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Nuclear charge radii of 46–62Cr isotopes and reaction cross sections for p-Cr
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The nuclear charge radii and density distributions for 46–62Cr have been calculated in the frameworks of both
relativistic and nonrelativistic self-consistent mean-field models. The relativistic Hartree-Bogoliubov model with
density-dependent meson-exchange functional DD-ME2 and the nonrelativistic Hartree-Fock-Bogoliubov model
with the Gogny D1S interaction, hereafter referred to as DIRHB and HFB, respectively, are used to compute
ground-state properties of even 46–62Cr isotopes. Both calculations for the root-mean-squared charge radii reveal
the characteristic kink at the N = 28 shell closure in accordance with the corresponding experimental radii.
The point proton and neutron density distributions calculated from both DIRHB and HFB are used to obtain
the optical potentials for p-Cr at an incident proton energy of 65 MeV. The elastic scattering differential and
total reaction cross sections, computed from the semimicroscopic proton optical potentials, have been derived
by folding each of the target matter densities with the Jeukenne-Lejeune-Mahaux-Bruyeŕes (JLMB) energy-
and density-dependent internucleon interaction. The calculated elastic scattering differential cross sections for
stable even isotopes, 50,52,54Cr, using the respective DIRHB and HFB densities in the folding model reproduce
the corresponding cross-section data well. The correlation between root-mean-squared charge radii and nuclear
reaction observables obtained from the DIRHB and HFB calculations have been used in the folding model
approach to predict the reaction cross sections for p- 46–62Cr at an incident proton energy of 65 MeV.
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I. INTRODUCTION

An understanding of the evolution of charge radii and re-
action cross sections with increasing neutron number gives
insight into the structure and reactions of nuclei that span
neutron-deficient to neutron-rich regions of the nuclear land-
scape [1–5]. The continuous progress in the production of a
wide variety of radioactive ion beams from accelerator facili-
ties around the world, coupled with the advancement in laser
spectroscopic methods, are contributing to the investigations
of various nuclear properties such as the binding energy and
charge radius [6–9]. The region around the shell closures
N = 20 and N = 28 have recently attracted attention owing
to the manifestation of a variety of structures from spherical
nature to collective behavior typical of deformed open-shell
nuclei. Measurements and theoretical investigations of charge
radii for stable and unstable nuclei have been carried out
to determine the changing shell effects in the calcium re-
gion [10–25]. The measured root-mean-squared (rms) charge
radii display various nuclear structure effects, including kinks
in isotopic chains at well-established nuclear shell gaps. The
rms charge radii have been measured for stable isotopes with
Z = 18–26, while in the case of unstable isotopes, they have
been determined only for three isotopic chains, Z = 18, 19,
and 20. Laser spectroscopy measurements have been carried
out for Ar [11], K [12–14], Ca [15,16], Sc [17], Ti [18],
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Cr [10], Mn [19,20], and Fe [21]. Although theoretical models
predict certain structural changes in this region, the charge
radii for many nuclei have yet to be measured.

It is well known that there is a distinct correlation between
nuclear radii and the reaction cross sections. An example
of such a correlation is the large increase in the measured
interaction cross section between 9Li and 11Li and the large
matter radius deduced thereof using a Glauber-type calcula-
tion [1]. In pioneering work on this aspect, the rms proton
radii were related to the total charge-changing cross sections
in light nuclei such as isotopes of Na ranging from proton to
neutron drip lines, using the Glauber model [2,3]. Following
this, nuclear charge radii in isotopic chains were connected
to the total reaction cross section using the folding optical
model calculations for Zr [4] and Ti [5] isotopic chains. The
linkage between the nuclear structure and reaction observ-
ables can be done using the folding model framework through
elastic scattering. When the nuclear structure information is
obtained from well-established models, whether relativistic
or nonrelativistic, the cross sections are well reproduced for
nucleon-nucleus systems.

