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A new method for calculating the Coulomb breakup of unstable neutron-rich isotopes at high energies is
presented. The calculations employ the eikonal approximation and use a new Coulomb dynamical polarization
potential, calculated by solving the Schrödinger equation for the entire motion of the exotic projectile as a
two-body cluster structure using the adiabatic approximation and incorporating excitations to the continuum.
Calculations for some exotic isotopes are compared with Coulomb dissociation cross section data and found to
be in good agreement.
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I. INTRODUCTION

Recently [1], we presented a new expression for the
Coulomb dynamical polarization potential (CDPP), which
was obtained by solving the Schrödinger equation for the in-
ternal motion of an exotic neutron-rich projectile (considered
as a two-body deuteronlike cluster structure) incident on a
heavy target nucleus using the adiabatic approximation. In
this work we generalize this CDPP to include both excited
states of the core and excitations to the continuum. This
generalized CDPP is then used to calculate the differential
Coulomb dissociation (CD) cross section as a function of
relative excitation energy. These calculations start from the
continuity equation using the imaginary part of the CDPP. The
eikonal approximation is then used to calculate the CD cross
section for a number of weakly bound neutron-rich exotic
nuclei at high incident energies.

II. THEORY

A. Continuum-based CDPP

In Ref. [1] we gave the formalism for the scattering of a
weakly bound two-body projectile (p) consisting of a core
in its ground state plus a cluster of n valence neutrons from
a heavy-ion target and the CDPP was obtained. If the core
is in an excited state, this expression for the CDPP can be
easily generalized by replacing the binding energy of the
valence neutron or neutron cluster with respect to the charged
core of the projectile, ε0, with an effective separation energy
ε∗

0 = ε0 + εIπ
c

, where εIπ
c

is the excitation energy of the core
state of spin-parity Iπ

c . To solve the Schrödinger equations of
the system and obtain the CDPP one may use the adiabatic
approximation �(r, R) ≈ ψ (R)φ(r, R), where ψ (R) refers

*Corresponding author: hmaridi@slcj.uw.edu.pl

to the wave function of the center of mass and φ(r, R) to that
of the relative motion of the projectile; R and r are the coor-
dinates of the projectile-target and the projectile valence-core
systems, respectively. By making the same approximations as
in Ref. [1] the real and imaginary parts of the CDPP can be
given as:

δV (R) = ε∗
0

[
QG0F0 + Q2G0F0G′

0F ′
0 + Q2F 2

0 F ′2
0

F 4
0 + G2

0F 2
0

− 1

]

δW (R) = ε∗
0

[
Q2F0F ′

0 − QF 2
0

F 4
0 + G2

0F 2
0

]
, (1)

where F0 and G0 are the regular and irregular Coulomb func-
tions in ρ = k(R)R and Q(R) = (μp/mc)[k(R)/κ0] with κ0 =√
−2μpε

∗
0/h̄2 where μp is the core-valence reduced mass, mc

the mass of the charged core, and

k(R) ≈
√

2m2
c

μph̄2 (VC (R) + ε∗
0 ) (2)

is the wave number of the charged core in the field of the target
that is associated with the wave function of the internal motion
of the projectile, φ(r, R). It depends parametrically on the
Coulomb potential between the projectile and target, VC (R)
and is different from the wave number of the center-of-mass
motion of the system that describes the motion of the pro-
jectile along the Rutherford trajectory, K =

√
2μ(E − ε∗

0 )/h̄2

where E is the incident energy of the projectile and μ is
the reduced mass of projectile-target system. This CDPP (1)
depends on the structure of the system but does not depend on
the incident energy of the projectile.

