
PHYSICAL REVIEW C 106, 054320 (2022)

Effective and efficient algorithm for the Wigner rotation matrix at high angular momenta
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The Wigner rotation matrix (d function), which appears as a part of the angular-momentum-projection
operator, plays a crucial role in modern nuclear-structure models. However, it is a longstanding problem that its
numerical evaluation suffers from serious errors and instability, which hinders precise calculations for nuclear
high-spin states. Recently, Tajima [Phys. Rev. C 91, 014320 (2015)] has made a significant step toward solving
the problem by suggesting the high-precision Fourier method, which however relies on formula-manipulation
softwares. In this paper we propose an effective and efficient algorithm for the Wigner d function based on
the Jacobi polynomials. We compare our method with the conventional Wigner method and the Tajima Fourier
method through some testing calculations, and demonstrate that our algorithm can always give stable results
with similar high-precision as the Fourier method, and in some cases (for special sets of j, m, k, and θ ) ours
are even more accurate. Moreover, our method is self-contained and less memory consuming. By taking the
156Dy yrast band as an example, we show that with the d function calculated by our proposed Jacobi method
in the angular-momentum projector, the realistic projected-shell-model calculation can be aggressively extended
to the high-spin region where the conventional Wigner method collapses completely. A related testing code and
subroutines for the three algorithms of d function are provided as Supplemental Material in the present paper.
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I. INTRODUCTION

The microscopic description of collective rotational motion
involves quantum-mechanical treatment of angular momen-
tum, in which the three angular-momentum operators, ĵi
(i = x, y, z), are generators of the Lie algebra of SU(2) and
SO(3). The Wigner D matrix, a unitary matrix in an ir-
reducible representation of the groups SU(2) and SO(3),
enters into the discussion when functions of angular momen-
tum are transformed by the rotation operator R̂(φ, θ, ψ ) =
e−iφ ĵz e−iθ ĵy e−iψ ĵz with the Euler angles (φ, θ, ψ ) [1]. If the
eigenstates of the angular momentum operators are expressed
in the spherical basis and labeled by the quantum number
j (with j = 0, 1

2 , 1, 3
2 , · · · ) and the projection on the z axis

with 2 j + 1 quantum numbers labeled as m or k = − j,− j +
1, · · · , j − 1, j, the Wigner D matrix can be written as

D j
mk (φ, θ, ψ ) = 〈 jm| e−iφ ĵz e−iθ ĵy e−iψ ĵz | jk〉

= e−i(mφ+kψ )d j
mk (θ ), (1)

where

d j
mk (θ ) = 〈 jm| e−iθ ĵy | jk〉 (2)

is the key part in the expression, referred to as Wigner (small)
d matrix. As Eqs. (1) and (2) are functions of the Euler
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angles for different sets of quantum numbers { j, m, k}, they
are usually called Wigner D (d) functions, respectively [2,3].

As its characteristic feature, d j
mk (θ ) is known as an oscil-

lation function of θ . In general, the oscillation frequency of
the d function increases rapidly with the angular momentum
j. Figure 1 shows the example for j = 30h̄.

The Wigner D function plays crucial roles in many discus-
sions of modern physics. As a set of orthogonal functions of
the Euler angles, the D function can be used to expand other
functions. The D function is related to some other well-known
functions, as for instance, D j

m0(φ, θ, ψ ) =
√

4π
2 j+1Y ∗

jm(θ, φ)

and D j
00(φ, θ, ψ ) = Pj (cos θ ), where Yjm (Pj) is the spherical

harmonic function (Legendre polynomial) [2,4]. Furthermore,
irreducible tensors can be well defined with the help of
the Wigner D function. Therefore, the Wigner D function
is indispensable in the study of modern physics, for exam-
ple in nuclear physics [5], quantum metrology [6,7], and
many other fields [8,9]. Especially in theoretical calcula-
tions with the nuclear beyond-mean-field methods [10–16],
where angular-momentum projection serves as an impor-
tant ingredient, the Wigner D function is the central part
of the angular-momentum projector [10,17–27]. Angular-
momentum projected wave functions obtained in modern
nuclear theories are applied to the study of β decay [28,29],
neutrinoless double-β decay [30–32], astrophysical weak pro-
cess [33–35], nuclear fission [36–40], and many others.