The Cr isotopic chain, with 24 protons, lies exactly in the
middle of the two shell closures N = 20 and N = 28 and is
therefore interesting to study. The relationship between charge
radii and the reaction cross sections in the Cr isotopic chain is
studied for p-Cr scattering using both relativistic and nonrel-
ativistic structure models. In the present work, self-consistent
mean-field models are used to generate ground-state prop-
erties such as nuclear binding energies, radii, and densities
of even Cr isotopes (A = 46–62). The calculated nuclear
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properties from the relativistic Hartree-Bogoliubov (RHB)
model with the density-dependent meson-exchange (DD-
ME2) relativistic energy density functional (EDF) [26,27]
are compared with those from the nonrelativistic Hartree-
Fock-Bogoliubov (HFB) model with the Gogny D1S inter-
action [28–30]. Each of these target matter density distribu-
tions is folded with the Jeukenne-Lejeune-Mahaux-Bruyeŕes
(JLMB) interaction [31,32] that yields the respective optical
model potentials. The optical model potentials are used to
calculate the elastic scattering differential and total reaction
cross sections for scattering of 65-MeV protons from even
46–62Cr isotopes.

The paper is organized as follows: the description of rel-
ativistic and nonrelativistic mean-field models is given in
Sec. II. The results of the calculation of the ground-state
properties using both the mean-field models for even isotopes
of Cr are presented in Sec. III. Section IV gives details of
the folding optical model using the JLMB nucleon-nucleon
interaction. The results and discussions of the calculation of
folded potentials as well as cross sections for elastic scattering
of 65 MeV protons from even Cr isotopes are presented in
Secs. V and VI.

II. SELF-CONSISTENT MEAN-FIELD (SCMF) MODELS

Nuclear density functional theory (DFT) is a powerful
technique that facilitates the description of the ground-state
energy of a nuclear system as a functional of the ground-
state density alone. The basic execution has been in the form
of a self-consistent mean-field model in which an EDF is
constructed as a functional of the one-body nucleon density
matrices. The EDFs are phenomenological and are deter-
mined by adjusting the model parameters to reproduce the
properties of nuclear matter as well as the bulk properties
of selected spherical and stable nuclei. Several HFB models
based on nonrelativistic DFT have been developed [28,33].
Over several decades, both nonrelativistic and relativistic
DFTs have enabled considerable progress in achieving the
goal of predicting the structure properties with a high degree
of confidence for nuclei across the periodic table, includ-
ing those which are near drip lines. The nonrelativistic [34]
and relativistic [35–38] DFT in nuclear physics have been
extensively reviewed. One of the successes of the covariant
(relativistic) DFT (CDFT), in contrast to nonrelativistic DFT,
is the reproduction of the kinks in the systematics of charge
radii for neutron shell closure for several isotopic chains, as
discussed in a recent review [22]. An important aspect of the
CDFT is the provision of the spin degree of freedom, unlike in
nonrelativistic DFT where additional parameters are required
to account for the spin-orbit interactions. The CDFT has been
able to provide a good description of not only the ground-state
properties but also the excitation properties of a variety of
nuclei [39–41].

The formulation and development of the RHB model,
which represents a relativistic extension of the conventional
HFB framework, has been an important step for studying
nuclei lying away from the line of stability. The descrip-
tion of existing nuclear structure data and the prediction of
properties by relativistic mean-field models are comparable

to, and recently even better than, nonrelativistic mean-field
models [26,27,36,37]. Some examples of such theories are
the RHB models with density-dependent meson-exchange
(DD-ME2) relativistic (covariant) energy density function-
als [26,27] and the nonrelativistic HFB theory with the Gogny
D1S interaction [28–30]. The analysis of several nuclear
structure properties has also been carried out through various
other approaches using relativistic [4,5,42–44] and nonrela-
tivistic mean-field models [34,45,46].

The continuum and pairing correlations play a critical
role in the study of nuclei near drip lines. The relativistic
continuum Hartree-Bogoliubov (RCHB) theory [47,48] has
been able to provide a unified and self-consistent treatment of
pairing correlations and mean-field potentials in the presence
of the continuum. The RCHB theory was able to successfully
provide the first microscopic self-consistent description of
the halo in 11Li and predicted the giant halos in light and
medium-heavy nuclei [38]. By taking the deformation into
account, a deformed RCHB theory was developed [49,50].
The application of deformed RHB theory in the continuum
(DRHBc) based on one of the most successful relativistic
density functionals, PC-PK1 [51] for even-even nuclei was
successfully done for the case of Nd isotopes [52]. Recently,
the predictive power of DRHBc theory for nuclei in the su-
perheavy region, and also that of possible stability beyond the
neutron drip line, was investigated [53].

The RHB model with DD-ME2 functional and HFB model
with Gogny D1S interaction are compared in the present work.

