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Nucleon momentum distributions from inclusive electron scattering with superscaling analysis
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Nucleon momentum distributions are crucial windows to probe nuclear structures. They provide valuable
information not only on mean-field structures but also on short-range correlations. The y scaling analysis
generally serves as a tool to extract the nucleon momentum distribution from inclusive quasielastic electron
cross sections. In this paper, we report new nucleon momentum distributions for deuteron, 3,4He, 9Be, and
12C, extracted, based on ψ ′ scaling, directly from the latest high-precision experimental data. It is found
that, for deuteron, 3,4He, 9Be, and 12C, the ψ ′-scaling method provides reasonable results in agreement with
state-of-the-art ab initio calculations up to 3.5 fm−1. These new nucleon momentum distributions can be helpful
references for future studies of nuclear structures.
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I. INTRODUCTION

Electron scattering is one of the most fruitful methods to
investigate the physical properties of the nucleus [1]. Over the
past several decades, elastic electron scattering has provided
substantial nuclear information, such as charge density dis-
tributions [2–5] and neutron distributions [6,7]. Much effort
has also gone into electron scattering at higher energy and
momentum transfers, where quasielastic scattering starts to
dominate the cross sections [8]. In the quasielastic scattering
region, cross sections contain the elaborate information on
nucleon momentum distributions. For instance, in Ref. [9] the
cluster structure of nuclei is investigated in the momentum
space by using the quasielastic electron scattering.

Nucleon momentum distributions are important quantities
in nuclear physics, giving valuable information on both mean-
field (MF) structures and short-range correlations [10]. In MF
models, the individual nucleons are assumed to move in an
average potential sourced by the other nucleons. They give
a good description of low-momentum parts of nucleon mo-
mentum distributions. However, the MF models generally do
not give a proper account of high-momentum tails of nucleon
momentum distributions caused by short-range correlations
[11–16]. This problem attracts lots of attention in recent
years. See, e.g., Refs. [17–21] for representative experimental
progress. Various theoretical calculations have been carried
out to study high-momentum tails with realistic nuclear po-
tentials, such as quantum Monte Carlo (QMC) [22], nuclear
contact theory [23], no core shell model [24], hyperspherical
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harmonics method [25], and antisymmetrized molecular dy-
namics [26]. In order to confront these theoretical calculations
with experiments, it is important to extract from experimental
data of cross sections the nucleon momentum distributions
for different nuclei. This could be done by analyzing, e.g.,
inclusive electron scattering data in the quasielastic region
[11,14,27,28].

Scaling is a powerful tool to study inclusive electron
scattering in the quasielastic region [1,29–31]. Within the
framework of the plane wave impulse approximation (PWIA),
the inclusive electron cross section could be expressed as
a product of the single-nucleon cross section and a specific
function [30], the scaling function, that depends on the proper-
ties of the target nucleus and, as shown in Sec. II, is generally
a function of two kinematic variables. In the limit of large mo-
mentum transfers this function scales and becomes a function
of only one kinematic variable, the scaling variable.

Various scaling laws have been proposed in the literature
for inclusive electron scattering, such as Y scaling [29], y
scaling [34], yCW scaling [35], ψ scaling [32], and ψ ′ scaling
[33]. The scaling variable Y = Y (q, ω) was first introduced
by West in the 1970s [29]. Later on, as an alternative to Y , the
scaling variable y was proposed and widely used to analyze
the inclusive electron scattering. By utilizing y scaling and
evaluating the excitation energy of the recoil nuclei, Ciofi
degli Atti et al. extracted the nucleon momentum distributions
in few-body systems, complex nuclei, and nuclear matter [34].
Finally in 1999, Ciofi degli Atti and West proposed the scaling
variable yCW , which effectively reflects the excitation energy
[35]. Among Y , y, and yCW , we focus on the discussion of y
scaling in this paper.

