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Calculations of the np → dγ reaction in chiral effective field theory

Weijie Du ,1,* Soham Pal,1 Mamoon Sharaf ,1 Peng Yin ,1,2 Shiplu Sarker ,1 Andrey M. Shirokov ,3 and James P. Vary 1

1Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50010, USA
2Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China

3Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia

(Received 21 April 2022; accepted 14 October 2022; published 21 November 2022)

We present a calculation of the radiative capture cross section of the np → dγ reaction in the low-energy
range, where the M1 reaction channel dominates. Employing the LENPIC nucleon-nucleon interaction up to
the fifth order (N4LO) that is regularized by the semilocal coordinate space regulators, we obtain the initial
and final state wave functions, and evaluate the phase shifts of the scattering state and deuteron properties.
We derive the transition operator from the chiral effective field theory up to the next-to-next-to leading order
(N2LO), where we also regularize the transition operator using regulators consistent with those of the inter-
actions. We compute the capture cross sections, and the results show a converging pattern with the chiral-order
expansion of the nucleon-nucleon interaction, where the regulator dependence of the results is weak when higher-
order nucleon-nucleon interactions are employed. We quantify the uncertainties of the cross-section results due
to the chiral-order truncation. The chirally complete and consistent cross-section results are calculated up to
N2LO and they compare well with the experiments and other theoretical predictions.
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I. INTRODUCTION

Nuclear physics plays a fundamental role in studying the
evolution of the universe [1,2]. Nuclear astrophysics is nowa-
days an open field and requires accurate input from nuclear
physics [3,4]. However, direct measurements of the cross sec-
tions at stellar energies are challenging as many relevant cross
sections occur in the experimentally challenging low-energy
range [1,2]. It is thus important to develop advanced experi-
mental techniques [5]. Meanwhile, it is equally important to
develop first-principles microscopic theories with predictive
power.

A promising theoretical approach is the chiral effective
field theory (χEFT) [6–8] in combination with model-
independent ab initio few- and many-body methods (see
Ref. [9] and references therein). The χEFT describes the
nuclear interactions [10–14] based on the underlying fun-
damental theory (quantum chromodynamics). It is also
employed to derive single-, two-, and multinucleon elec-
troweak currents [15–26]. The model-independent ab initio
methods utilize direct input from the χEFT, where the con-
sistent scheme of the power expansion for both the nuclear
interactions and the nucleon currents enables systematic and
quantified convergence study and uncertainty analysis of the
calculations [9,12–14].

In this prototypical study, we aim to perform first-
principles calculations for nuclear reactions in the energy
range of astrophysical interest. For the purpose of demonstra-
tion, we study the radiative capture process np → dγ , which
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is one of the simplest reactions, yet plays a critical role in
big bang nucleosynthesis [1,27,28]. The experimental data for
this reaction is sparse in the low energy range [29–32]. There-
fore, theoretical studies with predictive power are especially
needed.

Indeed, various predictive methods have been developed
for precision calculations of the reaction np → dγ based on
either the pionless effective field theory [33–37] or the pionful
χEFT [19,38] as alternatives to traditional approaches based
on phenomenological models for the nuclear interactions
and currents [39–41]. In view of these successful advances,
it becomes important to explore new ab initio approaches
to reaction calculations based on the no-core shell model
(NCSM) [42–44] in addition to those already developed, such
as the NCSM/RGM approach combining the NCSM with
the resonating group method [45–48], and the NCSM with
continuum [49–57]. There is also the SS-HORSE-NCSM
approach [58–63] that extends the NCSM for studying res-
onances. We are planning to generalize this approach to ab
initio calculations of many-body nuclear states in the con-
tinuum, not only in the vicinity of resonances, by utilizing
the complete harmonic oscillator representation of scattering
equations (HORSE) formalism [64]. As the first step, we use
here the HORSE approach to calculate continuum states in a
simple two-nucleon system.

In this work, we focus on the low-energy range of np →
dγ radiative capture where the M1 transition channel dom-
inates. We construct the Hamiltonian matrices for the initial
and final nuclear systems using the Low Energy Nuclear
Physics International Collaboration (LENPIC) NN interac-
tions [13,14] that are derived from χEFT. We compute the
bound and scattering state wave functions via the direct matrix
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diagonalization and the HORSE method [64], respectively.
We also develop the chiral M1 transition operators [16,24,25]
with the same semilocal coordinate space (SCS) regulators as
those adopted for the LENPIC NN interaction. We perform
calculations of the capture cross section and quantify the
uncertainty of the results due to the order-by-order trunca-
tion of the NN interaction. Chirally consistent and complete
calculations are achieved up to the next-to-next-to leading
order (N2LO). Our work complements the work by Piarulli
et al. [19] and that by Acharya and Bacca [38]. However, the
differences in the microscopic approaches, the input NN in-
teractions, the choice of regulator schemes, and the systematic
convergence and uncertainty analyses distinguish our work.

In Sec. II, we present the elements of the theory, which
include the details of computing the initial and final state wave
functions, our transition operators, and the cross section. In
Sec. III, we show the results of the observables of the deuteron
(final state), the phase shifts of the scattering waves (initial
state), and the capture cross sections. We conclude in Sec. IV,
where we also provide an outlook.

II. THEORY

In this work, we compute the radiative capture cross sec-
tion of the np → dγ reaction at low center-of-mass (CM)
bombarding energy (�0.01 MeV) in the relative coordinates
of the neutron-proton (np) system. The M1 reaction domi-
nates [65]1: the initial (scattering) state of the np system is
in the 1S0 channel, while the final (bound) state is in the 3SD1

channel; and a photon is emitted with the excess energy of the
nuclear system during the reaction.

The capture cross section can be calculated based on the
transition matrix element [65]

Mλ(i, f ) = 〈φ f |μ1λ|φi〉, (1)

where μ1λ (λ = 0,±1) denotes the λ component of the M1
transition operator �μ (rank-1 tensor). |φi〉 and |φ f 〉 denote the
initial and final state vectors of the np system, respectively.