A. RHB model with DD-ME2 functional

The Dirac-RHB (DIRHB) approach with the explicit DD-
ME2 model [26,27] provides a precise global description
of a variety of nuclear structure phenomena of even-even
deformed nuclei. In the RHB framework, an effective La-
grangian is routinely used to express the Dirac spinor nucleons
interacting through various exchange mesons. The account of
single-particle and bulk properties of nuclei is provided by
a minimal set of meson fields arising from the σ , ω, and ρ

mesons as well as the electrostatic potential. The model pro-
vides a treatment of the SCMF (ĥD) and pairing field (�̂) by
means of two average potentials. ĥD describes the long-range
particle-hole (ph) correlations, while the particle-particle (pp)
correlations are taken into account by (�̂). The RHB equa-
tions are given by

(
ĥD − m − λ �̂

−�̂∗ −ĥ∗
D + m + λ

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
,

where ĥD, m, and λ are the single-nucleon Dirac Hamiltonian,
nucleon mass, and Fermi energy, respectively. The coefficients
Uk and Vk are the quasiparticle Dirac spinors, while Ek is
the quasiparticle energy. The �̂ is obtained from the pairing
tensor and two-body nuclear potential Vpp in the pp channel.
Since there is no empirical evidence for relativistic effects
in �̂, a hybrid RHB model with a nonrelativistic pairing
interaction is generally used. Therefore, Vpp is described by
a separable pairing force having a finite range [54].
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A combination of the configurational and coordinate space
representations by Vautherin [33] is used in the RHB model
for efficient execution. This method can be implemented for
spherical, axially deformed, and triaxial nuclei. The vector
and scalar densities obtained are used to compute the re-
quired potentials. The RHB equations are to be solved in a
self-consistent way, with potentials obtained in the mean-field
approximation from solutions of the Klein-Gordon equa-
tions that describe the meson fields. Explicit calculations
require parameters appearing in the Lagrangian and Vpp as
input. The RHB calculations yield single-particle energies,
nucleon spinors, fields, occupancies, total binding energy,
deformations, rms radii, currents, and densities. The RHB
equations are solved iteratively in an axially deformed har-
monic oscillator basis. The number of oscillator shells taken
into account in the expansion was Nmax

F = 12 fermionic shells
for the Dirac spinors and Nmax

B = 20 bosonic shells for the me-
son fields. The deformation parameter (β2) for the harmonic
oscillator basis and for the initial Woods-Saxon potential was
set to be zero. It should be noted that pairing correlations are
treated in the BCS constant-gap approximation with empirical
pair gaps (five-point formula) [55], while the EDF parameters
are adjusted for DD-ME2.

B. Nonrelativistic HFB model with Gogny D1S interaction

The microscopic HFB method using the Gogny D1S effec-
tive nucleon-nucleon interaction [28,30] has been successfully
used for nuclear structure studies for a variety of nuclei. A
detailed description of the HFB theory is presented in sev-
eral references [29,56–58]. Delaroche et al. [30] have carried
out a large-scale systematic study of the structure at low
energy with normal deformation using the constrained-HFB
theory along with a mapping to the five-dimensional collective
Hamiltonian, employing the Gogny D1S interaction in the nu-
clear Hamiltonian [28,56]. The constrained axially symmetric
HFB-D1S calculations for isotopes of C (Z = 6) to Ds (Z =
110) for even-even nuclei from proton to neutron drip lines
have been performed with a common set of parameters for all
properties studied. Compilations of calculations of the global
ground- and excited-state properties of thousands of nuclides
are available online [59]. Some global properties presented
include the positions of the drip lines, ground-state radii,
intrinsic quadrupole shape parameters, and binding energies.
The radial matter densities required to perform optical-model
calculations have also been made available. The neutron and
proton densities are tabulated in the radius grid in steps of 0.1
fm up to a maximum value of 15 fm.

In the present work, the RHB calculation using the DD-
ME2 interaction is referred to as DIRHB, while the HFB
calculation with the Gogny D1S interaction is denoted by just
HFB.

III. CALCULATED GROUND-STATE PROPERTIES
FOR Cr ISOTOPES

A. Charge radii

The reliability of the calculations depends on the consistent
understanding of fundamental properties of the ground state,
such as binding energies (obtained from the nuclear masses)

FIG. 1. The calculated two-neutron separation energies (S2n) us-
ing the DIRHB and HFB models. The corresponding experimental
values [60] are also shown.

and rms radii (determination of the nuclear size and shape).
The study of nuclear properties as a function of the number
of neutrons gives a deeper understanding of the variation of
properties with isospin, and thereby important nuclear struc-
ture information can be obtained.