All the above applications require a numerically accurate
and computationally stable evaluation of the small d function.
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FIG. 1. The highly oscillatory behavior of the Wigner d j
mk (θ )

function with j = 30, m = −2, k = 0.

However, due to the presence of many factorials of large
numbers in the formula [2,41], numerical calculations of the
d function by the conventional Wigner method suffers from a
serious loss of precision at medium and high spins. Although
a few remedies have been proposed [42–44], they still en-
counters severe numerical instability and/or loss of precision
from unclear sources. A few years ago, Tajima [3] proposed
a new method for the Wigner d-function evaluation based on
the Fourier-series expansion. In this method, the precision of
the d function is determined by accurate evaluation of the
Fourier coefficients. This method turns out to be of a signifi-
cant improvement for the numerical stability and precision in
the d-function evaluation. However, those Fourier coefficients
still involve many factorials of large numbers so that they have
to be evaluated with the assistance of a formula-manipulation
software. Besides, those Fourier coefficients take up a lot of
memory in the numerical procedure.

In this work, we propose an alternative method based on
the Jacobi polynomials with a stable and high-precision algo-
rithm for the Wigner d-function evaluation. We show that our
method can achieve a very similar precision and stable result
as the Tajima Fourier method, but ours may be more efficient
and user-friendly. In Sec. II we provide, step by step, the an-
alytic expressions of the Wigner, Fourier, and Jacobi methods
for the Wigner d function. The precision of the Jacobi method
is analyzed in details and compared with both the Wigner and
Fourier methods in Secs. III and IV. A realistic calculation of
high-spin states for 156Dy by different d-function methods is
discussed in Sec. V, and we finally summarize our work in
Sec. VI.

II. DIFFERENT METHODS FOR THE WIGNER
d-FUNCTION EVALUATION

The conventional method for the d function is based on the
following Wigner formula [2], i.e.:

d j
mk (θ ) =

nmax∑
n=nmin

(−1)nW jmk
n (θ ), (3)

where

nmin = max(0, k − m), (4a)

nmax = min( j − m, j + k), (4b)

and

W jmk
n (θ ) = w jmk

n

(
cos

θ

2

)2 j+k−m−2n(
− sin

θ

2

)m−k+2n

(5)

with

w jmk
n =

√
( j + m)!( j − m)!( j + k)!( j − k)!

( j − m − n)!( j + k − n)!(n + m − k)!n!
. (6)

It can be seen that the Wigner formula (3) involves a sum-
mation over many terms, W jmk

n , with alternating signs. Each
of these terms includes many factorials of large numbers,
especially at medium and high spins, as they grow exponen-
tially with j (W jmk

n ≈ 2 j). Although cancellation among these
terms should finally lead the summation to a normal value
for the d function, the procedure would however cause an
accumulation of numerical errors. Thus the numerical results
from the Wigner formula unavoidably suffers from a serious
loss of precision at medium and high spins, except for the
neighborhood of θ = 0 and π [3].