Motivated by the relativistic Fermi gas (RFG) model, ψ

scaling and its improved version named as ψ ′ scaling can
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naturally incorporate the excited states of the recoil nuclei
[33]. ψ ′ scaling has been used to study inclusive electron
scattering from 12C, reproducing both the quasielastic peak
and the �(1232) region [9,36]. Recently, it has also been
generalized to study neutrino- and antineutrino-nucleus reac-
tions [37–39]. In Ref. [40], it is mentioned that ψ ′ scaling
could be used to extract nucleon momentum distributions.
This idea, however, has not been explored systematically for
different nuclei in combination with experimental data. We try
to fill this gap by extracting and analyzing nucleon momentum
distributions based on ψ ′ scaling and the latest high-precision
experimental data.

The rest parts are organized as follows. In Sec. II, we re-
view y scaling and ψ ′ scaling briefly. In Sec. III, we extract ψ ′
scaling functions and nucleon momentum distributions from
the latest high-precision experimental data for different nuclei
and compare the results with the y-scaling extractions [34] and
the state-of-the-art QMC results [22,41]. Explicitly, we extract
nucleon momentum distributions for deuteron, 3He, 4He, 9Be,
and 12C, among which the nucleon momentum distribution of
9Be has not been extracted from the inclusive cross sections in
previous studies as far as we know. Finally, the summary and
conclusions are given in Sec. IV.

II. THEORETICAL FRAMEWORK

PWIA plays an important role in establishing the theoret-
ical formalism for scaling [30]. It assumes that the electron
interacts only with one nucleon in the nucleus at one time
and the interacting nucleon is emitted without interacting with
the residual nucleus. Within the framework of the PWIA,
the double differential cross section could be organized into
the product of the single-nucleon cross section σeN and a
function F [Q2, z(q, ω)] for inclusive (e, e′) scattering in the
quasielastic region [30]

d2σ

d�dω
= σ̃eN (q, ω; k, ε) × F [Q2, z(q, ω)], (1)

where � is the solid angle of the outgoing electron, q is the
electron momentum transfer, ω is the electron energy transfer,
k is the nucleon momentum, ε is the excitation energy of the
residual A − 1 system, Q2 = q2 − ω2 is the four-momentum
transfer squared, and z(q, ω) is the so-called scaling variable.
Various choices are available in the literature for the scaling
variable z. Two of them are reviewed briefly in the following
subsections.

A. y scaling

One popular choice for the scaling variable z(q, ω) is given
by the kinematic variable y satisfying [30]

ω + MA = [
m2

N + (q + y)2
]1/2 + [

M2
A−1 + y2

]1/2
, (2)

where MA, mN , and MA−1 are the masses of the target nu-
cleus, the knocked-out nucleon, and the recoil nucleus A − 1,
respectively. Physically, y could be identified as the lowest
longitudinal momentum of the knocked-out nucleon along the
direction of q when ε = 0. Noticeably, it is MA−1 that is used
in defining the scaling variable y, which means that the recoil

nucleus A − 1 is assumed to be in its ground state. In other
words, we do not consider the inner excitation of the recoil
nucleus.

For high Q2, F (Q2, y) becomes independent of Q2 and is
reduced to the one-variable function F (y) which is also known
as the y scaling function [30]. Then, the double differential
cross section in Eq. (1) becomes [30]

d2σ

d�dω
= σ̃eN (q, y; k = |y|, ε = 0) × F (y), (3)

where σ̃eN is computed by Eq. (13) in Ref. [42]. Following
Ref. [34], the nucleon momentum distribution n(k) can be
extracted from the y scaling function by

n(k) = − 1

2πy

[
dF (y)

dy

]
|y|=k

. (4)

In the following, the method using Eqs. (2) and (4), where the
excitation of the recoil nucleus is ignored, is referred to as y
scaling without the excitation energy.