The binding energy (Eb) and two-neutron separation en-
ergy (S2n) were obtained for the isotopes 46–62Cr from the
DIRHB as well as the HFB calculations and compared with
available data [60]. The calculated Eb and S2n were further
compared with those from spherical RCHB [61] and deformed
DRHBc [25] and are found to agree well. The agreement of
the calculated Eb for the Cr isotopic chain is found to be within
1% of the corresponding experimental values [42]. The S2n

calculated from the DIRHB and HFB are displayed in Fig. 1.
Both the DIRHB and HFB calculations show a characteristic
decrease in S2n with an increase in neutron number, and the
systematics are in agreement with those from experiment [60]
as well as those listed using the DRHBc calculation.

The difference between the rms charge radii of the even-
even isotopes of Cr (N = 22–38) and that of the closed-shell
nucleus, 52Cr (N = 28) is represented by the expression,
δ〈r2

c 〉N,28=〈r2
c 〉N − 〈r2

c 〉28. It is well known that the δ〈r2
c 〉N,28 is

precisely measured through laser spectroscopy measurements
and serves as a test for discriminating between theoretical
models. The δ〈r2

c 〉N,28 calculated using both the DIRHB and
HFB are shown in Fig. 2, for even isotopes of Cr. The mea-
sured δ〈r2

c 〉N,28 are available in the literature for 50,52,54Cr [10].
As seen in Fig. 2 in the case of 50Cr (N = 26), both the
DIRHB and HFB values of δ〈r2

c 〉N,28 agree with each other;
however, they are slightly higher than the experimental value.
The HFB value of δ〈r2

c 〉N,28 for N = 30 agrees quite well with
the corresponding datum, while the DIRHB value is slightly
higher. The experimental δ〈r2

c 〉N,28 values for 50,54Cr are over-
estimated by the DIRHB calculations. This indicates that there
could be effects beyond the mean field that affect the ground-
state properties of the nuclei with N = 26, 30 having prolate
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FIG. 2. The difference (δ〈r2
c 〉N,28) between the rms charge radii

of even-even isotopes of Cr and that of the closed-shell nucleus
52Cr (N = 28) calculated using the DIRHB and HFB models. The
corresponding experimental values [10] (where available) are shown
for comparison. The dashed line indicates δ〈r2

c 〉N,28 values obtained
using the droplet model [65].

deformation [22]. The variation in nuclear charge radii can
be explained by studying quadrupole deformation [62]. Both
the DIRHB and HFB calculations show maximum δ〈r2

c 〉N,28

values for mid-neutron-shell nucleus 48Cr (N = 24). The half-
filled shells are deformed and, consequently, are associated
with large quadrupole moments and charge radii. It is inter-
esting to note that similar behavior of δ〈r2

c 〉N,28 is seen in the
Ti and Fe isotopic chains [5,63,64].

A comparison of the DIRHB and the HFB values of
δ〈r2

c 〉N,28 with the spherical droplet model [65] is also pre-
sented in Fig. 2. It is seen that the droplet model shows
consistently lower values for radii as compared to the DIRHB
and HFB ones, and shows no kink. In the neutron-rich isotopes
of Cr, a steady increase in the DIRHB and HFB radii with
the addition of neutrons is seen, beyond N = 30. There is a
change in the slope in δ〈r2

c 〉N,28 at N = 30, while a different
behavior is seen in the neutron-deficient region for both the
calculations and experiment. Both calculations for δ〈r2

c 〉N,28

reproduce the experimental anomalous behavior (i.e., nuclei
with fewer neutrons compared to N = 28 show increased
radii, while a decrease is expected from the droplet model).
It is also seen that, as neutrons are removed from 52Cr, the
δ〈r2

c 〉N,28 increases followed by a decrease towards N = 22.
The δ〈r2

c 〉N,28 for 46–62Cr, calculated from DIRHB and HFB,
agree well with those tabulated for DRHBc [25]. The mea-
sured values of nuclear charge radii through the isotope shift
method using laser spectroscopy for radioactive Cr isotopes is
required to substantiate the predictions and understand their
behavior.