Excitations of the projectile to the continuum can be
included by adding the continuum energy ε, a continuous
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variable, to ε∗
0 so that k now becomes a function of ε:

k(R, ε) ≈
√

2m2
c

μph̄2 (VC (R) + ε∗
0 + ε), (3)

making the same approximations as before, and we ac-
cordingly obtain the continuum-based CDPP, δU (R, ε) =
δV (R, ε) + iδW (R, ε):

δV (R, ε) = ε∗
0

[
QG0F0 + Q2G0F0G′

0F ′
0 + Q2F 2

0 F ′2
0

F 4
0 + G2

0F 2
0

]
− ε∗

0 − ε

δW (R, ε) = ε∗
0

[
Q2F0F ′

0 − QF 2
0

F 4
0 + G2

0F 2
0

]
, (4)

where Q is now also a function of ε as well as R.
We now consider an Eλ transition (E1, E2, . . .) from a

bound state with angular momentum l0 to the l-wave contin-
uum, with l = l0 + λ where λ is the transition multipolarity.
The initial bound state Jπ

0 is described by the wave function
of the valence neutron in the l0 j0 orbital relative to the core
Iπ
c , φ

Iπ
c

l0 j0
(r), whereas the final state (continuum) is represented

by the wave function φεl j (r), where ε in the subscript denotes
the dependence on the continuum energy. Here we include the
notation Iπ

c to indicate that the core is in state Iπ
c . Then, we

define a new CDPP that describes this transition as

δU Eλ,Iπ
c

l0 j0→εl j (R) =
∫

dε〈φεl j (r, ε)|δU Iπ
c (R, r, ε)

∣∣φIπ
c

l0 j0
(r)

〉
,

(5)
where δU Iπ

c (R, r, ε) can be represented by expansion in Leg-
endre polynomials as

δU Iπ
c (R, r, ε) =

∑
λ

δU Iπ
c (R, ε)Pλ[cos(θr )]. (6)

Let us define the excitation energy distribution of the Eλ

transition l0 j0 → εl j as

ρ
Eλ,Iπ

c
l0 j0→εl j (ε) = 〈φεl j (r, ε)|Pλ(cos(θr ))

∣∣φIπ
c

l0 j0
(r)

〉
(7)

so that we may write

δU Eλ,Iπ
c

l0 j0→εl j (R) =
∫

dερ
Eλ,Iπ

c
l0 j0→εl j (ε)δU Iπ

c (R, ε). (8)

The radial wave function of the bound state is given by
φ

Iπ
c

l0 j0
(r) = ul0 j0 (r)/r, where the single-particle wave function

ul0 j0 (r) is usually calculated using a single-particle potential
model, see for example Ref. [2], by adjusting the Woods-
Saxon potential parameters to reproduce the experimental

neutron separation energy, taking the excitation energy of the
core into account where appropriate. Typical values of the
potential radius parameter r0 range from 1.15–1.25 fm and
the diffuseness a from 0.5–0.7 fm. It is, however, important to
note that the extracted spectroscopic factor can differ by 20%
or more depending on the choice of parameters [3]. We choose
here the potential parameters (r0 = 1.15 fm, a = 0.5 fm) sug-
gested by Sauvan et al. [4] for light neutron-rich nuclei. Note
that the potential includes a Thomas form spin-orbit term with
a strength fixed at 7.0 MeV for all the cases studied here.

The final-state (continuum) wave function is usually cal-
culated assuming the plane wave approximation (expanded
in spherical Bessel functions and Legendre polynomials)
with the radial wave function normalized as φεl j (r) =√

2μpκ/h̄2π jl (κr)=uεl j (r)/r, where κ =√
2μpε/h̄ with relative

(continuum) energy ε ≡ εrel, and l is the orbital angular mo-
mentum of the final state.