The problem is the repeated production and cancellation of
large numbers. To avoid the problem, Tajima [3] proposed a
new method for the Wigner d function based on Fourier-series
expansion, in which the d function can be expressed as

d j
mk (θ ) =

j∑
ρ=ρmin

t jmk
ρ f (ρθ ). (7)

In the above formula, ρmin could be 0, 1/2, or 1 depending on
the values of j, m, and k (see Table I of Ref. [3] for details) and
f is sin (cos) function for m − k being odd (even). In Eq. (7)
the Fourier coefficient reads

t jmk
ρ = 2(−1)m−k

1 + δρ0

nmax∑
n=nmin

(−1)nw jmk
n

[ρ− 1
2 p]∑

r=0

(−1)r

(
2ρ

2r + p

)

× 1

2π
I2( j+ρ−n−r)−m+k−p, 2(n+r)+m−k+p, (8)

where p ≡ |m − k| (mod 2), the square brackets are the floor
function [3],

(
ρ

r

) = ρ!/[r!(ρ − r)!], and

Iλα =
∫ 2π

0
cosλ x sinα xdx. (9)

The Fourier method avoids cancellation among terms with
large numbers since each Fourier coefficient, t jmk

ρ , is less than
or equal to 1. It has indeed much improved the calculation of
the d function. However, two factors may limit its application.
On one hand, the Fourier coefficient, t jmk

ρ , still includes many
factorials of large numbers, i.e., w

jmk
n , so that it has to be

calculated by means of formula-manipulation software such
as MAXIMA or Mathematica [3]. On the other hand, in practical
applications, one has to read t jmk

ρ from files and store into a
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FIG. 2. The common logarithm of the maximum error in the numerical value of the d function d j
mk (θ ) as a function of j for both integer

and half-integer cases of j, with the Wigner, Fourier, and Jacobi methods. The exact values of d j
mk (θ ) are obtained by Mathematica 12.1 and

the maximum error is taken over all the possible values of m, k, and θ for each j. See the text for details.

memory, which consumes about 70 MB (1.2 GB) space for
the case of j � 50 ( j � 100) [3]. Recently, Feng et al. put for-
ward an exact-diagonalization method to calculate the Fourier
coefficients, in which the corresponding precision of the d
function decreases a little and the requested space doubles to
be about 2.4 GB for the case of j � 100 [41].

It is thus desired to have an efficient algorithm for the d-
function evaluation, which, while keeps the high precision as
of the Tajima Fourier method, is self-contained, and therefore,
user-friendly. Towards this goal, we note that the Wigner d
function can be expressed in terms of the Jacobi polynomials
[2]

d j
mk (θ ) = ξmk

[
s!(s + μ + ν)!

(s + μ)!(s + ν)!

]1/2

×
(

sin
θ

2

)μ(
cos

θ

2

)ν

P(μ,ν)
s (cos θ ), (10)

where μ = |m − k|, ν = |m + k|, s = j − 1
2 (μ + ν), and

ξmk =
{

1 if k � m,

(−1)k−m if k < m.
(11)

The Jacobi polynomial in Eq. (10) can be calculated by its
explicit expression [45]

P(μ,ν)
s (z) = 1

2s

s∑
n=0

(
s + μ

n

)(
s + ν

s − n

)
(z − 1)s−n(z + 1)n,

(12)

or by the corresponding recurrence relations [45]

2s(s + μ + ν)(2s + μ + ν − 2)P(μ,ν)
s (z)

= (2s + μ + ν − 1)[(2s + μ + ν)(2s + μ + ν − 2)z

+μ2 − ν2]P(μ,ν)
s−1 (z)

− 2(s + μ − 1)(s + ν − 1)(2s + μ + ν)P(μ,ν)
s−2 (z) (13)

with

P(μ,ν)
0 (z) = 1, (14a)

P(μ,ν)
1 (z) = (μ + 1) + (μ + ν + 2)

z − 1

2
. (14b)

It is important to realize that unlike the Wigner method and
the Fourier method, the expression in Eq. (10) that leads to the
Wigner d function does not involve a summation over many
terms with large numbers.