B. Point proton and neutron density distributions

Once the calculations of ground-state properties are found
to be in agreement with the experimental data, the point

FIG. 3. The calculated DIRHB and HFB (L = 0 component)
proton [(a) and (b)] and neutron [(c) and (d)] densities, normalized
to Z and N , respectively, for even Cr isotopes.

proton and neutron density distributions that are required for
the calculation of the optical model potential can be carried
out. For axially deformed target nuclei, the nuclear density
distributions are expressed in terms of a multipole expansion
with Legendre polynomials [33,66]. The multipole decompo-
sition of the density distribution can be written in terms of
multipole components L, and normalized to the numbers of
protons and neutrons, respectively. A component with a higher
L has a smaller contribution to the density distribution, and
with increasing deformation the contribution of higher-order
components becomes larger. For the even isotopes, 46–62Cr,
the L = 0 components of the DIRHB and HFB point proton
(ρp) and neutron (ρn) density distributions are considered and
are normalized to respective proton and neutron numbers.
They are shown in Fig. 3 and their features are discussed.
Both ρp and ρn from the DIRHB and HFB calculations are
quite similar in the nuclear interior for all the isotopes shown.
There is less dispersion of ρp from the HFB calculations
in the surface region compared to those from the DIRHB
ones. As expected, ρp from DIRHB and HFB has the lowest
spread for isotopes with N = 28, while it is more extended
and similar in nature to isotopes with N = 22, 24. The ρp

distribution for N = 26, 30–38 closely resemble one another,
with N = 38 having less spread in the surface region. In the
cases of N = 22–28, the ρn distribution in the surface region
extends over smaller distances as compared to the N = 30–38
isotopes. Figure 3 also indicates that 46Cr has the least spread
in ρn for the HFB calculation.

The point proton and neutron density distributions from the
DIRHB and HFB calculations for the even isotopes of Cr are
used in the folding model analysis, which is discussed in the
next section.
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IV. FOLDING OPTICAL MODEL USING JLMB
INTERACTION

The folding model has been successful in establishing
a direct connection between the nuclear structure and the
reaction observables through elastic scattering. The behav-
ior of the nuclear density distributions and, therefore, the
nuclear charge radii of the isotopes are reflected in the re-
action cross sections. The connection can be used to predict
the reaction cross sections, especially for radioactive nuclei,
where data are scarce. Making a successful prediction of
the reaction cross sections relies on the radial matter densi-
ties being derived from well-tested structure models, either
relativistic or nonrelativistic [67,68]. Similar considerations
are applicable for the microscopic, spherical nucleon-nucleus
optical model potentials based on different approximations
or effective forces [32,69–74]. Both microscopic [75,76] and
phenomenological [77] optical models have been successful
in describing nucleon-nucleus scattering. However, the micro-
scopic calculation of potentials is essential for understanding
the subtle changes in cross sections of nuclei as a function of
neutron number. The nucleon-nucleus optical model potential
(OMP) is constructed, in the single-folding model approach,
by integrating a complex energy- and density-dependent
nucleon-nucleon effective interaction with the nuclear density
distributions describing the target nucleus.

In the present work, an extended version [32] of the orig-
inal Jeukenne, Lejeune, and Mahaux (JLM) potential [31]
relying on the Brückner-Hartree-Fock approximation was
used that provides a good overall description of nucleon
scattering and reaction observables. The JLM interaction es-
tablished for nuclear matter was made suitable for finite
nuclei, by applying a local density approximation, and is
further extended to deformed nuclei. For reproduction of the
experimental scattering and reaction observables, a suitable
spin-orbit potential, in addition to an appropriate central po-
tential, is required. The JLM model [31] provides only the
central potential, and therefore a phenomenological prescrip-
tion [78] that is applicable for higher energies was used to
calculate the deformed complex spin-orbit potential in the full
Thomas form. The resulting potential, referred to as JLM-
Bruyéres (JLMB) [32], is complex, spin-independent, energy-
and density-dependent, and suitable for energies from 1 to
200 MeV. The input point proton and neutron densities of the
target used in the folding model were calculated in the DIRHB
and HFB frameworks as described in the previous section.
Using the semimicroscopic approach, the folding OMPs are
obtained for the elastic scattering of 65 MeV protons from
even isotopes of Cr (N = 22–38). The JLMB potential that
gives the real and imaginary parts of the central and spin-orbit
OMPs is calculated. The folding of the JLM internucleon
interaction with the calculated DIRHB and HFB densities,
respectively, is carried out to calculate the differential elastic
scattering and total reaction cross sections for the even iso-
topes of 46–62Cr.