Now, by considering the expansions of the bound-state and
the continuum plane wave functions, Eq. (7) becomes

ρ
Eλ,Iπ

c
l0 j0→εl j (ε) =

∫
drφεl j (r, ε)Pλ[cos(θr )]φIπ

c
l0 j0

(r)

= 4π

√
2l + 1

2λ + 1

∫
d�rYl00(�r )Yλ0(�r )Yl0(�r )

×
∫ ∞

0
druεl j (r)ul0 j0 (r)

=
√

4π (2l0 + 1)〈l00λ0|l0〉2

×
∫ ∞

0
dr uεl j (r)ul0 j0 (r). (9)

Instead of the single-particle wave functions, the asymp-
totic form for overlap integrals is often used

ul0 j0 (r) = Cl0 j0W−η0,l0+1/2(2κ0r), (10)

where W−η0,l0+1/2 is the Whittaker function and Cl0 j0 is the
asymptotic normalization coefficient (ANC). The quantity
κ0 = √−2μpε

∗
0/h̄ where ε∗

0 = ε0 + εIπ
c

is the effective sep-
aration energy of the valence nucleon(s) with respect to the
different core states Iπ

c of excitation energies εIπ
c

. When
the valence cluster is formed exclusively of neutron(s) η0 =
ZcZve2μp/h̄2κ0 = 0 and W0,l0+ 1

2
(2κ0r) = 2κ0r

π
kl0 (κ0r) where

kl0 is a modified spherical Bessel function and h(1)
l0

is a
spherical Hankel function of the first kind. Then ul0 j0 (r) =
Cl0 j0

2κ0r
π

kl0 (κ0r). Now by using the Whittaker function for the
bound-state wave function, Eq. (9) becomes

ρ
Eλ,Iπ

c
l0 j0→εl j (ε) =

√
4π (2l0 + 1)〈l00λ0|l0〉2

∫ ∞

0
dr uεl j (r)ul0 j0 (r)

= Cl0 j0

√
4π (2l0 + 1)〈l00λ0|l0〉2 2κ0

π

√
2μpκ

h̄2π

∫ ∞

0
drr2kl0 (κ0r) jl (κr)

= Cl0 j0

√
4π (2l0 + 1)〈l00λ0|l0〉2

√
2μpκ0

h̄2π

κ�+1/2

κ
�+5/2
0

�
(

�+�0+3
2

)
�

(
�−�0+2

2

)
�

(
� + 3

2

) 2F1

(
� + �0 + 3

2
,
� − �0 + 2

2
, � + 3

2
,−κ2

κ2
0

)
.

(11)

054613-2



CALCULATION OF COULOMB BREAKUP CROSS SECTIONS … PHYSICAL REVIEW C 106, 054613 (2022)

In the particular case when the initial bound state has l0 =
0, the radial wave function can be given analytically as the
Yukawa form φ

Iπ
c

l0 j0
(r) = ul0 j0 (r)

r = Cs1/2
e−κ0r

r , so that for the E1
transition to the p-wave continuum, we obtain the following
analytical function:

ρE1,Iπ
c

s→p (ε) = Cs1/2

√
8μpκ

h̄2

1

κ2

( −κ0κ

κ2
0 + κ2

+ tan−1
( κ

κ0

))
,

(12)
which will be especially useful since the valence neutron(s)
are in a relative s state in the ground state of many light exotic
projectiles of interest.

B. Coulomb dissociation using the CDPP

This new CDPP (8) has many potential applications to the
scattering and reactions of weakly bound neutron-rich nuclei.
Here we use it to calculate Coulomb dissociation, keeping
other applications for future publications. Coulomb breakup
or dissociation can take place when a high-energy (several
hundred MeV/nucleon) projectile impinges on a heavy tar-
get and is excited by absorbing virtual photons from the
time-dependent Coulomb field. Under these circumstances
the electromagnetic excitation is dominated by dipole exci-
tation [3]. The corresponding differential cross section for
dipole excitation decomposes into an incoherent sum of com-
ponents corresponding to the different core states populated
by neutron removal. For each core state the cross section fur-
ther decomposes into an incoherent sum over contributions
from the different allowed angular momenta of the valence
neutron in its initial state. In these calculations the projectile
is assumed to have a core plus valence neutron structure.
Choosing the lowest core states there are various ways to
couple the spins of the core and the valence neutron to the total
angular momentum and parity of the projectile [5]. Note that
for heavy targets the core is assumed to act as a spectator so
that the projectile core remains in its initial state after removal
of a neutron [6].

