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Exploring the sensitivity of charge-exchange (p, n) reactions to the neutron density distribution
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Background: The determination of the nuclear neutron properties suffers from uncontrolled uncertainties, which
have attracted considerable attention recently, such as in the context of the PREX experiment.
Purpose: Our aim is to analyze the sensitivity of charge-exchange (p, n) reactions to the neutron density
distribution ρn and constrain the neutron characteristics in the nuclear structure models.
Method: By combing the folding and the mean-field models, the nucleon-nucleus (NA) potential can be obtained
from the nuclear density distribution. Further, the (p, p) and (p, n) cross sections for 48Ca and 208Pb are calculated
following the distorted-wave Born approximation method.
Results: Compared with the (p, p) cross section, the effects of ρn variation on the (p, n) cross section are
significant, which is due to the impact of isovector properties. Based on the global folding model analyses
of data, it is found that 48Ca and 208Pb have relatively large neutron skin thickness �Rnp.
Conclusions: Results illustrate that the charge-exchange (p, n) reaction is a sensitive probe of ρn. The results in
this paper can offer useful guides for future experiments of neutron characteristics.
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I. INTRODUCTION

The accurate description of neutron density distribution ρn

has been a longstanding problem in modern nuclear physics.
Compared with the proton density distribution ρp, our knowl-
edge of ρn is very limited. The nuclear neutron characteristics
are strongly connected with the equation of state [1,2], the
neutron star radius [3,4], and the heavy-ion collision [5,6]. In
the last few years, different methods have been proposed and
employed to probe ρn, such as the hadronic scattering [7,8]
and the formation of antiprotonic atoms [9–11]. However, the
interpretation of these methods requires a model-dependent
description of the strong interaction, leading to significant
systematics besides statistical errors. It should be mentioned
that the Lead Radius EXperiment (PREX) Collaboration at
the Jefferson Laboratory (JLab) used parity-violating elec-
tron scattering (PVES) to study ρn for 208Pb [12–17]. At
present, ρn is mainly measured through its contributions to
the isoscalar properties. Compared with the isoscalar prop-
erties, the isovector properties better test uncertainties in ρn;
therefore, it is extremely important to find an experimental
observable of isovector properties.

*liujian@upc.edu.cn
†danielewicz@nscl.msu.edu

In the charge-exchange (p, n) reaction, the Fermi transi-
tions (�L = 0, �S = 0, �T = 1) between the initial state
and isobaric analog states (IASs) provide a useful tool for
studying isovector excitation. During the reaction process,
the IAS essentially retains the same structure as the target
nucleus, except for the replacement of a neutron by a proton
[18–21]. The NA potential can be written as the superposition
of the isoscalar potential U0 and the isovector potential U1:

U (R) = U0(R) + 4U1(R)
t · T

A
, (1)

where t and T are the isospin of the projectile nucleon and
the target nucleus, respectively. Compared with the U0, the
Lane potential U1 is small, and its influence on the elastic
scattering cross section is relatively limited [22,23]. However,
U1 reflects the differences between the neutron and proton po-
tentials for elastic processes, and it determines the transition
strength of the initial state to IASs in the (p, n) reaction [24].
Therefore, the charge-exchange (p, n) reactions can be a good
probe of ρn.

During recent years, numerous models have been proposed
to describe the isovector potential U1. One such method is
the optical model potential, which parametrizes U1 in Woods-
Saxon form [25,26]. However, the optical model parameters
are derived from the elastic scattering data and do not connect
to the nucleon-nucleon (NN) interaction [27]. Efforts to de-
scribe the NN potential realistically at the microscopic level
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include the Argonne potential [28,29] and the Reid soft-core
potential [30]. Individual terms in a realistic NN potential
have a specific physical meaning but they do not directly relate
to the nuclear density distribution or the optical potential for
scattering. For the purposes of relating the nucleon-nucleus
scattering with the nuclear structure information, the fold-
ing model was developed in the past decade [31,32]. The
folding model is built based on the effective NN interaction
[33–35], which can be deduced from the G-matrix elements
of the Paris and Reid NN potential, etc. [36]. The folded
potential is obtained by averaging the effective NN inter-
action over the nuclear density distributions within the two
colliding ions. If the effective NN interaction is well-defined,
the folding model can provide a valid basis for the study
of ρn.

The neutron density distribution ρn is usually calculated in
a nuclear structure model, and there the self-consistent mean-
field model for structure is a comprehensive and successful
method to calculate the nuclear density distribution from the
light to heavy nuclei [37–40]. Both relativistic and nonrel-
ativistic methods can be used to construct the mean-field
model. For the binding energies B/A and the charge radii RC,
the theoretical results of the mean-field model are consistent
with the experimental data [41–44]. However, ρn values cal-
culated from the mean-field models with different parameter
sets vary considerably. The theoretical neutron skin thickness
�Rnp given by the mean-field model ranges, in particular,
from 0.1 to 0.32 fm for 208Pb [45]. This is due to the lack
of information on neutron characteristics when constraining
the force parameters of the mean-field model. Therefore, the
availability of suitable experimental observables of neutron
characteristics is significant for the development of the nuclear
structure model in general.

