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Gross theory of β decay by considering the spin-orbit splitting
from relativistic Hartree-Bogoliubov theory
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Nuclear β-decay half-lives are predicted with the so-called gross theory, which is improved by including the
spin-orbit splitting from relativistic Hartree-Bogoliubov theory. The calculated differences between the Gamow-
Teller and Fermi transition energies are in excellent agreement with experimental data for Zr, Sn, and Pb isotopes.
The influences of the Q value and the integrated Fermi function on the calculations of β-decay half-lives are
carefully studied. Based on the mass predictions of the latest Weizsäcker-Skyrme model, the half-lives from Ca
to Pb isotopes are systematically calculated. It is found that the Weizsäcker-Skyrme model well reproduces the
experimental data with accuracy better than that of quasiparticle random-phase approximation approaches. When
extrapolated to the unknown region, our results are generally close to those from the Skyrme finite-amplitude
method. This improved gross theory can be employed to calculate half-lives based on mass predictions of various
models and hence can provide relatively consistent half-life inputs for the r-process studies.
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I. INTRODUCTION

Nuclear β decay is a fundamental and important decay
mode. There are more than 3000 known nuclei, of which
more than 2000 mainly undergo β decay [1]. It contains a
wealth of information on nuclear structure, such as nuclear
masses [2], shapes [3], energy levels [4], and shell gaps [5].
Moreover, nuclear β-decay also plays an important role in
nuclear astrophysics [6,7]. It governs the matter flow between
neighboring isotopic chains of the rapid neutron-capture pro-
cess (r-process) and roughly sets the r-process timescale, so
it is a key process for the production of heavy elements in the
Universe [8,9].

During the past decades, much progress has been made
in the measurement of β-decay half-lives. The measurements
have been extended to the region far from the stability line
now, such as the region beyond the N = 82 shell gap [10,11],
the region important to the formation of the rare-earth peak of
the r-process [12], and the region approaching the r-process
path near N = 126 [13]. However, the half-lives of many
nuclei on the r-process path still cannot be measured, es-
pecially for the nuclei with N = 126. Therefore, theoretical
predictions of nuclear half-lives are essential to the r-process
studies. There are mainly four kinds of theories predicting
nuclear β-decay half-lives: the empirical formula [14,15],
the gross theory [16–19], the proton-neutron quasiparticle
random-phase approximation (QRPA) [20–23], and the shell
model [24–27]. The empirical formula is simple to calcu-
late nuclear β-decay half-lives with high accuracy, while it
neglects the microscopic information of β-decay transitions,
which may affect its extrapolation ability. The QRPA ap-
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proaches based on the covariant density-functional theory
[28–31] and the finite-range droplet model (FRDM) [32] have
been widely employed to calculate β-decay half-lives, which
can be applied to most nuclei in the nuclear chart except for
a few very light nuclei. However, conventional QRPA calcu-
lations in the matrix form are very time-consuming, so the
finite-amplitude method (FAM) was developed to solve QRPA
equations [33,34], which has been used to systematically
predict half-lives of medium-mass and heavy neutron-rich
isotopes recently [35,36]. The nuclear shell model includes
the detailed structure of the β-strength function and can be
successfully applied to describe β-decay half-lives of light
nuclei or nuclei near magic numbers. However, the dimension
of configuration space of the shell model increases rapidly
with the increase of the number of valence nucleons, so it
is impossible to make systematic half-life calculations for all
neutron-rich nuclei.

Based on a summation rule for the β-decay strength func-
tion, the gross theory treats the transitions to all final nuclear
levels in a statistical way. The strength function in the gross
theory corresponds to the intensity of β-decay to each ex-
cited level of daughter nuclei. The location of its peak is
roughly determined by the sum rule of the intensities, and
the volume of the broaden foot region is restricted by the
energy-weighted sum rules of intensities. For β− decay, its
foot part is dominant, while the peak part could play dominant
contributions for β+ decay. The gross theory was proposed in
Ref. [16], in which nuclear β-decay half-lives can be easily
predicted only with the input of β-decay energies. It was later
improved by including a revised treatment of the even-odd
mass difference [37] and the first-forbidden transitions [38].
The gross theory was further improved by employing the
single-particle strength function having a peak with a long tail,
which is usually named GT2 [17]. By taking into account the
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shell effects of the parent nuclei, the semi-gross theory was
developed [18], whose overall accuracy is comparable with
the overall accuracies of the microscopic models. The change
in parity at the single-particle level was considered in the gross
theory, which systematically reduces the discrepancies of the-
oretical predictions from experimental half-lives for nuclei
near the magic numbers [19]. Compared with the microscopic
models, the gross theory can predict half-lives of nuclei on
the whole nuclear chart with less computational cost, while
its accuracy is still comparable with the accuracies of the
microscopic models. Recently, the change of spin and parity
between neutron and proton single-particle levels has been
included to improve the predictive power of the gross theory
[39]. In addition, the influence of the axial-vector coupling
constant, the energy distribution function, and the antineutrino
mass on the β-decay half-lives is also investigated within the
gross theory of β decay [40,41].