We start from the usual formula for the absorption cross
section derived from the continuity equation

σabs = − 2

h̄v
〈ψ (+)

K (R)|W (R)|ψ (+)
K (R)〉, (13)

where W (R) is the imaginary potential, ψ
(+)
K the usual dis-

torted wave function, v the relative velocity, and K the wave
number in the center-of-mass system. By considering the
imaginary CDPP (5) that describes the Eλ transitions we can
write the total absorption due to Coulomb dissociation and
excitation by taking a summation over the Eλ transitions,
the different core states Iπ

c , and contributions from different
angular momenta l0 j0 of the valence neutron in its initial state
for each core state:

σCD = − 2

h̄v
〈ψ (+)

K (R)|δW (R)|ψ (+)
K (R)〉

= − 2

h̄v

∫
dε

∑
Iπ
c

∑
λ

∑
l0 j0

∑
l j

ρ
Eλ,Iπ

c
l0 j0→εl j (ε)〈ψ (+)

K (R)|

× δW Iπ
c (R, ε)|ψ (+)

K (R)〉. (14)

Then, the differential cross section for the Eλ transition
l0 j0 → εl j with the core in state Iπ

c is

dσ Iπ
c

dε
(Eλ, l0 j0 → εl j) = − 2

h̄v
ρ

Eλ,Iπ
c

l0 j0→εl j (ε)〈ψ (+)
K (R)|

× δW Iπ
c (R, ε)|ψ (+)

K (R)〉, (15)

which is similar to the well-known Hussein-McVoy formula
and the similar formulas for the inclusive breakup [7,8]. In-
troducing

σ̂ Iπ
c (ε) = − 2

h̄v
〈ψ (+)

K (R)|δW Iπ
c (R, ε)|ψ (+)

K (R)〉 (16)

as the total absorption cross section for the Iπ
c core state, the

breakup cross section for the core in state Iπ
c and the Eλ

transition from l0 j0 is

σ
Iπ
c

Eλ,l0 j0
=

∑
l j

∫ ∞

0
dερ

Eλ,Iπ
c

l0 j0→εl j (ε)σ̂ Iπ
c (ε). (17)

Equations (15) and (17) can be generalized to account
for excitations of the target. An imaginary nuclear potential
can be added to account for any other reaction channels.
From Eq. (17) and using the virtual photon method [9]
one may obtain the photoabsorption cross section σγ n, the
radiative neutron capture cross section σnγ , the dipole re-
sponse function dB/dε, and the double differential cross
section d2σ/d�dε. These calculations can also be gener-
alized to consider transitions between two bound states by
replacing the continuum wave function uεl j (r) with a bound-
state wave function ul j (r) similar to ul0 j0 (r).

Equation (16) can be solved by the method of partial wave
expansion and the complete scattering amplitude is obtained
by summing over all the partial wave scattering amplitudes.
At high energies, i.e., hundreds of MeV/nucleon, the wave
function will oscillate rapidly and the calculation of scattering
wave functions for each partial wave becomes more compli-
cated. In the eikonal approximation and the optical limit of
the Glauber theory [10], the wave function of the projectile-
target system can be written in terms of the total potential,
V + iW , as

ψK (R) = exp

(
iKz + 1

ih̄v

∫ z

−∞
(V (b, z′) + iW (b, z′))dz′

)
,

(18)
where R = (x, y, z) = (b, z) and b is the impact parameter.
Equation (16) may then easily be written as

σ̂ Iπ
c (ε) =

∫
db

[
1 − e

2
h̄v

∫ ∞
−∞ δW Iπc (b,ź,ε)dź

]
, (19)

where db = 2πbdb. At this point we should include the
correction of the impact parameter due to Coulomb deflec-
tion of the particle trajectory: b′ = a0 +