The main purpose of this paper is to analyze the sensitivity
of the charge-exchange (p, n) reactions to the neutron density
distribution ρn. First, we study the nuclear properties of 208Pb
and 48Ca in the Skyrme-Hartree-Fock (SHF) and the relativis-
tic mean-field (RMF) frameworks. Next, we use the complex
folding model and the hybrid folding model to generate the
U0 and U1 potentials in Eq. (1), and we further describe the
(p, p) and (p, n) cross sections based on the distorted-wave
Born approximation (DWBA) method [46]. Then, the renor-
malization coefficients of the folded potential are calibrated
based on the experimental (p, p) and (p, n) cross sections of
208Pb and the �Rnp of PREX-II results. Finally, we explore
the effects of ρn on the (p, n) cross sections for the 208Pb. The
calibrated renormalization coefficients are further substituted
into calculations of (p, p) and (p, n) cross sections for 48Ca to
investigate the neutron properties of 48Ca. The Calcium Ra-
dius EXperiment (CREX) plans to provide a measurement of
the weak charge distribution and the neutron density of 48Ca
[47]. The studies of quasielastic (p, n) reactions can offer use-
ful guidance for the CREX experiment. Besides, the folding
model analyses can also be used to study the α decay [48,49],
the symmetry energy [50,51], and the heavy-ion collision
[52,53].

This paper is organized as follows. In Sec. II, the theo-
retical frameworks of the DWBA method, the folding model,
and the mean-field model are provided. In Sec. III, the results

and discussions of nuclear properties and the (p, p) and (p, n)
cross sections for 208Pb and 48Ca are presented. Finally, con-
clusions are given in Sec. IV.

II. THEORETICAL FRAMEWORK

In this section, we introduce the theoretical frameworks
for calculating the (p, p) and (p, n) scattering cross sections.
First, we present the formulas for the (p, p) and (p, n) cross
sections in the DWBA method. Then, we further investi-
gate the NA potential within the folding model. Finally, the
corresponding formalisms for the SHF and RMF models
are presented to calculate the density input for the folding
model.

A. DWBA cross sections

In the calculation of elastic scattering of charged parti-
cles, the cross section is obtained by considering both the
Coulomb and the nuclear scattering amplitudes. Correspond-
ingly the (p, p) cross section can be decomposed into three
terms [52,54]:

dσ(p,p)

d�
= dσC

d�
+ dσN

d�
+ dσi

d�
. (2)

Here, dσC/d� is the Rutherford cross section and dσi/d�

is the interference contribution. The remaining term is the
nuclear cross section dσN/d�, tied to both the Coulomb po-
tential and the matrix element of the NA potential in isospin
space:

〈τ, Z|U (R)|τ, Z〉=U0(R) ± N − Z

A
U1(R), with τ=p, n.

(3)

The “+” sign of Eq. (3) pertains to the incident neutron
and the “−” sign pertains to the incident proton. The angu-
lar structure of the nuclear cross section can be expressed
as

dσN

d�
= 1

k2

1

2s + 1

∑
L

(2L + 1)AN
L PL(cos θ ), (4)

where the expansion coefficients AN
L are

AN
L = 1

4

∑
J ′	′

(2J ′ + 1)(2	′ + 1)
∑

J	

(2J + 1)(2	 + 1)

×
(

	 	′ L
0 0 0

)2{
	 	′ L
J ′ J s

}2

× Re
[
e2i(σ	−σ	′ .)

(
SN∗

J ′	′ − 1
)(

SN
J	 − 1

)]
. (5)

Here, σ	 are Coulomb phase shifts and SN
J	 are nuclear factors

from solving the Schrödinger equation with the combination
of the Coulomb potential and the nuclear potential in Eq. (3).
From Eq. (3), it can be seen that U0 dominates the NA po-
tential; therefore, the (p, p) cross section mainly reflects the
isoscalar properties of the nucleus.

In the (p, n) reaction, the matrix element that drives
the transition from the initial state to the final state
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is

〈n, Z + 1|U (R)|p, Z〉 = 2

√|N − Z|
A

U1(R). (6)

In terms of Eq. (6), the unpolarized (p, n) cross section in
the DWBA approximation can be rewritten as [46,54]

dσ(p,n)

d�
= (2π )4μpμn

kn

kp

1

2s + 1

∑
MpMn

×
∣∣∣∣2

√|N − Z|
A

∫
dRχ

(−)†
nMn

(R)U1(R)χ (+)
pMp

(R)

∣∣∣∣
2

.