Following the discussion in Ref. [65], we start with the
scattering setup where both projections of the total angular
momenta of |φi〉 and |φ f 〉 are zeros, without loss of gen-
erality.2 In this case, only the λ = 0 component of the M1
transition operator contributes. The transition probability can
be written as [65]

TM (i, f ) = 16π

9
κ3|M0(i, f )|2, (2)

1The contribution from the competing electric dipole E1 reaction
channel increases with energy. However, even at the highest CM
bombarding energy examined here (0.01 MeV), the contribution
from the E1 reaction channel is about 1% of the total capture cross
section [34].

2One notes that this transition probability is the same as those com-
puted with the other two choices of the final state polarization, i.e.,
the projection of the total angular momentum of |φ f 〉 being +1 (−1),
where compatible transition operator μ1−1 (μ1+1) should be adopted.
This can be seen by applying the Wigner-Eckart theorem [66] to
Eq. (1).

where κ is the wave number of the emitted photon. We adopt
the natural units and set h̄ = c = 1 in this work.

Since there are three possible transitions from the 1S0 state
to the deuteron state (with different polarizations) and these
transitions are of equal probability, the total M1 radiative
capture cross section for the unpolarized np system to form
a deuteron can be calculated as [65]

σ = 3

4	
TM (i, f ), (3)

where one sums over the possible polarizations of the final
state and averages over the initial polarizations of the np
system. 	 denotes the flux of the scattering wave.

In the remainder of this section we describe the methods
for solving the Schrödinger equation and calculating the initial
and final state wave functions of the reaction. We also derive
the M1 transition operator based on the χEFT. Though the
current work focuses on the two-body reaction problem, our
methodology can be generalized to study similar reactions
using wave functions from ab initio many-body NCSM cal-
culations [42–44,58–63].

A. Nuclear Hamiltonian and basis representation

The Hamiltonian of the np system in relative coordinates
is

H = Trel + VNN, (4)

where Trel denotes the relative (intrinsic) kinetic energy and
VNN the internucleon interaction.

We employ the three-dimensional harmonic oscillator
(3DHO) basis to construct the matrix representation of the
Hamiltonian and various operators throughout this work. The
wave functions are expanded in a series of 3DHO basis func-
tions that is useful for a straightforward generalization of
our approach to studies of many-body nuclear systems within
NCSM [42–44] or other ab initio approaches.

The 3DHO basis functions of relative motion are specified
as |nlSJMJ〉, where n is the radial quantum number, l is the
orbital angular momentum, and S is the total spin of the np
system. The total angular momentum J is coupled from l
and S, whereas MJ denotes the projection of J . The oscillator
quanta is 2n + l , which is an index to scale the basis dimen-
sion. We remark that S, J , MJ and the parity Pπ = (−1)l are
the good quantum numbers specifying the np system.

In the coordinate representation, the 3DHO basis reads

〈�r|nlSJMJ〉 = Rnl (r)
∑
ml ,ms

(lmlSms|JMJ )Ylml (
r̂ )χSms , (5)

where the summations over ml and ms run over all the
possible values of the projections of l and S, respectively.
(lmlSms|JMJ ) denotes the Clebsch-Gordan coefficient and
Ylml (
r̂ ) is the spherical harmonics (we adopt the Condon–
Shortly convention [66] in this work). χSms is the spin part of
the wave function. The radial part of the oscillator functions
is

Rnl (r) =
√

2n!

r3
0�

(
n + l + 3

2

)( r

r0

)l
e
− r2

2r2
0 L

l+ 1
2

n

(
r2

r2
0

)
(6)
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with L
l+ 1

2
n (r2/r2

0 ) and �(n + l + 3/2) being respectively the
associated Laguerre polynomial and the gamma function [67].
The characteristic length scale of the 3DHO basis can be
expressed as r0 = (m̃Nω)−1/2, where ω denotes the oscillator
energy and m̃N is the reduced mass of the neutron and proton
(set to be 469.46 MeV in this work).

B. The initial state

For our application to very low incident energy, we restrict
our discussion of the np scattering to the uncoupled channel
that is specified by the quantum numbers l , S, J , and MJ . We
calculate the initial state of the np system via the HORSE
method [64,68–70]. Based on Eq. (1) in Ref. [64] (where the
spin-part of the scattering wave function is ignored), we con-
struct the incoming scattering wave function using the partial
wave expansion and couple the orbital angular momentum to
the spin of the np system. Taking the relative momentum of
the initial np system �k to be along the ẑ axis, the scattering
wave function in the uncoupled channel is

〈�r|φi(�k)〉 = 1

k

∞∑
n=0

√
4π (2l + 1) anl (k)Rnl (r)

×
∑
ms

(l0Sms|JMJ )Yl0(θ, ϕ)χSms , (7)

where �r determines the relative position of the nucleons with
r = |�r| and k = |�k|. The polar angle θ is defined as cos θ =
�k · �r/(kr). ϕ denotes the azimuthal angle. The amplitudes of

the 3DHO basis expansion of the wave function are {anl (k)}.
We normalize the scattering wave function such that the flux
	 associated with the scattering wave is unity.

The scattering state of the np system satisfies the
Schrödinger equation

H |φi(�k)〉 = E |φi(�k)〉, (8)

where E = k2/(2m̃N ) is the energy in the CM frame. In the
3DHO basis, the Schrödinger equation is equivalent to the
following set of the algebraic equations

∞∑
n′=0

〈nlSJMJ |H − Eδnn′ |n′lSJMJ〉〈n′lSJMJ |φi(�k)〉 = 0, (9)

from which we can obtain the amplitudes anl (k) =
〈nlSJMJ |φi(�k)〉 for given values of l , S, J , and MJ .