III. ERROR ANALYSIS OF THE JACOBI METHOD

In this and the next sections we carry out error analysis and
discuss precision of the Jacobi method in Eq. (10) by com-
paring with the conventional Wigner method and the recent
Fourier method. In Figs. 2 and 3 the absolute errors for the
d function from the three different methods are presented,
and in Fig. 4 the errors in an integral calculation involving
the d function are illustrated. All these results are obtained
by a FORTRAN90 testing code with standard subroutines for
the Wigner, Fourier, and Jacobi methods as provided in the
Supplemental Material [46], where in all cases floating-point
numbers are adopted as double-precision (64-bit) real num-
ber.

First in Fig. 2, we show maximum errors of the d j
mk (θ )

calculation as a function of j, obtained from the Wigner,
Fourier, and Jacobi methods. Results for integer and half-
integer j’s are illustrated separately. Each error of d j

mk (θ )
is evaluated with respect to the exact value calculated from
the formula-manipulation software Mathematica 12.1 where
higher than 10−25 precision is kept. The maximum of the
errors is recorded by considering all θ ’s from 0◦ to 180◦ with
an increment of 5◦, and for all possible values of m and k with
0 � m � j and k � |m| due to the following symmetries:

d j
mk (θ ) = (−1)m−kd j

−m−k (θ ), (15a)

d j
mk (θ ) = (−1)m−kd j

km(θ ), (15b)

054320-3



WANG, GAO, WANG, AND SUN PHYSICAL REVIEW C 106, 054320 (2022)

FIG. 3. The common logarithm of the error in the numerical value of the d function, i.e., log10|error| of d j
mk (θ ), for different values of m

and k, with j = 40, θ = 30◦, 60◦, and 90◦. The results of the Jacobi algorithm are compared with those of the Wigner and Fourier methods.
See the text for details.

d j
mk (θ ) = d j

−k−m(θ ), (15c)

d j
mk (−θ ) = (−1)m−kd j

mk (θ ), (15d)

d j
mk (−θ ) = d j

km(θ ), (15e)

d j
mk (π − θ ) = (−1) j+md j

m−k (θ ). (15f)

It can be seen from Fig. 2 that the maximum error from the
Wigner method increases exponentially with j, in the way
similar as that of W jmk

n in Eq. (3) of the Wigner formula.
Already when j � 25 the error would exceed 10−10, which
may lead to serious numerical problems in applications such
as high-spin calculations in nuclear physics. The origin for

loss of precision in the Wigner method is clear. It is caused
by the summation over many W jmk

n terms in Eq. (3), where
numerical errors are accumulated following a power law of j.

On the contrary, the maximum error from the Fourier
method keeps almost constant in a stable way towards high
spins, with the precision as high as about 10−14 even when
j ≈ 100. Although the Fourier method in Eq. (7) also in-
volves a summation over many terms, each term has very
high precision since the corresponding Fourier coefficient t jmk

ρ

is calculated by means of the formula-manipulation software
MAXIMA with very high precision and is stored into a mem-
ory [3], so that the accumulation of numerical errors can be
avoided.

FIG. 4. The common logarithm of the maximum error in the numerical value of the integral I j
mk in Eq. (18) by the Gauss-Legendre

quadrature formula as a function of j. Cases with different number of mesh points Nmesh by the Jacobi algorithm are compared with those of
the Wigner and Fourier methods. The maximum error is taken over all the possible values of m and k for each j. See the text for details.
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For the Jacobi method, as seen from Eq. (10), there is
no summation over many terms with large numbers and a
high-precision evaluation of the d function is then expected.
As seen from Fig. 2, when the Jacobi polynomial is calculated
directly by its expression of Eq. (12), a very similar loss of
precision is found for the Jacobi method as the Wigner for-
mula. This is due to the fact that Eq. (12) involves summation
over terms that include factorials of large numbers, which
leads to accumulation of numerical errors. However, when
the recurrence relations of the Jacobi polynomial in Eqs. (13),
(14) are adopted, the Jacobi method provides a similar high-
precision and stable behavior of the d function as the Fourier
method. This clearly suggests that it is the recurrence relations
in Eqs. (13), (14) that avoid accumulation of numerical errors.
Using the recurrence relations to improve numerical precision
may be helpful for many other numerical problems. Hereafter,
the Jacobi method with the recurrence relations in Eqs. (13),
(14) is referred to as the Jacobi algorithm for the d-function
evaluation.

