleus poten-
tial depends on three angles, the two angles 6y, 6., and the
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FIG. 6. Frozen Hartree-Fock potential as a function of the orien-
tation angle 6y of the heavy fragment taking 6, = —6y and several
values of the azimuthal angle ¢ between the '**Ba and *’Sr frag-
ments. The separation distance is D = 15.5 fm (20 fm) for the top
(bottom) panel respectively.

azimuthal angle ¢. The potential is shown in Fig. 5 for two
cases as a function of the heavy fragment orientation angle. In
the first case, both fragments are rotated with opposite angles,
while in the second case only the heavy fragment is rotated.
In both cases, it is interesting to note the strong effect of the
octupole asymmetry of the heavy fragment. It induces a large
difference of the potentials at angle 6y = 0 and 6y = 180°,
while in the case of pure quadrupole deformation the potential
is symmetric with respect to the angle 6 = 90°. At larger
distances, the Coulomb potential is mostly unaffected by the
octupole deformation.

At short distances, the potential is strongly dependent on
both 6y and 6 and can not be separated into two independent
contributions of each fragment. Furthermore, the azimuthal
angle ¢ can change the energy up to a few MeV as can be
seen in Fig. 6. However, note that the dependence on ¢ is
significant only at the shorter separation and only for a limited
range of Oy(= —6L).

At large distances, where only the Coulomb interaction
plays a role, the azimuthal angle ¢ does not affect much the
energy of the system (see bottom panel of Fig. 6). Similarly,
the energy of the system can be well described by the inde-
pendent contribution of the two fragments, i.e., the deviation,
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FIG. 7. Same as Fig. 4 for the fission fragments '“*Ba + **Sr with
D =17fm, 6y = —6, = 25°and ¢ = 0.

never exceed 0.35 MeV while V (0y, 6. ) vary up to 6 MeV for
D = 20 fm. With

V(0u,60L) = Ergr(6u, 01.) — Ernr (0, 0). (8)

Then, the torque due to the Coulomb interaction acting on
each fragment is mainly independent of the orientation of the
other fragment.

2. Large distance effect of the Coulomb repulsion

The time-dependent evolution of the system '**Ba 4 *°Sr
at a distance D = 17 fm with 6y = —6;, = 25° is shown in
Fig. 7. The evolution of the light *°Sr fragment is similar
to the one of the '®Ru in Fig. 1: A generation of angu-
lar momentum mainly collective. Comparing the top and
bottom panels of Fig. 3, it can be seen that the final an-
gular momentum is less in *°Sr than in 'Ru by about a
factor of two. This may be attributed to the lower value
of the quadrupole moment in *°Sr. The heavy fragment
shows also a rotation with a final value of the angular mo-
menta of 4 & due to the small quadrupole and octupole
deformation.

In Ref. [36], it is argued that the postscission Coulomb-
induced rotation would be dependent on the product of
the charge of the fragments Z,Z,, which is incompatible
with the experimental data. Nevertheless, the comparison
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FIG. 8. Angular momentum in the direction perpendicular and
parallel to the motion of the heavy and light fragment (top). The
bottom panel shows the angle between the two angular momenta
¢y, as a function of the initial azimuthal angle ¢. Both panels
are showing results obtained for the '““Ba + %°Sr at initial distance
D = 15fm and 6y = —6;, = 25°.

of the two fission outputs 1328n + '%Ru (2,2, = 2200) and
144Ba +%Sr (Z,Z, = 2128) in Fig. 3 show that the main
parameters that influence the generation of angular momen-
tum by Coulomb are (i) the initial angle of the fragments
and (ii) the deformation parameters. It is difficult to esti-
mate how the initial angle would depend on the asymmetry
of the fission but it is expected that the quadrupole would
have a sawtooth shape as a function of the asymmetry, which

would make it compatible with the experimental data of
Ref. [36].