The HORSE method solves Eq. (9) for the ampli-
tudes anl (k) by truncating the interaction matrix element
〈nlSJMJ |VNN|n′lSJMJ〉 in the Hamiltonian up to some large
but finite dimension. In particular, one notes that the interac-
tion matrix element decreases with increasing n and n′, while
the matrix element of the kinetic energy increases linearly
with n and n′ → ∞ [58,64]. Therefore, a cutoff scale ñ is
introduced to the interaction matrix in the Hamiltonian of
the initial np system; this cutoff scale corresponds to the
“boundary” oscillator quanta Ñ = 2̃n + l of the 3DHO basis,
which divides the Hamiltonian matrix of the np system into
the “interior” region (with interaction) and the complementary
“asymptotic” region (free of interaction) as

〈nlSJMJ |H |n′lSJMJ〉 =
{〈nlSJMJ |Trel + VNN|n′lSJMJ〉 for n � ñ and n′ � ñ,

〈nlSJMJ |Trel|n′lSJMJ〉 for n > ñ or n′ > ñ.
(10)

This is the only assumption of the HORSE method. In order to improve the convergence of the scattering phase shift and radiative
capture cross section, we further apply a “smoothing” scheme [71,72] to the interaction matrix element 〈nlSJMJ |VNN|n′lSJMJ〉
in Eq. (10). In particular, we substitute 〈nlSJMJ |VNN|n′lSJMJ〉 in Eq. (10) by the “smoothed” interaction interaction matrix
element

〈nlSJMJ |ṼNN|n′lSJMJ〉 =
{
σ n

ñ 〈nlSJMJ |VNN|n′lSJMJ〉σ n′
ñ for n � ñ and n′ � ñ,

0 for n > ñ or n′ > ñ,
(11)

where the smoothing function takes the form [71]

σ n
ñ = 1 − e−

[
α

n−(̃n+1)
ñ+1

]2

1 − e−α2 , (12)

with α being the dimensionless parameter. One can readily check that σ n
ñ has no effect for limited ñ when α → 0 or α → ∞.

In practice, one takes α ∈ [5, 10] in order to optimize convergence. In this work, we take α = 7.5, and the insensitivity of the
phase shift and the capture cross section to α ∈ [5, 10] was confirmed up through at least the fifth significant digit.

With the truncation of the interaction matrix elements, the amplitudes {anl (k)} are also sorted into two corresponding sets,
{aint

nl (k)} (n � ñ) and {aas
nl (k)} (n > ñ), which are solved as follows. In the asymptotic region, the Hamiltonian is just the kinetic

energy operator, which has the tridiagonal matrix form in the 3DHO representation. The amplitudes of the wave function {aas
nl (k)}

(n > ñ) obey the three-term recurrence relation

〈nlSJMJ |Trel|(n − 1)lSJMJ〉aas
(n−1)l (k) + 〈nlSJMJ |Trel − E |nlSJMJ〉aas

nl (k) + 〈nlSJMJ |Trel|(n + 1)lSJMJ〉aas
(n+1)l (k) = 0, (13)

where the matrix elements of the kinetic energy operator are

〈(n + 1)lSJMJ |Trel|nlSJMJ〉 = 1

2
ω

√(
n + l + 3

2

)
(n + 1), (14)
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〈nlSJMJ |Trel|nlSJMJ〉 = 1

2
ω

(
2n + l + 3

2

)
, (15)

〈nlSJMJ |Trel|(n + 1)lSJMJ〉 = 1

2
ω

√(
n + l + 3

2

)
(n + 1). (16)

We adopt two linearly independent solutions for Eq. (13) (see, e.g., Refs. [64,68–70]):

Snl (k) = (−1)n

√
πr0n!

v�
(
n + l + 3

2

) (kr0)l+1 exp

(
−k2r2

0

2

)
L

l+ 1
2

n
(
k2r2

0

)
, (17)

Cnl (k) = (−1)n+l

�
( − l + 1

2

)√
πr0n!

v�
(
n + l + 3

2

) (kr0)−l exp

(
−k2r2

0

2

)
1F1

(
−n − l − 1

2
; −l + 1

2
; k2r2

0

)
, (18)

where 1F1(c; d; x) is the confluent hypergeometric function [67].
The asymptotic amplitudes can be expressed as a linear combination of Snl (k) and Cnl (k),

aas
nl (k) = cos δl Snl (k) + sin δlCnl (k), (19)

where δl denotes the scattering phase shift of the partial wave with the orbital angular momentum l . According to Eq. (13), one
notes that the above solution holds also for the case when n = ñ. This will serve as the condition to match the amplitudes in the
interior region with those in the asymptotic region.

The amplitudes {aint
nl (k)} (with 0 � n � ñ) in the interior region satisfy the algebraic equation as

ñ∑
n′=0

[〈nlSJMJ |H |n′lSJMJ〉 − δnn′E ]aint
n′l (k) = −δñn〈̃nlSJMJ |Trel|(̃n + 1)lSJMJ〉aas

(̃n+1)l (k). (20)

Each amplitude aint
nl (k) can be expressed in terms of aas

(̃n+1)l (k) as [64]

aint
nl (k) = Gñnaas

ñ+1,l (k), (21)

with the matrix elements being

Gnn′ = −
ñ∑

ν=0

〈nlSJMJ |ν〉〈ν|n′lSJMJ〉
Eν − E

〈n′lSJMJ |Trel|(n′ + 1)lSJMJ〉, (22)

where Eν and 〈nlSJMJ |ν〉 are respectively the eigenvalue and the components of the corresponding eigenvector of the Hamilto-
nian in the interior region:

ñ∑
n′=0

〈nlSJMJ |H |n′lSJMJ〉〈n′lSJMJ |ν〉 = Eν〈nlSJMJ |ν〉, 0 � n � ñ. (23)

The phase shift δl is obtained from the matching condition of
the amplitudes (21). In particular, one notes that the amplitude
aint

ñl (k) satisfies Eq. (13) when n = ñ + 1 and thus both aint
ñl (k)

and aas
ñ+1,l (k) can be expressed according to Eq. (19). There-

fore, using Eq. (21) the phase shift can be expressed as [64]

tan δl = − Sñl (k) − Gñ̃nSñ+1,l (k)

Cñl (k) − Gñ̃nCñ+1,l (k)
. (24)

After calculating the phase shift δl at any positive energy
E , we get the respective scattering wave function as an infinite
expansion in 3DHO basis functions (7) where at n � ñ the
amplitudes anl (k) = aas

nl (k) are calculated using Eq. (19) and
at n < ñ the amplitudes anl (k) = aint

nl (k) are calculated using
Eq. (21). In our calculations of the matrix elements of the M1
transition operator (see Sec. II D), we restrict the sum in n in
Eq. (7) by using only the 3DHO terms with oscillator quanta
2n + l � Nmax and verify that the accepted value of maximal

allowed quanta Nmax guarantees the convergence of the phase
shift δl and the np → dγ radiative capture cross section as
well as their independence from the 3DHO basis parameter
ω. We remark that we use the same value of Nmax for the
scattering wave function truncation as that for the deuteron
ground state wave function (see Sec. II C).