To further carry out precision analysis in details, we take
the j = 40 case as an example and show in Fig. 3 errors
of d40

mk (θ ) for different values of m, k, and θ , with θ = 30◦,
60◦, 90◦, and 0 � m � j, k � |m| due to the symmetries in
Eq. (15). The results of the Jacobi algorithm (with the re-
currence relations) are compared with those of the Wigner
and Fourier methods. It is seen that the Fourier method gives
uniformly a 10−14–10−15 precision nearly irrespective of m, k,
and θ . The Wigner method, however, leads to a rather unstable
precision, depending sensitively on m, k, and θ . The precision
from the Wigner method could have errors as large as ≈10−5

when m ∼ k ∼ 0 and θ = 90◦ as seen from Fig. 3(g), or it
could be very accurate, with the precision as high as 10−20

when m ∼ j, k ∼ − j, θ = 30◦ and 60◦ [see Fig. 3(a) and (d)]
or m ∼ j, |k| ∼ j, θ = 90◦ [see Fig. 3(g)], which, for these
special cases, is much better than the Fourier method.

Therefore, In Ref. [3], Tajima suggested that if a very high
precision is needed for the d-function evaluation, one should
develop a program to switch between the Wigner and Fourier
methods with special values of j, m, k, and θ . It is now very
interesting to compare the results of the Jacobi algorithm (with
the recurrence relations) in Fig. 3. For each set of j, m, k, and
θ , the Jacobi algorithm always reproduces the one with the
higher precision between the Wigner and Fourier methods.
This pleasant feature in the Jacobi algorithm makes it a natural
choice for a switcher as discussed in Ref. [3].

IV. ERROR ANALYSIS WHEN THE WIGNER d FUNCTION
IS INTEGRATED

According to the Peter-Weyl theorem, the Wigner D
functions, D j

mk (φ, θ, ψ ), form a complete set of orthogonal
functions of the Euler angles, and are often used to expand
functions that are related to rotation. As the Euler angles are
continuous variables the expansion takes the form of integrals
with D j

mk (φ, θ, ψ ) being part of the integrand. Because of the
highly oscillatory behavior of the d function, as shown in
Fig. 1, especially at high j’s, a high precision in numerical
calculations for integrals involving the d function becomes an
issue.

For discussions, let us take an example from the calculation
with angular-momentum projection for the symmetry-violated
nuclear wave functions from mean-field calculations. Assum-
ing axial symmetry for the intrinsic states, |κ〉, the d function
enters into the calculation through the angular-momentum
projector,

P̂ j
mk =

(
j + 1

2

) ∫ π

0
d j

mk (θ )R̂(θ ) sin θdθ, (16)

where R̂(θ ) = e−iθ ĵy is the rotation operator around the y axis.
It can be generally shown [10] that the calculated Hamiltonian
and Norm projected matrix elements, for example, take the
form

H j
kκ k′κ ′ =

(
j + 1

2

) ∫ π

0
d j

kk′ (θ )〈κ |Ĥ R̂(θ )|κ ′ 〉 sin θdθ,

N j
kκ k′κ ′ =

(
j + 1

2

) ∫ π

0
d j

kk′ (θ )〈κ |R̂(θ )|κ ′ 〉 sin θdθ, (17)

which is an integral over the Euler angle θ with essentially
two kinds of functions in the integrand, d j

kk′ (θ ) and the rotated
matrix elements 〈κ |ÔR̂(θ )|κ ′ 〉 with Ô = Ĥ or 1, which is
expected to be a smooth function of θ . Due to the highly os-
cillatory behavior of the d function, its precision may be more
important for integrals involving the d function as in many
potential applications in nuclear physics, quantum metrology
and many other fields in the future.