(7)

Here μ and k are the reduced mass and the center of mass
(c.m.) wave vector in the n or p channels indicated with the
subscript. The wave functions χ represent distorted waves of
protons and neutrons in the initial and final channels, which
can be calculated in the consideration of the elastic scattering.
The angular dependence of the (p, n) cross section can be
expressed in a manner similar to Eq. (4):

dσ(p,n)

d�
= 1

k2
p

1

2s + 1

∑
L

(2L + 1)A(p,n)
L PL(cos θ ). (8)

Here, the coefficients A(p,n)
L in the differential cross section are

A(p,n)
L = 4μpμnkpkn

∑
J ′	′

(2J ′+1)(2	′+1)
∑

J	

(2J+1)(2	+1)

×
(

	 	′ L
0 0 0

)2{
	 	′ L
J ′ J s

}2

Re[I∗
J ′	′IJ	], (9)

where I’s are the partial-wave integrals,

IJ	 = 2

√|N − Z|
A

∫ ∞

0
dRR2u(+)

nJ	 (R)U J	
1 (R)u(+)

pJ	(R), (10)

and u’s are the radial wave functions for the initial and final
channels.

B. Folding model

The (p, p) and (p, n) scattering cross sections in Eqs. (2)
and (8) are determined in terms of the NA potential. In this
paper, we use the folding model to calculate U0 and U1 and to
connect the scattering cross sections and the nuclear structure
model. In the folding model, the NA potential UN is evaluated
as

UN =
∑
j∈A

[〈i j|vD|i j〉 + 〈i j|vEX| ji〉], (11)

where vD and vEX are the direct and exchange parts of the
effective NN interaction [55]. The spin-isospin term of the
effective NN interaction is decomposed as

vD(EX)(ρ, E , s) = v
D(EX)
00 (ρ, E , s) + v

D(EX)
10 (ρ, E , s)(σ · σ ′)

+ v
D(EX)
01 (ρ, E , s)(τ · τ ′)

+ v
D(EX)
11 (ρ, E , s)(σ · σ ′)(τ · τ ′). (12)

Here, s is the distance between a target nucleon and the in-
cident proton, and ρ is the nuclear density. The contribution

from the spin-dependent terms (v10 and v11) in Eq. (12) is
exactly zero for a spin-saturated target. In using the explicit
ρp and ρn as the input of the folding model, the Hartree-Fock
potential UN can be separated into the isoscalar (UIS) and
isovector (UIV) parts as

UN(E , R) = UIS(E , R) ± UIV(E , R), (13)

where the “+” sign and the “−” sign refer to neutrons and
protons, respectively [56]. For the complex effective NN in-
teraction, UIS(IV) should be calculated explicitly in terms of
real (VIS(IV)) and imaginary (WIS(IV)) parts as [51]

UIS(IV)(E , R) = VIS(IV)(E , R) + iWIS(IV)(E , R). (14)

In the spirit of Eq. (11), the individual terms in Eq. (14) may
be calculated from

V IS(IV)(E , R) =
∫

FV
IS(IV)(E , ρ)

{
[ρn(r)

± ρp(r)]vD
IS(IV)(s) + [ρn(R, r)

± ρp(R, r)]vEX
IS(IV)(s) j0[k(E , R)s]

}
d3r, (15)

W IS(IV)(E , R) =
∫

FW
IS(IV)(E , ρ)

{
[ρn(r)

± ρp(r)]vD
IS(IV)(s) + [ρn(R, r)

± ρp(R, r)]vEX
IS(IV)(s) j0[k(E , R)s]

}
d3r. (16)

Here, the “+” sign refers to isoscalar and the “−” sign refers
to isovector, and s = R − r is the folding distance. The func-
tions v

D(EX)
IS(IV) (s) represent the radial shapes of the isoscalar

and isovector NN interactions that get deduced from the G-
matrix elements of the realistic NN potential [57]. The factors
F u

IS(IV)(E , ρ) represent the density dependence for the real part
(u = V ) and the imaginary part (u = W ) of the potentials,
spelled out later in this paper. The local momentum of relative
motion k(E , R) is determined from

k2(E , R) = 2μ

h̄2 [Ec.m. − UN(E , R) − UC(R)]. (17)

Here, UC(R) and UN(E , R) are the Coulomb potential and the
real NA potential, respectively. In this paper, the exchange
parts of both UIS and UIV are evaluated iteratively using
the finite-range exchange interaction, which is more accu-
rate than those given by a zero-range approximation for the
exchange term. Combining Eqs. (15)–(17), we can get the
self-consistent UN potential by the iterative solution finally.