As already mentioned, for our very low-energy application
here, we have the initial scattering wave function of the np
system in the 1S0 state, that is we set l = 0, S = 0, J = 0, and
MJ = 0.

C. The final state

The final state of the np system is a bound state, the
deuteron, characterized by the quantum numbers J = 1, S = 1
and positive parity, that means that the orbital momentum
takes values l = 0, 2. We construct the deuteron wave function
in the coordinate space as a finite expansion in the 3DHO basis
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functions with oscillator quanta 2n + l � Nmax,

〈�r|φ f 〉 =
∑
l=0,2

1
2 (Nmax−l )∑

n=0

bnl Rnl (r)

×
∑
ml ,ms

(lmlSms|JMJ )Ylml (
r̂ )χSms , (25)

where the amplitudes {bnl} satisfy a finite set of algebraic
equations:

∑
l ′=0,2

1
2 (Nmax−l ′ )∑

n′=0

〈nlSJMJ |H − Eδnn′δll ′ |n′l ′SJMJ〉bn′l ′ = 0,

l = 0, 2; n = 0, 1, . . . ,
1

2
(Nmax − l ). (26)

The final state wave function is normalized to unity,

∑
l=0,2

1
2 (Nmax−l )∑

n=0

|bnl |2 = 1. (27)

We obtain the amplitudes {bnl} by a direct diagonaliza-
tion of the Hamiltonian matrix 〈nlSJMJ |H |n′l ′SJMJ〉. The
truncation boundary Nmax is chosen to be large enough and
verified to provide convergence and independence from the
basis parameter ω of the deuteron binding energy and other
observables as well as the calculated cross section of the
np → dγ reaction.

The Hamiltonian of the np system is degenerate in the MJ

values. According to the discussion in the beginning of Sec. II,
we select MJ = 0 for the final state and compute the transition
probability and the radiative capture cross section according to
Eqs. (2) and (3), respectively.

D. Transition operator

The M1 transition in a nuclear system is facilitated by the
M1 operator which is defined as [73]

�μ = 1

2

∫
d3�x �x × �̄j(�x), (28)

where �̄j(�x) is a nuclear electromagnetic current in coordinate
space. Following convention, this operator is multiplied by a
factor of

√
3/4π when calculating the M1 transition [74]. As

we are working with a two-nucleon (2N) system, we use only
the operators derived from one-nucleon (1N) and 2N nuclear
electromagnetic currents from Refs. [16,24,25], which are
derived from the χEFT and are consistent with the LENPIC
NN interactions of Refs. [13,14] adopted in this work. The
currents in Refs. [16,24,25] are in momentum space. They can
be used in Eq. (28) via the Fourier transformation

�̄j(�x) =
∫

d3�k
(2π )3

ei�k·�x �j(�k), (29)

where �j(�k) is the momentum space current. The nuclear elec-
tromagnetic currents derived from χEFT are systematically
arranged according to a power counting scheme:

�jaN = �jaN
LO + �jaN

NLO + �jaN
N2LO + · · · , (30)

where the superscript aN indicates an a-nucleon current (we
take a = 1 or 2 for the two-nucleon system). It is also worth
noting that not all of the orders are present for a particular
a-nucleon current.

In this work, we consider only the nuclear electromagnetic
currents up to N2LO in the χEFT power counting [16,24,25].
At LO, there is no contribution to the nuclear electromagnetic
currents. At NLO, there are both 1N and 2N electromagnetic
current operators. In particular, the 1N electromagnetic cur-
rent operator at NLO is

�j1N
NLO = |e|

4mN
[−i[�q j × �σ j](μs + μvτ j,z ) + 2 �Qj (1 + τ j,z )],

(31)

where mN denotes the nucleon mass (taken to be 938.92
MeV) and e denotes the elementary charge. μs = 0.880 and
μv = 4.706 are the isoscalar and isovector anomalous mag-
netic moments of the nucleus, respectively. �q j = �p′

j − �p j ,
�Qj = ( �p′

j + �p j )/2 are the linear combinations of the incom-
ing ( �p j) and outgoing ( �p′

j) momenta of the jth nucleon. �σ j

denotes the spin operator of the jth nucleon, while �τ j is the
isospin operator of the jth nucleon. The projection of �τ j is
τ j,z. Meanwhile, the 2N electromagnetic current operator at
NLO is

�j2N
NLO = i|e|g2

A

4F 2
π

[�τ j × �τk]z
�σk · �qk

q2
k + m2

π

(
�q j

�σ j · �q j

q2
j + m2

π

− �σ j

)
+ ( j � k), (32)

where ( j � k) indicates the term with swapped nucleon in-
dices j = 1, 2 and k = 1, 2 (and j 
= k) for the two-nucleon
system. gA = 1.29 denotes the axial coupling constant, Fπ =
92.4 MeV is the pion decay constant, mπ = 138.03 MeV is
the average pion mass.