First, in Fig. 4 we take one such integral for discussions
and show the absolute value (error) of the following integral:

I j
mk =

∫ π

0
dθ sin θ d j

mk (θ ) d j+1
mk (θ ) = 0 (18)

calculated by the standard Gauss-Legendre quadrature for-
mula with different number of mesh points Nmesh. The results
of the Jacobi algorithm are compared with those of the Wigner
and Fourier methods. It is seen that the error from the Wigner
method increases rapidly with j and exceeds 10−8 at j � 35,
irrespective of Nmesh, indicating that the error comes mainly
from the d function. By comparison, the error from the Ja-
cobi algorithm and Fourier method depends on Nmesh and the
precision of the integral (18) could be as high as 10−16 for
j � 100 if Nmesh = 200 is taken. This suggests that the Jacobi
algorithm for the d function applied in integration calculations
can achieve a similar high precision as the Fourier method.
The remaining errors in Fig. 4 should then come mainly from
the quadrature formula.

Of course, in numerical calculations and practical applica-
tions much more complicated integrands generally appear in
integrals, for which a large Nmesh is expected, and causes heav-
ier computational burden. Nevertheless, the results in Fig. 4(b)
and (c) suggest that one has a choice to use smaller numbers
of mesh points if states of only lower angular momenta are
studied.
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V. A REALISTIC CALCULATION WITH DIFFERENT
d-FUNCTION METHODS IN THE ANGULAR

MOMENTUM PROJECTOR

Today’s experimental measurements can provide data for
very high-spin states. For example, along the yrast rotational
band of 156Dy, the measurement could reach spin states as
high as j = 62 [47]. Physically, as a nucleus rotates faster and
faster, the Coriolis antipairing effect [5] gradually breaks the
nucleon pairs that are formed in the ground state. In the theo-
retical description by the projected shell model [10–12], states
of broken-pairs can be explicitly included in the configuration
space in terms of multi-quasiparticle (qp) states. Therefore,
our discussion on the precision of the d function calculation
should be coupled with the structure of multi-qp states.

We show next that the precise d function evaluation en-
ables extension in realistic calculations for nuclear states
in the high-spin region where the conventional Wigner
method usually collapses due to numerical instability. In an
angular-momentum-projection calculation, the kernel ingre-
dients involve the Hamiltonian and norm matrix elements
described in Eq. (17). Here, we take the diagonal elements of
the norm matrix N j

kκ kκ
for discussion, where k appears in the

d function and κ labels the multi-qp state. Note that the norm
matrix, which appears generally in all models with angular
momentum projection, reflects purely a geometric structure of
the projected states, and therefore, the following discussions
do not depend on any specific model interactions.

In Fig. 5, we show N j
kκ kκ

for different multi-qp states |κ〉
for 156Dy calculated by the projected shell model [10,20], with
the Wigner d function obtained by our new Jacobi and the
conventional Wigner algorithm. The multi-qp states include
the qp vacuum (0-qp) state and other selected ones, each from
the 2-qp, 4-qp, 6-qp, 8-qp, and 10-qp configurations. Keeping
in mind that the physical meaning of N j

kκ kκ
is the probability

of finding angular momentum j in the corresponding intrinsic
state, Fig. 5(a) actually shows the distribution of the j compo-
nents in each intrinsic configuration. The general trend of the
j distribution in each curve is such that after a local maximum
at very low spins, the curve decays exponentially toward high
spins. In the 0-qp state, for example, the content for j = 42 is
as small as 10−9. Figure 5(a) shows clearly that at very high
spins, the higher-order qp states in the configuration space
play more important roles in providing high- j components
in the intrinsic states. Physically, these angular momenta are
supplied by the broken-pair nucleons in the higher order qp
configurations. In the 10-qp state, for example, the content for
j = 42 becomes larger than 10−4. The numerical results from
the calculation with the Jacobi algorithm for d function are
stable. The same stable results are obtained by calculations
with the Fourier algorithm.