C. Nuclear density distribution

The self-consistent mean-field model is a microscopic and
successful model frequently employed in the context of nu-
clear structure. There are two dominant approaches to the
mean field: the nonrelativistic and the relativistic. In the
following, we introduce the theoretical frameworks for the
nonrelativistic SHF and the RMF models.
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1. Nonrelativistic Skyrme-Hartree-Fock method

Within the SHF method, the energy density functional H (r) can be written as [43,58]

H (r) = h̄2

2m
τ + 1

2
t0

[(
1 + 1

2
x0

)
ρ2 −

(
1

2
+ x0

) ∑
q

ρ2
q

]

+ 1

2
t1

[(
1 + 1

2
x1

)
ρ

(
τ − 3

4
�ρ

)
−

(
1

2
+ x1

) ∑
q

ρq

(
τq − 3

4
�ρq

)]

+ 1

2
t2

[(
1 + 1

2
x2

)
ρ

(
τ + 1

4
�ρ

)
−

(
1

2
+ x2

) ∑
q

ρq

(
τq + 1

4
�ρq

)]

+ 1

12
t3ρ

α

[(
1 + 1

2
x3

)
ρ2 −

(
x3 + 1

2

) ∑
q

ρ2
q

]

− 1

8
(t1x1 + t2x2)

∑
i j

J2
i j + 1

8
(t1 − t2)

∑
q,i j

J2
q,i j − 1

2
W0

∑
i jk

εi jk

[
ρ∇kJi j +

∑
q

ρq∇kJq,i j

]
, (18)

where ρ(r), τ (r), and Ji j (r) represent the local particle density, the kinetic energy density, and the spin-orbit density, and the
different parameters are adjusted to yield desired nuclear properties. The index q refers to neutrons and protons.

The Hartree-Fock (HF) equation is derived from the variation of total energy with respect to single-particle orbitals 
q
α (r).

By iteratively solving the HF equation, the nuclear density distributions can be obtained as follows:

ρq(r) =
∑

α

∣∣q
α (r)

∣∣2
. (19)

2. Relativistic mean-field method

In the framework of the RMF method [59,60], the starting point is the Lagrangian density:

L = �̄(iγ μ∂μ − M )� − gσ �̄σ� − gω�̄γ μωμ� − gρ�̄γ μρa
μτ a� + 1

2∂μσ∂μσ

− 1
2 m2

σ σ 2 − 1
3 g2σ

3 − 1
4 g3σ

4 − 1
4�μν�μν + 1

2 m2
ωωμωμ + 1

4 c3(ωμωμ)2

− 1
4

	Rμν · 	Rμν + 1
2 m2

ρρ̄
μ · 	ρμ − 1

4 FμνFμν − e�̄γ μAμ
1
2 (1 − τ 3)�, (20)

where σ , ω, and ρ represent the isoscalar-scalar, isoscalar-
vector, and isovector-vector mesons, respectively.

Under the no-sea approximation and the mean-field
approximation, the Dirac equation for nucleons and the Klein-
Gordon equations for meson fields can be obtained from the
variational principle. By solving the motion equation itera-
tively, we can obtain the large component f and the small
component g of the nucleon wave function ψ and derive the
nucleon density:

ρq(r) =
∑

α

(∣∣ f q
α (r)

∣∣2 + ∣∣gq
α (r)

∣∣2)
. (21)

The SHF and RMF codes used in this paper allow for axi-
ally symmetric deformations [58,59], although these are not
important in the present work.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we focus on the sensitivities of (p, p) and
(p, n) scattering cross sections to the neutron density distribu-
tion ρn. We first investigate the binding energies per nucleon
B/A, the charge root-mean-square (rms) radii RC, and the
neutron skin thickness �Rnp for different interactions. Next,
we calculate the (p, p) and (p, n) cross sections at 35 and 45

MeV within the complex folding model and the hybrid folding
model. The 48Ca and 208Pb nuclei are chosen to illustrate our
points.

A. Ground-state properties of 208Pb and 48Ca

In this subsection, the binding energies per nucleon B/A,
the charge rms radius RC, and the neutron skin �Rnp calcu-
lated in the RMF and SHF models with different interaction
parameters are presented. Recently, the PREX-I and PREX-II
results for 208Pb have been reported in Refs. [12,14], includ-
ing skin values of �RPREX-I

np = 0.33+0.16
−0.18 fm and �RPREX-II

np =
0.283+0.071

−0.071 fm, respectively. For investigations in this work,
we choose the NL3∗, NL1, SkO, and SLy4 parameter sets
in the RMF and SHF models for calculating the nuclear
ground-state properties. The �Rnp results of NL3∗, NL1, and
SkO correspond to the central value, the upper limit, and the
lower limit of the PREX-II skin, respectively, and the �Rnp

result of SLy4 corresponds to the lower limit of the PREX-I
skin. Our aforementioned theoretical results are represented
in Table I. As might be expected, B/A and RC of 48Ca and
208Pb calculated with different parameter sets agree well with
data, such as at the level of 0.5% for 208Pb. This is because
the isoscalar predictions of the mean-field models have been
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TABLE I. Binding energies per nucleon B/A, charge rms radii
RC, and neutron skin �Rnp calculated with different parameter
sets of the SHF and RMF models. Experimental data are from
Refs. [14,61,62].