√
a2

0 + b2, where a0 =
ZpZt e2/mv2 is half the distance of closest approach in a
head-on collision of point charged particles. The relativistic
correction to the kinematics can be appropriately made if
one replaces the quantity a0 with a0 = ZpZt e2/γ mv2, where
γ = 1/

√
1 − v2/c2 is the Lorentz factor [11]. Since the phase

in Eq. (19) is integrated over z it is invariant under Lorentz
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TABLE I. Calculated Coulomb dissociation cross sections for several exotic projectiles (with a core-neutron structure) incident on lead
targets for different core excitation states using single-particle (s.p.) and Whittaker functions for the bound-state wave functions ul0 j0 . The
ratios Rσ (see text) are compared with the spectroscopic factors extracted from experiment and from Shell-model calculations.

σth (mb) Rσ Spectroscopic factors

Proj. E/n Jπ Core Iπ
c l0 j0 σexp (mb) s.p. Whitt. s.p. Whitt. Shell model experiment

11Be 520 1/2+ 10Be 0+ s1/2 605 ± 30 [12] 1563 1649 0.40 0.40 0.74 [13] 0.36, 0.60 [14]; 0.61(5) [12];
0.72(4) [15]; 1.0(2) [16]

2+ d5/2 34.4 58.2
15C 605 1/2+ 14C 0+ s1/2 324 ± 15 [3] 570 643 0.52 0.48 0.98 [17], 0.83 [4] 0.91(6), 0.72(5) [18]; 0.73(5),

0.97(8) [3]
1− p1/2 36 ± 3 [3] 8.2 17.1 1.03 [4] 1.3(1) [3]

p3/2 8.3 17.9 0.16 [4]
0− p1/2 4.8 10.5 0.46 [4,17]
2− p3/2 3.9 8.8 0.016 [17]

17C 496 3/2+ 16C 0+ d3/2 9+15
−9 [3] 607 854 0.015 0.011 0.035 [4]

2+ s1/2 62 ± 7 [3] 118.9 145.5 0.28 0.23 0.16[4,19] 0.23(8), 26(14) [3]
d5/2 96.8 162.1 0.23 0.14 1.41 [4], 1.44 [19] 0.6(4), 1.6(6) [3]

0+ d3/2 25 ± 7 [3] 33.9 60.5
4+ d5/2 15.5 30.1 0.76 [19,20]

transformations, so no further relativistic corrections to the
dynamical equations are required [21].

III. APPLICATION TO SOME REACTIONS

We now apply our model to calculate the Coulomb dis-
sociation cross sections for some exotic projectiles (11Be,
15C, 17C) incident on a lead target at a few hundreds of
MeV/nucleon. Our results using both the single-particle (s.p.)
wave function ul0 j0 and the analytical formula (11), which
assumes a Whittaker wave function for the bound states are
summarized in Table I. All of these calculations consider only
the E1 transition to the continuum. In addition, we define
Rσ = dσexp

dε
/ dσth

dε
which is the ratio of the experimental to the

theoretical differential cross section using the best fit in the
energy range of the data. This ratio can be compared with
the theoretical and empirical spectroscopic factors listed in
the last two columns of Table I. The experimental data are
known to be affected by the experimental resolution, so, using
the method of Ref. [22], the calculated cross sections were
convoluted with the detector response function obtained from
simulated spectra. Since the Coulomb dissociation data of
11Be, 15C, and 17C were all measured at GSI and their ex-
periments employed a similar setup [3,12] we use the energy
resolution obtained in Ref. [12] for all calculations. The cross
section is calculated by integration up to a continuum energy
of 10 MeV for most cases.