In contrast, due to the loss of precision in the Wigner algo-
rithm for the d function as shown in Fig. 2, coupled with the
fact of tiny contents of high angular momenta in the intrinsic
states, the calculated N j

kκ kκ
curves in Fig. 5(b) seem have

terrible errors at high spins. The rather unphysical results indi-
cate that the calculation breaks down completely, for example,
for j � 42 in the 0-qp state in our 156Dy case. Although for
the multi-qp states, errors occur later at some higher spins,

FIG. 5. The diagonal elements of the Norm matrix N j
kκ kκ of

Eq. (17) for different multi-qp states |κ〉 of 156Dy calculated by
using the Jacobi and Wigner algorithms for the d function. See the
text for details.

the fatal error at j = 42 in the 0-qp state essentially stops the
calculation for higher spin states. Figure 6 shows energies of
the yrast band for 156Dy as functions of j, calculated by the
projected shell model [10,20] with the Wigner, Fourier, and
Jacobi algorithms for the Wigner d function in the angular-
momentum projector. The existing experimental data [47] are
also shown for comparison. It is seen that with the Jacobi (as
well as the Fourier) algorithm, the results excellently describe
the data up to the highest spin with j = 60. On the contrary,
the calculation with the conventional Wigner algorithm stops
at j = 42, and gives unphysical results for j � 44. As in
the projection calculation, the j-dependence of the rotational
energies is entirely through the d function [see Eq. (17)],
we conclude that the numerical errors in the results seen in
Fig. 6 originate from the problem in the conventional Wigner
algorithm.

VI. SUMMARY

To probe the extreme in angular momentum in nuclear
physics, numerical calculations are required for very high-
spin states. With the worldwide effort for building modern
facilities and γ -ray detectors, it is anticipated that more and
more high-spin data will be collected and the demand for
precise high-spin calculations is increasing. The Wigner D
(d) functions serve as indispensable ingredients for many
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FIG. 6. The energies of the yrast band for 156Dy calculated by
the projected shell model [10,20] with three different algorithms for
the d function in the angular-momentum projector. The results are
compared with the experimental data taken from Ref. [47].

nuclear-structure models and are important for nuclear
physics, quantum metrology, and many other fields. Numer-
ical evaluation of the Wigner d function, d j

mk (θ ), from the
conventional Wigner method suffers from serious errors and
instability at medium and high spins. In this paper we present
a high-precision and stable algorithm for evaluation of the
Wigner d function. The algorithm is based on the Jacobi
polynomial and its recurrence relations.

Compared with the conventional Wigner method, the loss
of precision at medium and high spins is avoided in our Jacobi
algorithm, with a very high precision 10−14–10−15 when j �
100. Compared with the recent Fourier method, our Jacobi
algorithm avoids the dependence on formula-manipulation
softwares and does not need a large memory. With the help
from the recurrence relations of the Jacobi polynomial, the
Jacobi algorithm always gives the best precision so far ir-
respective of the values of j, m, k, and θ . Furthermore, it is
self-contained, and therefore, user-friendly.

The Jacobi algorithm could be the most effective algorithm
for the Wigner d-function evaluation in nuclear physics, quan-
tum metrology, and many other fields in the future. Through
numerical proofs with a realistic example for the yrast band
of 156Dy, we have shown that with our proposed Jacobi algo-
rithm, the calculation (as well as that by the Tajima Fourier
algorithm) can be aggressively extended to the high-spin re-
gion where the conventional Wigner method breaks down
completely. The related FORTRAN90 testing code and subrou-
tines for the Wigner and Fourier methods as well as the Jacobi
algorithm are provided as Supplemental Material [46] of the
present article.
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