At N2LO, there is a 1N current operator

�j1N
N2LO = − i|e|g2

Aτ j,z

32πF 2
π

[
mπ − (

4m2
π + q2

j

)
A(| �q j |)

]
[�q j × �σ j],

(33)

where A(q) = 1
2q tan−1( q

mπ
). At this order, there is no 2N

current operator.
In this work we have used a version of the LENPIC NN

interactions described in [13,14]. These potentials have been
regularized in coordinate space by multiplying them with the
following coordinate space function:

f
( r

R

)
=

[
1 − exp

(
− r2

R2

)]6

, (34)

where R is the regulator parameter. In this work we take
R = 0.9 and 1.0 fm. Note that only the VNN are regularized by
f (r/R), while the Trel is not regularized. Thus for consistency
we also regularize the 2N current operator in Eq. (32), but not
the 1N current operator [in Eqs. (31) and (33)], by multiplying
it with this same function f (r/R). Consistency can be proved
based on the continuity equation of the nuclear charge and
current operators.

We can derive the contributions from �j1N
NLO, �j2N

NLO, and
�j1N
N2LO to the M1 transition operator �μ according to Eqs. (28)
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TABLE I. Deuteron properties computed with the χEFT LENPIC NN interactions up to N4LO with the SCS regulator R = 0.9 fm (B)
and R = 1.0 fm (C): the ground state energy Egs, the point-proton rms rd , the magnetic dipole moment μD, the electric quadrupole moment
Q, and the d-wave probability Pd . The theoretical predictions obtained with LENPIC N4LO interactions in Refs. [13,77], together with other
empirical results [78–82], are also provided for comparison.

R (fm) χ order Egs (MeV) rd (fm) μD (μN ) Q (e fm2) Pd (%)

B LO −2.023 47 1.989 75 0.865 311 0.229 983 2.5440
NLO −2.198 67 1.968 28 0.852 837 0.273 398 4.7335
N2LO −2.231 08 1.965 51 0.854 154 0.270 359 4.5025
N3LO −2.223 25 1.972 21 0.855 946 0.270 648 4.1878
N4LO −2.223 25 1.971 31 0.855 388 0.270 985 4.2858

C LO −2.083 46 1.978 90 0.868 564 0.214 659 1.9731
NLO −2.206 09 1.966 62 0.855 659 0.271 370 4.2383
N2LO −2.235 16 1.964 36 0.856 323 0.269 874 4.1217
N3LO −2.223 26 1.975 35 0.852 620 0.274 565 4.7717
N4LO −2.223 26 1.974 31 0.854 718 0.272 428 4.4034

LENPIC-B [13] N4LO −2.2246 1.972 0.271 4.29
LENPIC-B [77] N4LO −2.2233a

LENPIC-C [77] N4LO −2.2233 1.9743 0.8547 0.2724 4.4034
Empirical −2.224 575(9) [78] 1.975 35(85) [79] 0.857 438 231 1(48) [80] 0.2860(15) [81,82]

aAs suggested in Ref. [77], relativistic corrections are necessary in order to compare with −2.2246 MeV in Ref. [13].

and (29). In particular, for the 2N system, we have3

�μ1N
NLO = 1

2
[(μs + μvτ j,z )�σ j + (1 + τ j,z )�l j] + ( j � k), (35)

�μ2N
NLO = −g2

AmN mπ

16πF 2
π

[�τ j × �τk]z[(1 + mπ r)([�σ j × �σk] · r̂)r̂

− mπ r[�σ j × �σk]]
e−mπ r

mπ r
, (36)

�μ1N
N2LO = 0, (37)

where the �μ1N
NLO, �μ2N

NLO, and �μ1N
N2LO operators correspond to

the contributions from �j1N
NLO, �j2N

NLO, and �j1N
N2LO, respectively.

The unit vector is r̂ = �r/r. In obtaining �μ2N
NLO from �j2N

NLO,
we transform the single-particle coordinates to the relative
coordinates, while we keep track of the single-particle spinor
and isospinor wave functions. The contribution from the CM
part of �j2N

NLO is suppressed with this transformation [76] for the
isolated np system but will be retained in planned calculations
for many-nucleon systems.

Thus, we have the M1 transition operator up to N2LO as

�μ = �μ1N
NLO + �μ2N

NLO, (38)

where both the 1N operator �μ1N
NLO and the 2N operator �μ2N

NLO
appear at NLO according to the power counting scheme in
Refs. [16,24,25]. We note that, in the literature, �μ1N

NLO and
�μ2N

NLO are also referred to as the impulse approximation (IA)
and meson exchange current (MEC) operators, respectively.
For practical numerical calculations in this work, we compute
the matrix elements of �μ1N

NLO and �μ2N
NLO for the np system

3Interested readers are referred to Refs. [75,76] for detailed deriva-
tions.

in the 3DHO representation; more details are available in
Ref. [75,76].

III. RESULTS AND DISCUSSION

A. Deuteron wave function and observables

We compute the final state (deuteron) wave functions with
the LENPIC NN interactions up to N4LO derived with the
SCS regulators R = 0.9 or 1.0 fm. Based on the deuteron wave
functions, we calculate various deuteron properties, which
include the ground state energy, the rms point charge radius,
the magnetic dipole moment,4 and the electric quadrupole
moment, as well as the d-wave probability. In each of our
calculations, a sufficiently large model space is retained for
convergence analysis (set to be Nmax = 2000). While we set
ω = 28 MeV in this work, we checked that the converged
results are independent of ω over a range of values (ω ∈
[10, 40] MeV at least) for this large model space to the quoted
significant figures in Table I. Note that there is no Hungarian
smoothing adopted for the ground-state calculations through-
out the paper.