The spherical JLMB optical model, used in the present
study, treats the target nucleus as spherical. However, the
observations indicate that all Cr isotopes, except 52Cr, are
deformed and collectivity sets in for open-shell nuclei,

46–50,54–62Cr [79,80]. The coupled-channels method [81] can
be used to describe simultaneously the elastic scattering chan-
nel and the low-lying states that, due to their collective nature,
are strongly excited in inelastic scattering. It is important to
note that the coupled-channel effects play an important role at
lower energies and not at the proton energy of 65 MeV, and,
therefore, are not considered in the present calculations.

V. CALCULATED POTENTIALS FOR PROTON ELASTIC
SCATTERING FROM Cr ISOTOPES

Folding of the JLMB nucleon-nucleon interaction with
each of the calculated DIRHB and HFB densities, for the
elastic scattering of 65 MeV protons from even isotopes of
Cr was performed using the code MOM (Microscopic Optical
Model) [32]. The folding model gives both the real [V (r)]
and imaginary [W (r)] parts of the central as well as the real
[Vso(r)] and imaginary [Wso(r)] parts of the spin-orbit optical
model potentials as a function of radial distance (r). The
semimicroscopic OMP, UJLMB(r, E ), can be expressed as

UJLMB(r, E )

= λV V (r, E ) + iλW W (r, E )

+ h̄2

2m2c2
(l̄ · σ̄ )

[
λV soVso(r, E ) + iλW soWso(r, E )

]
,

where λV , λW , λV so, and λW so are the energy (E ) dependent
renormalization factors for the real and imaginary central as
well as spin-orbit parts of the OMP, respectively. The λ’s
provide the overall renormalization of the calculated OMP
that is essential for obtaining a good agreement with the
elastic scattering differential cross-section data and takes into
account any deficiency in the potential.

An available version of the code ECIS06 [82] was used for
the calculation of elastic scattering and total reaction cross
sections. The code performs a search on λ’s that provides a
minimum in χ2 by fitting the differential cross-section data
for stable isotopes. At the incident proton energy of 65 MeV,
both the central and spin-orbit interactions are important for
calculating the cross sections for proton scattering off Cr iso-
topes. Since the focus here is the prediction of cross sections,
it is important to use a minimum number of parameters (λ)
in the process. By conducting a search on all the λ’s, it was
found that λW so was small, and, since it did not have much
influence on the calculated cross sections, it was neglected.
In a previous calculation for the neighboring isotopic chain of
Ti [5], satisfactory results for proton scattering at an incident
energy of 65 MeV were obtained. For the sake of consistency,
in the comparison of cross sections in the N = 28 region, the
value of λV so = 88 for the Cr isotopic chain was fixed. There
are now only two parameters, λV and λW , in the calculation.
With λV so fixed at 88, a search was carried out on λV and λW

for χ2 minimization and a good agreement of the calculated
differential cross section with the data for stable isotopes,
50,52,54Cr, was obtained. The values are referred to as the
best-fit values (plotted in Fig. 5). The resulting values λV

and λW were slightly different for folding-model calculations
using DIRHB compared to those using HFB densities.
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FIG. 4. The renormalized real central, imaginary central, and real
spin-orbit parts of the folded potential using best-fit values of λV

and λW for the scattering of protons from stable even-Cr isotopes.
The corresponding phenomenological [83] Woods-Saxon (WS) po-
tentials are also shown.

The best-fit values are used to calculate the renormalized
V (r), W (r), and Vso(r) as shown in Fig. 4 for stable isotopes.
The potentials determined from the above semimicroscopic
calculations are compared with those of the corresponding
phenomenological Woods-Saxon (WS) ones [83], and those
as a function of radial distance (r) are shown in Fig. 4. It is
seen from Fig. 4 that there is agreement of V (r), W (r), and
Vso(r) with the corresponding WS parts of the potentials in the
surface region. The WS potential is deeper and different com-
pared to both W (r)DIRHB and W (r)HFB. The V (r)DIRHB and
V (r)HFB for 50Cr are deeper compared to the WS potential,

FIG. 5. Top panels, (a) and (b): Renormalization constants (λV )
for real parts of the central potential. Bottom panels, (c) and (d):
Renormalization constants (λW ) for imaginary parts of the central
potential. The results are obtained for proton scattering from even-Cr
isotopes using the DIRHB and HFB densities as well as JLMB
interaction in the folding model. The λV and λW values from a
least-squares (LS) fit and average values are shown by solid and
dashed lines, respectively. The corresponding best-fit values for sta-
ble isotopes are shown by solid circles.

while for 52,54Cr the potential is deeper for HFB compared to
DIRHB and WS in the interior region.