3. Short distance, parallel, and perpendicular component
of the angular momentum

The dependence of the potential on the angle ¢ shown in
Fig. 6 is inducing a twisting? rotational mode if the initial
¢ angle is different from 0 or 180°. This effect is shown in
Fig. 8, where calculations are done as a function of the az-
imuthal angle at initial distance D = 15 fm and 6y = —6, =
25°. For each fragment, the angular momentum is decom-
posed into two components, one parallel to the motion of the
fragment and one perpendicular to it. The parallel component
describes the twisting component of the rotation. A maximum
value of 2.0 7 is obtained for ¢ = 90°. This is much smaller
than the perpendicular component with an average of around
10 7. The smaller angular momentum in the twisting mode

The angular momentum of each fragment are in opposite direction
and parallel to the fission axis.
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FIG. 9. Same as Fig. 7 for the system '“Ba+°Sr with D =
15fm, 6y = —6, = 25°and ¢ = 0.

is due to: (i) the gradient of the nuclear potential is smaller
in the ¢ direction than in # as shown in Fig. 6 and (ii)
the Coulomb potential very weakly contributes to the twist-
ing mode after scission. The parallel component is purely
a twisting mode (the perpendicular components of the frag-
ment have the same norm, oriented in opposite directions)
since the total angular momentum about the fission axis is
conserved.

The angle between the angular momentum ¢, 5, is shown
on the bottom panel of Fig. 8. It shows that the rotational mode
is purely a bending mode for ¢ = 0° to a purely wriggling?
mode for ¢ = 180°. Between these two values, the function
of ¢y, s is not linear but tend to stay closer to the 180° value.
In a statistical approach, assuming a constant distribution of
angle ¢ between 0-180° would lead to a distribution of ¢,
populating more the final states with angle ¢, 5, > 90°. This
result is in qualitative agreement with the results found in
Refs. [16,37].

In Fig. 9, similarly to the '*>Sn+ '®Ru case, the strong
nuclear interaction creates a large torque leading to a
noncollective rotation of both fragments. They gain the dom-

3The angular momenta of the fragments are in the same directions
and perpendicular to the fission axis.
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FIG. 10. Energy of the '**Ba 4 *Sr at a distance D = 15.5 fm as
a function of the orientation angle of the '““Ba with and without the
orthogonalization of the wave functions.

inant part of their angular momentum before the scission
(around ¢t = 400 fm/c). The Coulomb potential only con-
tributes to a small additional angular momentum for the light
fragment.

IV. CONCLUSION

Using the DFT-TDDFT framework without pairing, the
present paper describes the mechanisms leading to a gen-
eration of angular momentum at and after the scission as
a function of the orientation of the two fragments with the
fission axis and their relative azimuthal angle. With the FHF
method, the potential at and after scission is obtained as a
function of the orientations of the fragments exploring two
fission modes of 2*°Pu fission with different shapes of the
fragments. The TDHF calculation reveals how much angular
momentum is generated in the fragments as a function of
the initial orientation and how it is shared between collective
rotation and noncollective orbital contributions.

The main conclusions are

(1) the Coulomb potential at large distances creates a
mainly collective rotation of the fragments while the
nuclear interaction tends to generate more complex
rotations, which are less collective;

(2) an initial spherical nucleus such as the '*?Sn can ro-
tate while remaining quasispherical with a noticeably
purely noncollective angular momentum;

(3) the noncollective angular momentum is seen to be
transferred between the protons and the neutrons;

(4) the generated angular momentum by the Coulomb
force depends more on the deformation of the frag-
ments than on the Z;Z, product. This result contradicts
the argument of Ref. [36] against the postscission gen-
eration of angular momentum;

(5) when both fragments are deformed the azimuthal angle
does not play a role in the Coulomb-induced rotation
and has a weak effect on the nuclear interaction pro-
ducing a twisting mode.
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APPENDIX: GRAM-SCHMIDT ORTHOGONALIZATION

In Fig. 10, the effect of the orthogonalization on the rota-
tional potential is shown. It can be seen that the Gram-Schmidt
procedure change strongly the shape of the potential which
becomes incompatible with the dynamical results presenting
a strong torque for 6y close to zero. This result confirms the
statement of Ref. [19] that the Gram-Schmidt should not be
used with the FHF method.
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