B. ψ′ scaling

Another popular choice for the scaling variable z(q, ω) is
given by [33]

ψ ′ ≡ 1√
ξF

λ′ − τ ′√
(1 + λ′)τ ′ + κ

√
τ ′(τ ′ + 1)

(5)

with κ ≡ q/2mN , λ′ ≡ ω/2mN − Eshift/2mN , τ ′ = κ2 − λ′2,

ηF ≡ kF /mN , ξF ≡
√

1 + η2
F − 1, and kF being the Fermi

momentum. The above definition of ψ ′ is motivated within the
framework of the relativistic Fermi gas (RFG) model, which
considers explicitly the possible excitation of the recoil nu-
cleus [43]. Besides, both the scattering process and the bound
nucleon dynamics are handled with the relativistic kinematics.
In the definition of λ′, an extra empirical parameter Eshift is in-
troduced to simulate the impact of nucleon separation energy
Es = MA−1 + mN − MA, which is found to be important in
modeling the quasielastic peak. When Eshift = 0, the variable
ψ ′ in Eq. (5) is reduced to the variable ψ . With the scaling
variable ψ ′, the double differential cross section may be given
by [33]

d2σ

d�dω
∼= σM

[
κ

2τ
vLG̃2

E + τ

κ
vT G̃2

M

]
× F (Q2, ψ ′), (6)

where σM is the Mott cross section, vL(T ) is the electron
longitudinal (transverse) kinematical factor, and G̃2

E (M ) =
ZG2

E (M )p + NG2
E (M )n is the combining of the Sachs form fac-

tors.
For high Q2, F (Q2, ψ ′) becomes independent of Q2. In this

region, we can define the ψ ′ scaling function f (ψ ′) as

f (ψ ′) = kF × F (ψ ′). (7)

Inspired by Eq. (4), the nucleon momentum distribution f (ψ ′)
could be given by

n(k) = − 1

2πykF

[
d f (ψ ′)
d(kF ψ ′)

]
|y|=k

, (8)

with ψ ′ ≈ y
kF

+ ηF y2

2k2
F

√
1 + m2

N
q2 [33].
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III. NUMERICAL RESULTS

Nucleon momentum distributions extracted from exper-
imental data are fundamentally important in validating
theoretical models of nuclear structures. As mentioned in the
Introduction, y scaling is often adopted to extract nucleon
momentum distributions from experimental inclusive electron
cross sections. In this paper, we extract new nucleon momen-
tum distributions from the latest high-precision experimental
data by using the ψ ′-scaling method given in Sec. II B and
compare them with the QMC calculations. Deuteron, 3He,
4He, 9Be, and 12C are taken as examples, with the inclusive
electron cross sections from Refs. [8,44,45]. As shown in
Eq. (5), the Fermi momentum kF and energy shift Eshift are
needed for defining the ψ ′ scaling variable. In the follow-
ing calculations, the Fermi momenta are taken to be kF =
55, 140, 200, 195, and 228 MeV/c for deuteron, 3He, 4He,
9Be, and 12C, while Eshift = 0, 15, 15, 15, and 20 MeV.

In Fig. 1, we re-evaluate ψ ′ scaling functions for deuteron,
3He, 4He, 9Be, and 12C, which act as the theoretical foun-
dation for our extraction of nucleon momentum distributions
from experimental inclusive cross section data. It is also very
interesting to add the error bars for the extractions. Error prop-
agation is a complicated task in both physical and computa-
tional areas. In this paper, the statistical errors of experimental
data are propagated by means of Monte Carlo simulations
[46]. We assume that experimental data are independent from
each other and follow Gaussian distributions centered around
the measured values with a width given by the error. Draw-
ing random samples from these distributions, one can get a
collection of scaling functions and nucleon momentum dis-
tributions, which are used to determine the errors. In our
study, 50000 samples are generated for each scaling function
and nucleon momentum distribution and there is no obvious
change in final results when we increase the sample numbers.