We take as our first example the Coulomb dissociation of
11Be. The ground state of 11Be is 1/2+, so the 0+ ground
state of the 10Be core is coupled to an s-wave valence neutron
and the 2+ first excited state of the core (3.368 MeV) is
coupled to a d-wave valence neutron. The spectroscopic fac-
tors for the |10Be(0+) ⊗ ν2s1/2〉 single-particle configuration
obtained from shell-model calculations and deuteron stripping
and pickup reactions range from about 0.4–0.8, see, for ex-
ample, Ref. [13] and references therein. An analysis of the

Coulomb dissociation of a 11Be projectile with an energy of
520 MeV/nucleon impinging on lead and carbon targets gives
a spectroscopic factor for the |10Be(0+) ⊗ ν2s1/2〉 single-
particle configuration of 0.61(5) [12]. These data [12] include
both Coulomb and nuclear contributions and the Coulomb
breakup spectrum can be extracted by subtracting the nuclear
contribution estimated using the data taken with the carbon
target in the following way:

dσCD

dε
= dσ

dε
(Pb) − �

dσ

dε
(C), (20)

where � is a scaling factor. Assuming the peripheral nature
of the nuclear excitation, � can be taken as the ratio of the
sum of the radii of the target and the projectile, which is
1.8 [15,16]. Other estimates of � for this reaction may be
found in Refs. [12,15,16]. The effect of the nuclear contribu-
tion on this reaction has also recently been studied in Ref. [22]
by comparing the equivalent photon method (EPM) and con-
tinuum discretized coupled channels (CDCC) calculations.

The analysis of the data using the present formalism,
with the Yukawa and s.p. wave functions, gives us calculated
differential cross sections in good agreement with the data,
as shown in Fig. 1, and a cross section ratio of about 0.4
is obtained, which is similar to the spectroscopic factor of
Ref. [14]. It is clear that the contribution from the |10Be(2+) ⊗
ν1d5/2〉 configuration is small. We expect that the contribution
from the higher 1− and 2− core states with p-wave neutrons
will also be small.

The one-neutron separation energy of 15C is 1.218 MeV
and its ground-state spin-parity is 1/2+, so we suppose a 2s1/2

neutron coupled to a 14C(0+) core. Figure 2 presents calcula-
tions of the Coulomb breakup of 15C incident on a Pb target
at 605 MeV/nucleon [3]. The peak of the relative energy
spectrum occurs at a value of 0.7 MeV. The original data [3]
that include both Coulomb and nuclear contributions as well
as the data obtained by subtracting the nuclear contribution
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FIG. 1. Coulomb dissociation cross section for a 11Be projectile
incident on a lead target at 520 MeV/nucleon. The solid symbols
represent the data of Ref. [12] and the open symbols the data after
removal of the nuclear contribution. The solid and short-dashed
lines represent calculations using Whittaker and single-particle wave
functions for the bound-state wave function ul0 j0 , respectively. The
calculations have been convoluted with the experimental resolution.
See text for details.

are plotted by the filled dots and open squares, respectively.
The calculated total Coulomb dissociation cross section for
15C → 14C +n + γ is about 570 mb using the s.p. wave func-
tion and 643 mb using the Yukawa wave function for the
|14C(0+) ⊗ ν2s1/2 > configuration, and the corresponding ra-
tios of the experimental to calculated cross sections are about
0.52 and 0.48, respectively. These ratios are compared with
the spectroscopic factors calculated by the shell model [17]
or extracted from Coulomb dissociation experiments [3,18]
in Table I. There are many excited states in 14C at energies
between 6–7 MeV and previous calculations with the core in
these states, see Ref. [3], gave small cross sections compared
to the observed value of 36(3) mb. For the 6.09 MeV (1−),
6.90 MeV (0−), and 7.34 MeV (2−) core excited states the
possible neutron orbitals are p1/2 or p3/2. Our calculation us-
ing the s.p. wave functions gives 4.2, 1.1, and 1 mb for dipole
transitions to the d continuum and 12.4, 3.7, and 3 mb for tran-
sitions to the s continuum for the 1−, 0−, and 2− core states,
respectively. The calculation using the Whittaker wave func-
tions gives 4.7, 1.3, and 1.1 mb for dipole transitions to the d
continuum and 30.2, 9.2, and 7.8 mb for transitions to the s
continuum for the 1−, 0−, and 2− core states, respectively.
If we multiply these cross sections by the corresponding
spectroscopic factors from shell-model calculations [4,17] this
gives us values of 12.1 mb and 25.4 mb from the calcula-
tions using s.p. and Whittaker functions, respectively, whereas
the experimental value is 36(3) mb [3]. The remaining cross