For each observable and choice of regulator, the expecta-
tion value also shows a converging trend as a higher order of
the LENPIC NN interactions is employed (the d-wave prob-
ability is not an observable): the order-by-order correction
of the observable decreases with the chiral order of the NN
interaction. For comparison, we also present (1) the reference
values computed by the LENPIC group with the NN interac-
tions up to the fifth order (N4LO) [13,77], and (2) respective

4Here, we make use of the one-nucleon operator only to calculate
the magnetic dipole moment. Up to N2LO, there is no two-nucleon
current contribution to the magnetic dipole moment of the deuteron
(isospin T = 0 channel).
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TABLE II. Scattering phase shift δ0 (in degrees) of the np system in the 1S0 channel computed with the χEFT LENPIC NN interactions
up to N4LO with the SCS regulator R = 1.0 fm for six CM bombarding energies: E1 = 1.2625 × 10−8 MeV, E2 = 5 × 10−7 MeV, E3 = 5 ×
10−4 MeV, E4 = 1 × 10−3 MeV, E5 = 5 × 10−3 MeV, and E6 = 1 × 10−2 MeV. The phase shifts obtained based on the LO NN interaction
with R = 0.9 fm are presented in the parentheses. Our results are quoted to four significant figures while calculations were performed to attain
at least five significant figures of precision. The theoretical predictions of the LENPIC collaboration employing the N4LO NN interactions
with R = 1.0 fm [13,14,77] (denoted as N4LO∗) are provided for direct comparisons (corresponding predictions with R = 0.9 fm [13,14,77]
agree with those with R = 1.0 fm and are hence omitted). The phase shift results computed by the effective range expansion (denoted as ERE)
are also presented.

χ order δ0(E1) δ0(E2) δ0(E3) δ0(E4) δ0(E5) δ0(E6)

LO 0.021 95 (0.021 52) 0.1381 (0.1354) 4.358 (4.273) 6.149 (6.030) 13.51 (13.26) 18.72 (18.38)
NLO 0.023 73 0.1494 4.711 6.644 14.56 20.09
N2LO 0.023 73 0.1494 4.710 6.644 14.56 20.09
N3LO 0.023 73 0.1494 4.711 6.644 14.56 20.09
N4LO 0.023 73 0.1493 4.709 6.643 14.55 20.09

N4LO∗ 0.023 72 0.1493 4.708 6.640 14.55 20.08
ERE 0.023 74 0.1494 4.712 6.646 14.56 20.09

empirical values [78–82] in Table I. We find that our results for
the observables computed up to N4LO agree well with both
independent theoretical results and with the empirical values.

The computed d-wave probabilities Pd in the deuteron are
also shown. They should not be interpreted as the order-by-
order convergence with the power expansion scheme of the
LENPIC NN interactions. We find that these results compare
well with the corresponding results from Refs. [13,77] quoted
in Table I.

We observe a moderate regulator dependence of all the
computed deuteron properties: different choices of the reg-
ulator can result in a difference at the third decimal place
for most quantities. Exceptions are the ground state energy
and the quadrupole moment results obtained with the LO NN
interactions, where the difference is at the second decimal
place.

B. Scattering wave function and phase shift

We calculate the initial state of the nuclear system at six
CM bombarding energies: E1 = 1.2625 × 10−8 MeV, E2 =
5 × 10−7 MeV, E3 = 5 × 10−4 MeV, E4 = 1 × 10−3 MeV,
E5 = 5 × 10−3 MeV, and E6 = 1 × 10−2 MeV.5 Working
with the HORSE method, we use a sufficiently large cutoff
of the boundary oscillator quanta Ñ = 2̃n + l (taken to be
Ñ = 180) for the interaction matrix for the NN interaction in
order to obtain the converged phase shift δ0. We confirmed
the convergence of δ0 with Ñ . We also confirmed that the
converged phase shifts are independent of Ñ for Ñ � 180
(at least) and of ω for ω ∈ [10, 40] MeV (at least) when the
smoothed interaction [Eq. (11)] is used.

In Table II, we present the results of the scattering phase
shift δ0 of the initial np system in the 1S0 channel as a
function of (1) the LENPIC NN interactions (with the SCS
regulator R = 1.0 fm), and (2) the bombarding energy Ei

5The np → dγ capture cross sections at these CM bombarding
energies are also calculated in Ref. [34] within pionless effective field
theory, except for the case of E2.

(i = 1, 2, . . . , 6). The results based on the LENPIC NN inter-
actions with the SCS regulator R = 0.9 fm are not shown as
they agree with the results shown in Table II; exceptions are
the results based the LO NN interaction (with R = 0.9 fm),
which are presented in the parentheses for comparison.

Our results based on the LO, NLO, N2LO, N3LO, and
N4LO NN interactions employing different SCS regulators
(either R = 0.9 or 1.0 fm) agree well with the theoretical
predictions of LENPIC [13,14,77]. We also note that our re-
sults with higher-order NN interactions agree well with those
obtained by the effective range expansion (ERE) based on
Ref. [83] (with the associated percentage errors evaluated to
be less than 0.04% of respective nominal values shown in
Table II).

C. Radiative capture cross section

We calculate the radiative capture cross section of the
np → dγ reaction at six selected CM bombarding energies
E1, E2, E3, E4, E5, and E6. In our calculations, we adopt the
consistent SCS regulator (R = 0.9 or 1.0 fm) for both the
transition operator and the LENPIC NN interaction. In each
calculation, the consistent LENPIC NN interaction (i.e., the
same chiral order and SCS regulator) is adopted to calculate
both the initial and final wave functions, whereas either solely
the 1N transition operator or both the 1N and 2N (1N + 2N)
transition operators are adopted.

We study the convergence of the capture cross section at
each chiral order truncation of the χEFT LENPIC NN in-
teraction with fixed choices of the transition operator (either
1N or 1N + 2N operator). As mentioned above, in calcula-
tions of the radiative capture cross section we truncate the
expansion of the scattering wave function in the series of
3DHO functions [see Eq. (7)] at the same oscillator quanta
2n + l � Nmax = 2000 as in the deuteron ground state. With
a sufficiently large interaction matrix truncated at Ñ oscillator
quanta that ensures the convergence of the phase shift of the
scattering wave function, we find that the results of the capture
cross section converge with Nmax to at least five significant
figures. We also checked that the converged cross-section
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TABLE III. The np → dγ capture cross section (in millibarns) via the M1 reaction channel at six CM bombarding energies (see Table II).
The theoretical predictions of the capture cross section via the M1 channel in Ref. [34] are also shown. The experimental cross sections of
Refs. [29,30] and theoretical results of Refs. [37,38] with the CM bombarding energy E1 = 1.2625 × 10−8 MeV are presented for comparison;
these cross sections include also the contributions from the E1 reaction channel, which, however, are expected to be several orders of magnitude
smaller than those from the M1 reaction channel [34]. The bold values are from the chirally consistent/complete calculations up to NLO and
N2LO in this work. We quote cross-section uncertainties in parentheses based on a Bayesian analysis of chiral-order truncation of the NN
interaction [84]. The one-sigma uncertainty is quoted for the underscored least significant digits of each result. See the text for the discussion
of the Bayesian analysis employed and other details.