Compared with previous studies in, e.g., Ref. [34], our
present analysis is featured by the usage of the latest high-
precision experimental data reported in Refs. [8,44,45]. To
our best knowledge, such a study has not been reported in
a public way. Figure 1(a) shows the ψ ′ scaling functions
f (ψ ′) for deuteron, which are extracted by using Eq. (7) from
four sets of electron scattering data with the electron incident
energies and scattering angles (E , θ ) = (4.045 GeV, 55◦),
(5.766 GeV, 18◦), (5.766 GeV, 22◦), and (5.766 GeV, 26◦)
[8,44,45]. For each data set, the Q2 value is measured at the
corresponding quasielastic peak. It is straightforward to see
the celebrating independence of f (ψ ′) on Q2 in the scaling
region ψ ′ < 0. Figure 1(b) shows the ψ ′ scaling functions
for 3He, 4He, 9Be, and 12C at (E , θ ) = (5.766 GeV, 32◦).
Once again, in the scaling region ψ ′ < 0, a universal curve
is observed for different nuclei. For ψ ′ > 0, ψ ′ scaling is,
however, badly violated as shown in Figs. 1(a) and 1(b), as the
�(1232) resonance, deep inelastic scattering, and other pro-
cesses beyond quasielastic scattering contribute significantly
to inclusive cross sections in this region.

A. Deuteron

As shown in Sec. II B, the nucleon momentum distribution
n(k) of the deuteron can be extracted from the ψ ′ scaling
function f (ψ ′) within the framework of PWIA by using

FIG. 1. (a) The ψ ′ scaling functions f (ψ ′) for deuteron ob-
tained from the latest inclusive electron scattering data with the
electron incident energies and scattering angles given by (E , θ ) =
(4.045 GeV, 55◦), (5.766 GeV, 18◦), (5.766 GeV, 22◦), and (5.766
GeV, 26◦), separately [8,44,45]. (b) The ψ ′ scaling functions f (ψ ′)
for 3He, 4He, 9Be, and 12C from the latest inclusive electron scatter-
ing data with the electron incident energy and scattering angle given
by (E , θ ) = (5.766 GeV, 32◦) [8,44]. The error bars of f (ψ ′) are
also shown in the figure.

Eq. (8). The numerical results are shown in Fig. 2 for four
sets of electron incident energies and scattering angles. For
comparison, we also plot on the same figures the results from
y scaling without the excitation energy given by Eq. (4) and
the QMC results [22,41] with three different realistic inter-
actions including AV18 [47], NV2-Ia, and NV2-IIa [48,49],
along with the numerical results reported in Ref. [34] which
are based on the y-scaling method and include the excitation
energy.

In Fig. 2, it is straightforward to see that the deuteron
nucleon momentum distributions n(k) given by ψ ′ scaling
coincide perfectly with the results of y scaling without the
excitation energy, QMC, and Ref. [34]. Moreover, ψ ′ scaling
is found to give almost the same nucleon momentum distri-
butions for different electron incident energies and scattering
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FIG. 2. Nucleon momentum distributions of deuteron extracted from the latest inclusive electron scattering data with the electron incident
energies and scattering angles given by (E , θ ) = (4.045 GeV, 55◦), (5.766 GeV, 18◦), (5.766 GeV, 22◦), and (5.766 GeV, 26◦), separately
[8,44,45]. The red squares correspond to our results based on ψ ′ scaling. The results from y scaling without the excitation energy (circles),
the results from Ciofi degli Atti et al. 1991 [34] (blue squares), and the theoretical results from QMC with different realistic NN interactions
(AV18, NV2-Ia, and NV2-IIa) [22,41] (solid, dashed, and dotted lines) are also shown for comparison. The error bars of the extractions are
also shown in the figure.

angles as shown by the four panels of Fig. 2. This is consistent
with the expectation that nucleon momentum distributions are
intrinsic properties of nuclei. They should not be affected by
different experimental setups. These results provide nontrivial
evidence on the reliability of our extractions of nucleon mo-
mentum distributions based on ψ ′ scaling, which encourages
us to extract nucleon momentum distributions from inclusive
electron scattering data for more nuclei.

B. 3He, 4He, 9Be, and 12C

In Fig. 3, we show the nucleon momentum distributions
n(k) up to 3.5 fm−1 for 3He, 4He, 9Be, and 12C, extracted
from inclusive electron scattering data with the help of the
ψ ′-scaling method. Noticeably, the nucleon momentum dis-
tribution of 9Be is extracted from the experimental cross
sections for the first time. The inclusive cross section data
are taken for the same kinematic parameter with the elec-

tron incident energy and scattering angle given by (E , θ ) =
(5.766 GeV, 32◦) [44]. In the same figure, we also plot the
results of y scaling without the excitation energy, Ref. [34]
(without 9Be), and the QMC calculations [22,41] with the
two-nucleon potential AV18 and three-nucleon potential UX
[50] for comparison.