Nucleus Parameter B/A (MeV) RC (fm) �Rnp (fm)

48Ca SLy4 8.71 3.544 0.153
SkO 8.51 3.511 0.248
NL3∗ 8.62 3.527 0.246
NL1 8.60 3.549 0.271
Expt. 8.67 3.477

208Pb SLy4 7.86 5.517 0.160
SkO 7.83 5.510 0.218
NL3∗ 7.88 5.518 0.284
NL1 7.89 5.537 0.313
Expt. 7.87 5.501 0.283 ± 0.071

historically well constrained with the existing experimental
data.

Contrary to the binding energies per nucleon B/A and the
charge rms radii RC, there are large variations in the �Rnp be-
tween different nuclear structure models and parameter sets.
This can be attributed to variations in the isovector interac-
tion, which is poorly constrained due to the historical lack of
sufficiently precise experimental data on neutron properties.
Although PREX-II has reported the updated neutron radius
Rn for 208Pb with a precision of virtually 1.0%, its error bar
covers the theoretical results of many mean-field parameter
sets. In Fig. 1, we present the ground-state ρn and ρp of
208Pb generated with different parameter sets. Variations in
theoretical ρn corresponding to the error bar of the PREX-II
result are shown in the shaded part in this figure. One can
observe that variations in ρp are generally more modest and
especially in the outer region that gets weighted by the r2

factor in calculations of any expectation values. By contrast,
ρn has a large variation in the outer region under the error bar
of the PREX-II result.

Besides the PVES experiment, the quasielastic (p, n) scat-
tering is also sensitive to the nuclear isovector properties.

FIG. 1. Ground-state ρn and ρp for 208Pb calculated by the vari-
ous models. The shaded part is shown to reproduce the experimental
error bar of PREX-II data.

Therefore, that scattering can be used to test �Rnp [20,21].
From Eqs. (15) and (16), one can see that UIV is directly
related to �Rnp. However, the renormalization coefficients of
the folded potential are undetermined in the calculation of
the scattering cross section. In the next part, we constrain the
renormalization coefficients based on the �Rnp of PREX-II
results and the experimental data of the (p, p) and quasielastic
(p, n) cross sections on 208Pb. With the fine-tuned folded
potential, we further study the sensitivities of the (p, p) and
(p, n) cross sections to the neutron density distribution ρn.

B. Complex folding model analysis

Next, we examine the (p, p) and (p, n) scattering cross sec-
tions within the complex folding model. The basic inputs for
the folding model are the nuclear density distribution and the
effective NN interaction. The nuclear densities for Eqs. (15)
and (16) are obtained from the mean-field models. For the
effective NN interaction, we choose the CDM3Y6 interaction
[24]. The real part of the isoscalar density dependence of the
CDM3Y6 interaction FV

IS(E , ρ) can be expressed as

FV
IS(E , ρ) = g(E )C0[1 + α0 exp(−β0ρ) − γ0ρ], (22)

where the parameter combination C0, α0, β0, and γ0 provides a
nuclear incompressibility of K ≈ 252 MeV [31]. The energy
dependence of FV

IS(E , ρ) is contained in the factor g changing
linearly with energy: g(E ) ≈ 1 − 0.002E . Given the success-
ful application of such parametrized density dependence in
numerous folding calculations, the imaginary part of such
isoscalar density dependence FW

IS (E , ρ) and isovector density
dependence F u

IV(E , ρ) are assumed to have the form inspired
by FV

IS(E , ρ):

FW
IS (E , ρ) =CW

0 (E )
{
1 + αW

0 (E ) exp
[−βW

0 (E )ρ
] − γ W

0 (E )ρ
}
,

(23)

F u
IV(E , ρ) = Cu

1 (E )
{
1 + αu

1 (E ) exp
[−βu

1 (E )ρ
] − γ u

1 (E )ρ
}
,

(24)

in which the parameters of FW
IS (E , ρ) and F u

IV(E , ρ) are as-
sumed to be energy dependent and are adjusted at each
incident energy E . In Eqs. (15) and (16), the radial shapes of
direct and exchange parts vD(EX) of the CDM3Y6 interaction
are taken from the M3Y-Paris interaction as a combination of
three Yukawa terms [57]:

v
D(EX)
IS(IV) (s) =

3∑
v=1

Y D(EX)
IS(IV) (v)

exp(−Rvs)

Rvs
, (25)

where the Yukawa strengths can be found in Ref. [24].
With Eqs. (22)–(25), the VIS(IV) and WIS(IV) of the folded

potential in Eqs. (15) and (16) can be calculated explicitly and
the NA potential can be evaluated as

UN(R) = NV [VIS(R) ± NV 1VIV(R)] + iNW [WIS(R) ± WIV(R)],

(26)

where the “+” sign and the “−” sign refer to neutrons and pro-
tons, respectively. The NV (W ) and NV 1 are the renormalization
coefficients established in this paper. The NV (W ) and NV 1 are
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TABLE II. Renormalization coefficients NV (W ) and NV 1 of the
complex folded potential of Eq. (26) at 35 and 45 MeV, which are
calibrated based on the experimental (p, p) and (p, n) cross sections,
assuming that the central �Rnp value from PREX-II is valid.