χ order σ (E1) σ (E2) σ (E3) σ (E4) σ (E5) σ (E6)

1N LO 240(100) 38(16) 1.2(5) 0.8(4) 0.36(15) 0.24(10)

NLO 301(10) 47.9(1.6) 1.50(5) 1.06(3) 0.446(15) 0.30(1)

N2LO 311(3) 49.4(5) 1.550(15) 1.09(1) 0.460(5) 0.305(3)

N3LO 307(3) 48.8(5) 1.531(15) 1.07(1) 0.455(4) 0.301(3)
N4LO 308(3) 48.9(5) 1.535(15) 1.08(1) 0.456(5) 0.302(3)

1N + 2N LO 247(100) 39(16) 1.2(5) 0.9(4) 0.37(15) 0.25(10)

NLO 312(10) 49.6(1.6) 1.56(5) 1.09(3) 0.462(15) 0.31(1)

N2LO 322(3) 51.1(5) 1.605(15) 1.13(1) 0.477(5) 0.316(3)

N3LO 319(3) 50.6(5) 1.590(15) 1.12(1) 0.472(4) 0.313(3)
N4LO 319(3) 50.8(5) 1.594(15) 1.12(1) 0.473(5) 0.313(3)

Ref. [34] 334.2 1.667(0) 1.170(0) 0.4950(0) 0.3279(0)

Ref. [37] 334.9
(+5.2
−5.4

)
Ref. [38] 321.0(±0.7)
Expt. [29] 334.2(±0.5)
Expt. [30] 332.6(±0.7)

results are independent of Ñ , Nmax, and the 3DHO basis
parameter ω.

We also study the regulator dependence of the converged
cross-section results. In particular, we find that the percent-
age differences between the nominal values of the cross
section computed with either R = 0.9 fm or R = 1.0 fm reg-
ulators are (1) <10% with NN interactions up to LO (2)
<1% with NN interactions up to NLO (3) <0.6% with NN
interactions up to N2LO (4) <0.01% with NN interactions up
to N3LO, and (5) <0.5% with NN interactions up to N4LO,
when the 1N transition operator is employed [recall that the
1N transition operator receives no pion-current contribution
and is not regularized by the regulator Eq. (34)]. The corre-
sponding percentage differences with the 1N + 2N transition
operator (recall that the 2N part of the transition operator is
regularized by the consistent SCS regulator as that of the NN
interaction employed) are (1) <9% with LO NN interactions,
(2) <0.6% with NN interactions up to NLO, and (3) <0.2%
with the NN interactions up to N2LO, N3LO, and N4LO.
These differences suggest a weak regulator dependence of the
cross-section results computed with higher-order NN interac-
tions.

We find that the capture cross-section results converge with
the chiral expansion of the NN interaction for fixed bom-
barding energy and transition operator (either 1N or 1N + 2N
operator), while the order-by-order corrections in the results
decrease. For fixed choices of the transition operator, the
one-sigma uncertainties of the cross-section results are dom-
inated by the chiral-order-truncation uncertainties of the NN
interactions; these uncertainties are analyzed in the systematic
framework of the Bayesian analysis [84] (see Appendix for

details). We adopt the viewpoint that the chiral-order uncer-
tainty is best determined up to N2LO (where the calculations
are chirally consistent with the 1N + 2N current) and cannot
be improved at higher chiral order due to the limited current
we employ. Therefore, we quote chiral uncertainties at chiral
orders beyond N2LO to be the same as those at N2LO.

In Table III, we present the cross-section results as func-
tions of the chiral order of LENPIC NN interactions (up to
N4LO) and the transition operators (either 1N or 1N + 2N
current operators up to N2LO), where the SCS regulator regu-
larizing both the NN interactions and the transition operators
is taken to be R = 1.0 fm. Corresponding one-sigma uncer-
tainties from the Bayesian analysis are also presented. Within
the error bars, the cross-section results computed with the
SCS regulators R = 0.9 fm agree with those obtained with
R = 1.0 fm. For the purpose of illustration, we also present the
plot of the cross-section results (obtained with R = 1.0 fm)
for the case with the CM bombarding energy E1 as a function
of the chiral order of the LENPIC NN interaction, and the
transition operator in Fig. 1. The plots of the results with the
other regulator R = 0.9 fm and CM bombarding energies are
similar.

Based on Table III, we find, in general, that the capture
cross section decreases with increasing bombarding energy
for fixed NN interaction and transition operator. For all the
calculations, our additional 2N transition operator enhances
respective cross sections calculated with merely the 1N tran-
sition operator by a few percent.

Based on the 1N + 2N transition operator (recall this op-
erator is complete up to NLO and there is no contribution
to the transition operator at N2LO), we perform chirally
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FIG. 1. The np → dγ capture cross section via the M1 reaction
channel at the CM bombarding energy E1 = 1.2625 × 10−8 MeV
calculated with χEFT LENPIC NN interactions up to N4LO with
R = 1.0 fm, where either 1N transition operator (blue) or both 1N +
2N transition operators (brown) with R = 1.0 fm are employed. The
one-sigma error bars for the cross-section results are obtained via
Bayesian analysis [84] (see the text for the discussion of the Bayesian
analysis employed and other details). The measured cross sections,
334.2(±0.5) mb [29] and 332.6(±0.7) mb [30], are also presented
as green and red dashed lines (with the corresponding shaded areas
denoting the error bars), respectively.

consistent/complete calculations up to NLO and also to
N2LO employing the corresponding NN interactions. These
chirally consistent/complete results are highlighted by the
bold fonts in Table III, where the results complete up to
N2LO compare well with the experiments [29,30], and the
theoretical predictions of Refs. [34,37] based on pionless
effective field theory via either perturbative or lattice QCD
calculations. We remark that our chirally consistent/complete
calculation up to N2LO at the bombarding energy E1 compare
well with the prediction in Ref. [38], which is computed with
the χEFT potential regularized by the semilocal momentum
space regulator [85] and the multipole expansions of the elec-
tromagnetic currents derived within χEFT [15,16,86,87]. Our
chirally consistent/complete calculation up to N2LO provides
an uncertainty of about 1% of the nominal value, which is
reasonable when compared with the N3LO chiral uncertainty
of 0.2% quoted by Acharya and Bacca [38].