It is straightforward to see that these three methods of
n(k) extractions are generally consistent with the QMC results
from low-momentum regions to high-momentum regions up
to 3.5 fm−1. In the region k < 1.5 fm−1 where the effects of
the excitation energy are not obvious, three methods give the
approximately same results. In the region 1.5 < k < 2.3 fm−1

where the change of the slope of n(k) generated by the cross-
ing of the s and p shell model distributions is active, the
ψ ′-scaling results slightly overestimate the QMC calculations
and the results reported in Ref. [34] slightly underestimate
the QMC calculations. The results of the ψ ′-scaling method
and those in Ref. [34] respectively provide the upper and
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FIG. 3. Nucleon momentum distributions of 3He, 4He, 9Be, and 12C extracted from the latest inclusive electron scattering data with the
electron incident energies and scattering angles given by (E , θ ) = (5.766 GeV, 32◦) [44]. The red squares correspond to our new results based
on ψ ′ scaling. The results from y scaling without the excitation energy (circles), the results from Ciofi degli Atti et al. 1991 [34] (blue squares),
and the theoretical results from QMC with the realistic AV18 + UX interactions [22,41] (lines) are also shown for comparison. The error bars
of the extractions are also shown in the figure.

lower limits of the nucleon momentum distribution in this
region. Focusing on the high-momentum region (2.5 < k <

3.5 fm−1), the nucleon momentum distributions of 9Be and
12C given by y scaling without the excitation energy slightly
undershoot the QMC results for the absence of the excita-
tion energy, which is considered in ψ ′ scaling and Ref. [34].
The ψ ′ scaling analysis gives more reliable extractions of
high-momentum tails of nucleon momentum distributions,
especially for 4He and 12C, as the nucleon momentum dis-
tributions of these two nuclei given by Ref. [34] in this region
are missing. This suggests that our results could be helpful
references for future studies of high-momentum tails and
short-range correlations in these nuclei. By comparing the
ψ ′-scaling extractions with reliable theoretical expectations
and results in Ref. [34], it is fair to say that the ψ ′-scaling
method can reproduce many important features of mean-field
and short-range structures.

We remark that the nucleon momentum distributions are
extracted by the scaling method in the framework of the
PWIA, without considering meson-exchange currents (MEC)

rescattering and final-state interactions (FSI). These contribu-
tions can lead to scaling violations and influence the extracted
nucleon momentum distribution. It is interesting to consider
the contributions of MEC and FSI to the experimental cross
sections. However, it is not trivial to calculate these two effects
explicitly. For the experimental data with high momentum
transfers used in this paper, the influences of MEC and FSI are
not significant in the region below the quasielastic peak (i.e.,
ψ ′ < 0) [51,52]. Scaling limits are reached within the im-
pulse approximation and the reasonable nucleon momentum
distributions are extracted. An evaluation of MEC and FSI will
be performed in the following studies.

IV. SUMMARY AND CONCLUSIONS

In summary, we report new nucleon momentum distri-
butions of the deuteron, 3He, 4He, 9Be, and 12C extracted
from various inclusive electron scattering data by using ψ ′
scaling. The new results are consistent with the state-of-the-art
QMC calculations with realistic nuclear interactions. In the
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high-momentum region around 3.5 fm−1, where the nucleon
momentum distributions correspond to short-range correla-
tions and are not extracted in Ref. [34], it is found that the
ψ ′-scaling method provides reasonable results for 3,4He, 9Be,
and 12C. Our new results are helpful references for experi-
mental and theoretical studies on short-range correlations in
the future. It may also help to understand the implications
of short-range correlations on neutron star properties [53,54].
Moreover, it can provide useful guides for the new Electron-
Ion Collider in China [16].
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