E NV NW NV 1(48Ca) NV 1(208Pb)

35 0.849 0.591 0.992 1.749
45 0.840 0.619 1.136 1.452

calibrated based on the experimental data for the (p, p) and
(p, n) cross sections, assuming validity of the central �Rnp

value from PREX-II. The NV 1 is further tuned for different
nuclei. The transition matrix element of Eq. (6) can be further
expressed in terms of the folded potential UIV as [51]

〈n, Z + 1|U (R)|p, Z〉 = 2

√|N − Z|
A

U1(R)

= 2√|N − Z|UIV(R). (27)

During the calibration process, ρn is calculated using the
NL3∗ parameter set, because it gives a �Rnp consistent with
the central value of the PREX-II �Rnp results. The best-fit
renormalization coefficients at the incident energies of 35 and
45 MeV are listed in Table II. The corresponding parameters
of the CDM3Y6 interaction for incident energies at 35 and
45 MeV are taken from Refs. [24,63]. Finally, the net scat-
tering potential is obtained from the superposition of the NA
potential UN, the spin-orbital potential ULS, and the Coulomb
potential UC.

The different (p, p) cross sections on 208Pb calculated
with the complex folded potential of Eq. (26), at 35 and
45 MeV, are shown in Fig. 2. It can be seen that the com-
plex folded potential gives good (p, p) descriptions on cross
section, which confirms the reliability of the complex folding
model, especially here of its isoscalar component UIS. To
provide insights, the (p, p) cross sections are obtained using
both nuclear density distributions calculated with the NL3∗
and SLy4 interaction. Note that �Rnp calculated with these
two interactions is different in Table I, but the difference is
hardly reflected in the (p, p) cross sections. This is because
the (p, p) cross section is primarily related to the isoscalar net
density, and only weakly to the isovector density.

We further present the (p, p) cross sections on 48Ca in
Fig. 2, again using renormalization coefficients from Table II.
One can see that the theoretical results are in reasonable
agreement with experimental data. Importantly, the isoscalar
renormalization coefficients used for 208Pb are reliable in
calculating the (p, p) cross sections for the other nucleus.
Similarly to 208Pb, little difference is observed when the (p, p)
cross sections of 48Ca are calculated for different �Rnp. Con-
cluding, while the (p, p) scattering can test the net density of
the nucleus, it is not very sensitive to �Rnp.

The (p, n) cross sections on 208Pb obtained using NL3∗ and
SLy4 interactions at 35 and 45 MeV are presented in Fig. 3. It
can be seen that the calculations reproduce the general trend of
the (p, n) experimental data, which demonstrates the general
validity of the isovector part UIV of the NA potential. There are

FIG. 2. Different (p, p) cross sections on 48Ca and 208Pb targets
at 35 and 45 MeV from the calculations with the complex folded
potential of Eq. (26), based on the nuclear densities calculated
by the SHF and RMF models. The experimental data stem from
Refs. [64,65].

evident differences between the predictions from these two
models in the region θ = 20◦−80◦, which indicates that the
effects of isovector density on the (p, n) reaction are more
obvious than those on the (p, p) reaction. This is because
the (p, n) cross section is dominated by the UIV component,
which is connected to the nuclear isovector density and, thus,
magnifies the effects of �Rnp.

Because the �Rnp value calculated for NL3∗ corresponds
just to the central value of the �Rnp result of PREX-II, we can
explore the whole range of PREX-II uncertainty by stretching
ρn from NL3∗ with a factor λ [67], i.e., carrying out trans-
formation for the neutron density ρn(r) → λ−3ρn(r/λ). With
this method, the neutron radius is scaled by λ:

R′
n =

√∫
4πr4

1

λ3
ρn

(
r

λ

)
dr = λ · Rn.

By choosing different λ, we can span the full range of nominal
uncertainty for the PREX-II Rn result, and the corresponding
(p, n) cross sections are shown by the shaded areas in Fig. 3.
One can see that the effects on (p, n) caused by the modifica-
tions of ρn are significant over the uncertainty of the PREX-II
result.