The cross-section results with higher-order (i.e., N3LO
and N4LO) NN interactions are also presented in Table III.
These results should be regarded as chirally incomplete (as
the transition operators are only consistent up to N2LO).
More systematic calculations necessitate developing the chi-
rally consistent higher-order transition operators, which are
expected to improve the precision and accuracy of our calcu-
lations [19,38]; this will be the focus of future work.

IV. SUMMARY AND OUTLOOK

In this work, we focus on the radiative capture of a neutron
by a proton np → dγ at very low energies: the bombard-
ing energy in the center-of-mass frame is less or equal to
0.01 MeV, where the M1 transition dominates. The input
of our calculations, the NN interactions and the transition
operators, are from the χEFT [6–8], which is a low-energy
theory of quantum chromodynamics.

In particular, we construct the Hamiltonians of the np sys-
tem using the χEFT LENPIC [12] NN interactions [13,14] up
to the N4LO with the semilocal coordinate space regulators
R = 0.9 or 1.0 fm. The deuteron wave functions are obtained
by a direct matrix diagonalization. These wave functions are
used to compute the deuteron properties, where the results
exhibit a moderate regulator dependence. We find that the
computed deuteron observables converge when higher-order
LENPIC NN interactions are employed. Our results com-
pare well with those of others [13,77] and with empirical
results [78–82].

We compute the scattering wave functions of the initial
scattering state in the np system by the HORSE method using
the same χEFT LENPIC NN interactions. We find that the
phase shift results computed with higher-order NN interac-
tions have negligible regulator dependence and they agree
well with those obtained by the effective range expansion [83].

We compute the M1 transition operator up to N2LO
within the same χEFT framework adopted in developing
the NN interactions in this work. The transition opera-
tor consists of the one-nucleon (impulse approximation)
and two-nucleon (meson exchange current) operators. We
regularize the two-body current operator by the consistent
semilocal coordinate space regulators utilized in the NN
interactions.

Combining the initial and final state wave functions of the
np system together with the transition operator, we calculate
the np → dγ reaction cross section. We find that the addi-
tional two-nucleon operator enhances the cross sections by
a few percent in all calculations which improves agreement
between theory and experiment where available. The regu-
lator dependence of the cross-section results is weak when
higher-order NN interactions are included. Our results con-
verge with the chiral expansion of the NN interactions. The
uncertainties of the cross-section results are dominated by the
chiral-order truncation of the NN interaction when compared
with uncertainties from our numerical methods. We quantify
these uncertainties by Bayesian analysis [84].

The chirally consistent/complete calculations of the np →
dγ reaction cross section are performed with the consistent
NN interactions and transition operator up to N2LO. The
results compare well with other theoretical studies [34,37,38]
and with experiments [29,30]. The calculations with NN in-
teractions of higher orders are also presented.

Going forward, it will be important to systematically in-
vestigate the contributions from the nuclear electromagnetic
current operators up to higher chiral orders. This will en-
able us to perform precision calculations for a wide class
of photon-induced nuclear reactions. As ab initio micro-
scopic reaction theories provide predictive power in the
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investigations of the radiative capture cross section (especially
valuable for astrophysics applications at extremely low en-
ergies), it will also be important to generalize the current
method to study the nucleon capture reactions on other nu-
cleus. Such research will, in turn, provide an important test
bed for the on- and off-shell properties of internucleon in-
teractions and insights on the nuclear response to external
probes.
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APPENDIX: THE BAYESIAN ANALYSIS

Following Ref. [84], we consider a χEFT expansion
of a general scattering observable y as a function of a

d-dimensional real variable x:

y(x) = y(0)(x) + �y(2)(x) + �y(3)(x) + · · ·
= yref (x)[c0(x) + c2(x)Q2 + c3(x)Q3 + · · · ], (A1)

where �y(2)(x) = y(2)(x) − y(0)(x) and �y( j)(x) = y( j)(x) −
y( j−1)(x) ( j = 3, 4, . . . ), with the superscripts denoting the
chiral order. Q is the ratio of the soft scale to the hard scale of
the χEFT. The dimensionful quantity yref (x) sets the overall
scale. The dimensionless coefficients {c0(x), c2(x), c3(x), . . . }
are assumed to be drawn from an underlying Gaussian Process
with a constant mean μ̄, and a squared exponential kernel

κ (x, x′; c̄, h) = c̄2e−(x−x′ )T (x−x′ )/(2h)2
, (A2)

with c̄ and h being the parameters. This allows us to get the
analytical expressions for the posterior probability distribu-
tions of {�y(0)(x),�y(2)(x),�y(3)(x), . . . } (see Ref. [84] for
details).

For the application in this work, y is the cross section and x
is the bombarding energy. We assume a Gaussian prior for
μ̄, and an inverse χ2 distribution for c̄. We take the point
estimates Q = 0.31 and h = 0.06 MeV. The maximum a pos-
teriori values of Q and h, that we find after carrying out the
Bayesian analysis, are approximately 0.29 and 0.063 MeV,
respectively. The agreement with the maximum a posteriori
Q and h values justifies our choice of the prior Q and h values.
Finally, we take yref to be the cross-section results based
on our chirally consistent and complete calculations up to
N2LO.
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