A least-squares (LS) fit to the best-fit values of λV and λW

was carried out to obtain λV and λW values for the radioac-
tive Cr isotopes. The renormalization constants for real, λV

[Figs. 5(a) and 5(b)], and imaginary, λW [Figs. 5(c) and 5(d)],
central parts of the potential for proton scattering from even-
Cr isotopes using the DIRHB and HFB densities as well
as the JLMB interaction in the folding model, respectively,
are shown in Fig. 5. Linear relations between λV and λW ,
respectively, with A for the Cr isotopic chain, are given by
the equations

DIRHB: λV = −0.0082A + 1.347, λW = 0.0116A + 0.131;

HFB: λV = −0.0112A + 1.547, λW = 0.2410A − 0.376,

As expected, λV have values approaching unity for both
calculations. The slope of λV and λW obtained in calculations
given in Fig. 5 for A = 22–38 is small. The average values
of λV and λW are 0.9255 and 0.7443, respectively, for the
calculation using DIRHB densities, while they are 0.9668
and 0.8707, respectively, for the calculation using the HFB
densities. They are plotted in Fig. 5. The errors in λV and λW

are obtained by changing λV and λW , respectively, to obtain a
variation twice χ2 from the corresponding best-fit values.
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FIG. 6. The elastic scattering differential cross section [σ (θ )]
as a function of center of mass (c.m.) angle, calculated using the
DIRHB and HFB densities as well as the JLMB interaction in the
folding model for the scattering of the 65 MeV protons from even
Cr isotopes. The corresponding experimental values [83] available
for stable Cr isotopes are shown. The σ (θ ) are calculated using
least-squares (LS) fit values of λV and λW .

VI. SCATTERING AND REACTION CROSS SECTIONS
FOR Cr ISOTOPES

Using the renormalized OMP constructed by folding the
JLMB interaction and two different types of density distribu-
tions, namely, DIRHB and HFB, as described in the previous
section, the elastic scattering differential and total reaction
cross sections are calculated using the code ECIS06 [82]. This
semimicroscopic approach is used in the analysis of proton
elastic scattering on stable and radioactive even isotopes of
Cr (A = 46–62). The cross sections are calculated using the
best-fit, LS-fit, and average values of λV and λW , keeping
λV so = 88 fixed.

A. Elastic scattering differential cross section

The elastic scattering differential cross sections [σ (θ )] cal-
culated using the least-squares fit values of λV and λW for the
scattering of 65 MeV protons from Cr isotopes, employing
the DIRHB and HFB densities as well as JLMB interaction
in the folding model, are given in Fig. 6. The corresponding
experimental [83] differential cross-section values available
for stable isotopes are also plotted in the same figure. It is seen
that the calculated values using the DIRHB and HFB densities
in the folding model for the stable 50,52,54Cr isotopes are in
good agreement with the corresponding data [83]. Overall,
the features of the angular distribution are quite similar for all
Cr isotopes under consideration. However, the first minimum
becomes slightly deeper with an increase in neutron number. It
may be noted that there are no differential cross-section data
available for proton scattering from unstable Cr isotopes at
65 MeV. The predictions of elastic scattering differential
cross sections for neutron-deficient 46,48Cr and neutron-rich
56,58,60,62Cr, are made using the semimicroscopic approach.

FIG. 7. The total reaction cross section (σR) calculated using the
DIRHB and HFB densities as well as the JLMB interaction in the
folding model for the scattering of 65 MeV protons from even-Cr
isotopes. The σR are calculated using the best-fit and least-squares
(LS) fit values of λV and λW . The σR from geometric and Kox [84,85]
models are indicated by dotted and dashed lines, respectively.