Besides the 208Pb target, the theoretical cross sections for
the 48Ca(p, n) 48Sc reaction are also presented in Fig. 4, using
the renormalization coefficients in Table II. In the figure, one
can again see that the general trend of theoretical results
agrees with the experiment data, which supports the use of
the renormalization coefficients. A further comparative study
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FIG. 3. Cross section for the quasielastic 208Pb(p, n) 208Bi reac-
tion at 35 MeV (a) and 45 MeV (b). The experimental data from
Ref. [66] are represented by circles. DWBA calculations in the
folding model of Eq. (26) are represented by lines, solid for the
NL3∗ interaction and dashed for SLy4. The shaded region represents
the span of NL3∗ results when the neutron radii correspond to the
nominal uncertainty in PREX-II.

in Fig. 4 indicates that the NL3∗ results agree better with
the (p, n) data than SLy4, especially in the forward direction.
However, the renormalization coefficients are primarily based
on the experimental result from PREX-II in the current paper.
After the experimental �Rnp result of 48Ca is updated, more
universal renormalization coefficients can be obtained, which
are helpful for the analyses in this paper.

With the exception of the (p, p) and (p, n) scattering, the
elastic neutron (n, n) scattering is also considered to prove
the consistency of the folded potential. The elastic neutron
(n, n) cross sections on 208Pb at 30.4 and 40 MeV are shown
in Fig. 5. In analogy with the (p, p) scattering, the complex
folded potential of Eq. (26) is renormalized at different inci-
dent energies to obtain NV ≈ 0.80 and NW ≈ 0.65–0.75. From
Fig. 5, it can be seen that the complex folded potential of
Eq. (26) gives good (n, n) descriptions on cross section, which
indicate the validity of the complex folded potential on (n, n)
scattering. Therefore, our results demonstrate the consistency
among the charge-exchange effective interaction, the proton
and the neutron folded potential in our calculations.

The theoretical results in Figs. 3 and 4 together illustrate
that the complex folded potential can reflect differences in

FIG. 4. Same as Fig. 3, but for the quasielastic 48Ca(p, n) 48Sc
reaction.

FIG. 5. Different (n, n) cross sections on 208Pb targets at 30.4 and
40 MeV from the calculations with the complex folded potential of
Eq. (26), based on the nuclear densities calculated by the SHF and
RMF models. The experimental data stem from Ref. [68].

054605-7



JIAN LIU et al. PHYSICAL REVIEW C 106, 054605 (2022)

TABLE III. Renormalization coefficients NV and NV 1 of the hy-
brid folded potential of Eq. (28) at 35 and 45 MeV, which are
calibrated based on the experimental (p, p) and (p, n) cross sections,
assuming the validity of the central value of �Rnp from PREX-II.

E NV NV 1

35 0.902 0.908
45 0.936 1.105

ρn on the (p, n) cross section. However, the renormalization
coefficient NV 1 needs to be readjusted for different nuclei,
which indicates that the complex folding model has some
limitations as far as its universality is concerned.

C. Hybrid folding model analysis

The NV 1 factor of the complex folding model has been a
function of the mass number A of the nucleus. To retreat in the
renormalizations carried out from our side, we use the hybrid
folded potential:

UN(R) = NV [VIS(R) − NV 1VIV(R)] + i[W0(R) − W1(R)],
(28)

where the VIS and VIV terms retain the folded potential, and the
imaginary part is replaced by that from a phenomenological
optical model potential. Specifically in Eq. (28), W0(R) and
W1(R) are the isoscalar and isovector parts of the imaginary
Koning-Delaroche (KD) potential [26], respectively. The KD
global systematics covers a wide range of target masses and
energies. Similar to the case of the complex folded potential,
we calibrate NV (V 1) of the hybrid folded potential on the ex-
perimental (p, p) and (p, n) cross sections on 208Pb, assuming
validity of the central value of the �Rnp PREX-II result, i.e.,
NL3∗ densities. The calibrated NV (V 1) at the incident energies
of 35 and 45 MeV are given in Table III. In this way, the
renormalization coefficients are universal for different nuclei,
but depend on energy.

The (p, p) cross sections on 48Ca and 208Pb, calculated with
the hybrid folded potential of Eq. (28) and the renormalization
coefficients in Table III using NL3∗ and SLy4 interactions, are
presented in Fig. 6. The theoretical cross sections are in good
agreement with the experimental data, which validates the use
of the hybrid folding model with the calibrated renormaliza-
tion coefficients. From Fig. 6 one can see that the effects of
different ρn on (p, p) cross sections are rather minute. This
can be attributed to the fact that the impact of VIV on the (p, p)
cross sections is relatively small. In comparing the results
in Figs. 2 and 6, one can observe clear differences between
the (p, p) cross sections calculated with the complex folded
potential and the hybrid folded potential, especially in the
backward region. These are due to the surface term of the
imaginary part of the isoscalar potential UIS. Notably, while
the real part of the hybrid folded potential is quite close in
shape and strength to the real KD potential, the imaginary part
is quite different.