FIG. 2. The same as Fig. 1 but for a 605 MeV/nucleon 15C
projectile. The data are from Ref. [3]. The calculations have been
convoluted with the experimental resolution.

section may correspond to the 14C core in the other three states
at 6–7 MeV.

Calculations for different core excitations were performed
for the 17C Coulomb breakup since this yields the 16C core
mainly in excited states. The differential Coulomb disso-
ciation cross section for 17C → 16C(2+) + n is reported in
Ref. [3]. As shown in Fig. 3, the data are well reproduced
by our calculation using a Yukawa wave function for the
| 16C(2+) ⊗ ν2s1/2 > configuration with an integrated cross
section of 60 mb, similar to the reported one of 62(7) mb.
The peak position is also well reproduced. The calculations
using the s.p. wave functions and Whittaker wave function
can fit the data with cross section ratios of about 0.28 and
0.23 for the s1/2 and 0.23 and 0.14 for d5/2 orbits, respectively.
The contribution of both orbits to the cross section of the
16C(2+) excited state is not known experimentally, only the
total cross section of 62(7) mb. There are thus many combi-
nations that can fit the data, and the cross section ratio for
s1/2 or d5/2 can be varied from zero to 0.5–0.6. As reported
in Ref. [3], the measured cross sections show that 64(9)% of
the cross section corresponds to the (2+, 1.766 MeV) core
state, 27(9)% to higher core excited states at 3–4 MeV and
a small part of the cross section leaves the core in its 0+
ground state [3]. As shown in Table I, our calculation using
the s.p. wave functions for the core in its ground state with a
1d3/2 valence neutron gives a cross section of 153 mb for the
transition to the f wave and 454 mb for the transition to the
p-wave continuum to give a total of 607 mb, and the resulting
ratio is very small (about 0.015), close to the value expected
from a shell-model calculation [19]. Calculations using the
Whittaker wave functions give a cross section of 854 mb with
ratio of 0.011. For the higher states, the spectroscopic factor
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FIG. 3. Coulomb dissociation cross sections for a
496 MeV/nucleon 17C projectile incident on a lead target.
The data are from Ref. [3]. The calculations have been convoluted
with the experimental resolution.

is unknown for the 1d3/2 valence neutron plus the (0+, 3.027
MeV) core state and is 0.76 for the d5/2 valence neutron in the
(4+, 4.142 MeV) core state; our calculations using s.p. and
Whittaker functions give about 15 mb and 30 mb for the cross

section of 4+ state, respectively, whereas the measured value
is 25(7) mb [3].

IV. SUMMARY AND CONCLUSIONS

In summary, we have presented a new method to calculate
the Coulomb dissociation of exotic nuclei using an extended
version of a recent model of the CDPP taking into account
excited states of the core and excitation to the continuum.
Breakup cross sections for two-body exotic projectiles may
be calculated using this new version of the CDPP, which
depends on the relative excitation energy of the continuum.
The method was used to calculate the differential and in-
tegrated Coulomb breakup cross sections for several exotic
neutron-rich nuclei incident on lead targets at a few hundreds
of MeV/nucleon. The calculations at these high energies were
performed using the eikonal approximation and the results are
in good agreement with the data. The calculations could easily
be generalized and applied to calculate neutron removal and γ

capture cross sections. The new, extended CDPP may also be
applied to low-energy scattering and reaction data via the op-
tical model or distorted wave Born approximation or coupled
channel formalisms and has many potential applications.
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