B. Total reaction cross section

Total reaction cross sections (σR) calculated using DIRHB
and HFB densities, as well as the JLMB interaction in the
folding model, using the least-squares fit values for even-Cr
isotopes are shown in Fig. 7. The calculated σR obtained for
stable 50,52,54Cr isotopes using the best-fit values of λV and λW

are also shown in the same figure. The errors in the calculation
of σR have been included to note the sensitivity with respect
to the change in renormalization constants, λV and λW . The
errors in the best-fit values of σR, as shown in Fig. 7, for
the stable isotopes are deduced by the same method applied
in the cases of λV and λW . To understand and compare the
behavior of the calculated σR in the present work with basic
representations, σR from geometric (σ g

R) and Kox [84,85] (σ K
R )

models, are also plotted in Fig. 7. The Kox model is based on
the simple concept of strong absorption, while the geometric
cross section is calculated using the simple relation σ

g
R = π r2

0

(A1/3
p + A1/3

Cr )2. The cross sections obtained from the geo-
metric and Kox models were normalized to the extrapolated
experimental cross section for 52Cr (N = 28), i.e., 0.69 b, as
explained below. The σ

g
R and σ K

R both show a smooth increase
with a change in neutron number; however, their slopes are
different, with the Kox model exhibiting a larger slope. As
expected, calculations for both σ

g
R and σ K

R cannot reproduce
the kink at the N = 28 shell gap, which is a typical feature of
the variation of σR with N .

Although an experimental value of σR at a proton energy of
65 MeV is not available, a value of σR = 0.708 ± 0.190 b [86]
has been measured for scattering of 60.8 MeV proton beam
from a 52Cr (N = 28) target. Therefore, a simple extrapolation
using the trend inferred from available σR data for the scatter-
ing of protons, at various incident energies, from neighboring
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even-even target nuclei [87] was carried out to estimate σR for
52Cr at 65 MeV. The σ DIRHB

R determined for the scattering of
65 MeV protons from a 52Cr (N = 28) target is about 0.69 b,
which is in agreement with the above extrapolated value. The
σ HFB

R obtained in the case of 52Cr is much higher than that of
σ DIRHB

R . There is a monotomic increase in σ HFB
R as a function

of neutron number with no kink at the N = 28 shell closure.
However, a kink at N = 28 is clearly evident in the variation
of σ DIRHB

R with neutron number similar to that seen in the
δ〈r2

c 〉2 systematics of Fig. 2. It would be interesting to study
the correlation between σR and 〈r2

c 〉2 for neighboring isotopic
chains.

VII. CONCLUSION

Two different models, the relativistic Hartree-Bogoliubov
(RHB) model with density-dependent meson-exchange (DD-
ME2) relativistic energy density functional and the non-
relativistic mean-field model based on the Hartree-Fock-
Bogoliubov (HFB) theory with the Gogny D1S interaction,
were used to calculate the nuclear ground-state properties for
even isotopes 46–62Cr. The DIRHB and HFB calculations for
the ground-state properties, such as root-mean-squared charge
radii, successfully describe the kinks at the N = 28 shell clo-
sure observed in the corresponding data. The point proton and
neutron density distributions calculated from the RHB and
HFB models, respectively, are convoluted with the Jeukenne-
Lejeune-Mahaux-Bruyeŕes (JLMB) internucleon interaction,
to obtain the optical potential. Real and imaginary central as
well as real spin-orbit potentials are used to compute the cross
section for the scattering of 65 MeV protons from even 46–62Cr

isotopes. The elastic scattering differential cross sections cal-
culated from the folding model analysis using the DIRHB and
HFB densities as well as the JLMB interaction agree well
with the corresponding experimental values for stable even
Cr isotopes. The prediction of σR for even 46–62Cr isotopes
was presented using both the relativistic and nonrelativistic
self-consistent mean-field models. The semimicroscopic fold-
ing model calculation using the DIRHB densities is able to
reproduce the kink at N = 28 in the variation of the total
reaction cross section, similar to that observed in the variation
of the root-mean-squared charge radii for Cr isotopes. The
calculation with nonrelativistic HFB densities shows a mono-
tomic increase in reaction cross section and no kink is visible
in the variation with neutron number for the Cr isotopic chain.
Measurements of reaction cross sections in existing radioac-
tive ion-beam accelerator facilities are expected to validate
the predictions presented here for the scattering of 65 MeV
protons from even-Cr isotopes.
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