With the renormalization coefficients of Table III, the the-
oretical (p, n) scattering cross sections on 208Pb have been
again calculated and are presented in Fig. 7. By stretching the

FIG. 6. Same as Fig. 2, but with calculations in the hybrid folded
potential of Eq. (28).

FIG. 7. Same as Fig. 3, but for the hybrid folded potential of
Eq. (28).
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neutron density ρn, the uncertainty in Rn in the PREX-II mea-
surement is again mapped onto the shaded areas. In comparing
Figs. 3 and 7, one can see that the hybrid folded potential
gives better descriptions of the (p, n) data than the complex
folded potential, which can be attributed to the surface term
of the hybrid folded potential. Specifically, the imaginary KD
potential can be represented by a combination of volume and
surface terms. The imaginary folded potential only exhibits
the volume character, since it is constructed based on the
nucleon optical potential calculated by the nuclear matter.
Therefore, the imaginary folded potential cannot appropri-
ately explain the surface absorption of the transfer reactions
caused by inelastic scattering and reflects only the nature of
the volume [24]. However, all phenomenological potentials
have a surface-peaked form at low energies, which slowly
changes to a volume form as the energy increases. In the range
of incident energies studied in this paper, the surface absorp-
tion is still very strong. Thus, the (p, n) cross section given by
the hybrid folded potential of Eq. (28) is more accurate for the
probe of the neutron density distribution.

In comparing the theoretical results from the NL3∗ and
SLy4 interactions in Fig. 7, it may be seen that the (p, n)
cross sections predicted by the hybrid folded potential are also
sensitive to ρn. This is because the transition strength of the
(p, n) reaction to IASs is determined entirely by the isovector
part in hybrid folded potential, although only the real part of
isovector potential is now calculated from the derived nuclear
density distribution. Therefore, even the hybrid folding model
can also be used to study the neutron density distribution
ρn. Besides, the hybrid folding model may be viewed as a
more objective inference method, since the renormalization
coefficients are the same for different target nuclei. In the
following, we progress to using the hybrid folding model in
testing the impacts of the neutron properties of 48Ca.

In Fig. 8, we present the (p, n) cross sections on 48Ca
obtained in the hybrid folded potential at 35 and 45 MeV,
using the renormalization coefficients. It can be observed in
this figure that the results from the hybrid folded potential
provide good descriptions of the 48Ca(p, n) 48Sc quasielastic
reaction data, which supports the universality of the renor-
malization coefficients in Table III. In addition, we find that
the (p, n) cross sections calculated with the NL3∗ and SLy4
interactions significantly differ in the regions θ = 0◦−40◦
and θ = 80◦−160◦. Therefore, we can effectively constrain
the neutron properties following the hybrid folding model. In
Fig. 8, one can see that the results of the NL3∗ parameter
set are generally closer to the (p, n) data, especially in the
forward and backward angles. This finding is consistent with
the conclusions of the complex folding model analysis.

IV. CONCLUSION

The neutron skin thickness �Rnp and the neutron density
distribution ρn are fundamental nuclear properties, which have
attracted increased attention recently. Relying on the relation
between ρn and the quasielastic (p, n) cross section in this
paper, we have investigated the impact of neutron properties
in the context of the available experimental values.

FIG. 8. Same as Fig. 4, but for the hybrid folded potential of
Eq. (28).

In calculating the neutron properties in the RMF and SHF
models, we have found that the �Rnp and ρn can differ sig-
nificantly among different parameter sets. The elastic (p, p)
and quasielastic (p, n) cross sections of 208Pb have been in-
vestigated in the combination of the DWBA method and
the folding model. The renormalization coefficients for the
folded potential have been calibrated using the experimen-
tal (p, p) and (p, n) data assuming the central value of the
neutron skin thickness �Rnp of 208Pb in the PREX-II mea-
surement. The isovector potential determines the transition
strength of the initial state to IASs in charge-exchange (p, n)
reactions. Therefore, the accurate measurement of the (p, n)
cross sections can serve as a sensitive probe of the neutron
skin thickness �Rnp and the nuclear isovector density. Results
in this paper also indicate that the (p, n) cross section is
sensitive to the nuclear neutron density distribution ρn. By
further comparing the results of the complex folding model
and the hybrid folding model, we have found that the (p, n)
reaction can be more reasonably described by introducing the
surface term into the folded potential.

With the renormalization coefficients calibrated in this pa-
per, the (p, n) cross sections of 48Ca have also been calculated
in the folding model for different neutron density distributions
ρn. Theoretical quasielastic (p, n) cross sections have been
compared with the experimental data. It has been observed
that the results of the NL3* parameter set are consistent
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with the experimental data. The results of this paper can
provide counter reference for the CREX experiment. Be-
sides, our investigations on charge exchange reactions are
also helpful for other fields of nuclear structure and nuclear
reactions.
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