The r-process studies necessitate many nuclear physics
inputs, among which nuclear masses, β-decay properties,
and neutron-capture rates are essential to make dynamic
r-process simulations. Recently, nuclear mass predictions
have achieved great progress with both microscopic and
macroscopic-microscopic mass models. For the microscopic
models, the nonrelativistic Hartree-Fock-Bogoliubov mass
models with Skyrme force [42] (SHFB) or Gogny force [43]
have been developed with an accuracy of about 600 keV. The
accuracies of relativistic mean-field mass models have also
been improved from about 2.5 MeV [44] to about 1.5 MeV
[45,46]. For the macroscopic-microscopic models, the latest
versions of the FRDM [47] have been developed together with
the self-consistent calculations of β-decay properties. The
accuracy of the Weizsäcker-Skyrme (WS) model has been im-
proved to about 300 keV [48], which is the best value for the
accuracies of present macroscopic-microscopic mass models.
Based on a spherical basis with an improved even-odd term,
another famous macroscopic-microscopic model—the Koura-
Tachibana-Uno-Yamada (KTUY) [49] mass model—was
developed with an accuracy of about 700 keV. Further-
more, various approaches have been proposed to improve
the accuracies of these nuclear mass models, e.g., the image
reconstruction technique [50], the radial basis function ap-
proach [51,52], and the machine-learning technique [53–55].
However, the self-consistent β-decay calculations based on
these high-accuracy mass predictions are scarce.

The gross theory provides an effective tool to make β-
decay calculations with the decay energies from the reliable
mass models. The Q value is a key physical quantity for
the study of β-decay half-lives, which is the only input of
the gross theory. Taking the KTUY and WS4 mass models
as examples, the influence of the Q value on the calculation
of β-decay half-lives is studied with an improved integrated
Fermi function. Apart from the β-decay energies, the prop-
erties of the Gamow-Teller transition are also very important
in the predictions of β-decay half-lives, which will be care-
fully constructed to reproduce the experimental values in this
work. It is well known that the relativistic density functional
theory naturally includes the nucleon spin degree of freedom
[56,57] and gives reasonable spin-orbit potential without any
extra model parameters. Therefore, we employ the relativistic

Hartree-Bogoliubov (RHB) theory [58–60] to extract the nu-
clear average spin-orbit splitting, which is crucial to reliably
describe the Gamow-Teller transition central energies.

The paper is organized as follows. A brief introduction of
the gross theory is presented in Sec. II, and special attention
is focused on the improvement of the gross theory with the
average spin-orbit splitting from the RHB theory. Based on
the β-decay energies from the latest version of the WS model
(WS4) [48], nuclear β-decay half-lives are calculated, and
the corresponding results and discussion are given in Sec. III.
Finally, a summary is presented in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Gross theory of β decay

Proceeding from the Fermi theory of β decay, the total
β-decay rate of allowed and superallowed transitions in the
approximation is written as

λ = m5
ec4

2π3h̄7

∑
E

∑
�=F,GT

G2
�|M�(E )|2 f (−E ), (1)

where me is the electron mass; GF and GGT are the coupling
constants of the Fermi and Gamow-Teller interactions, respec-
tively; E is the energy difference between the initial state and
the final state; and f (−E ) is the integrated Fermi function. In
the gross theory [16], it is assumed that the final level density
is large enough to replace the summation over transition states
by an integration as

λ ≈ m5
ec4

2π3h̄7

∫ 0

−Q

∑
�=F,GT

G2
�|M�(E )|2 f (Z, Em)dE , (2)

with Em = me − E . |M�(E )|2 is the β-decay strength func-
tion. The Q value represents the difference between the neutral
atomic masses of parent and daughter nuclei, which can be
written as Q = M(Z, A) − M(Z + 1, A). The Q value is the
most direct input for the calculation of the β-decay half-lives
in the gross theory. In order to improve the accuracy, in this
work, the masses of parent and daughter nuclei are derived
from the WS4 mass model, which is one of the most accu-
rate mass models at present. The integrated Fermi function
f (Z, Em) has usually been calculated with a phenomeno-
logical formula in the gross theory [16], which is a rough
approximation, while in this work, it is improved to be

f (Z, Em) = 1

m5
e

∫ Em

me

peEe(Em − Ee)2F0(Z + 1, Ee)dEe, (3)

where pe and Ee are the emitted electron momentum and
energy, respectively. F0(Z, Ee) is the Fermi function including
Coulomb screening and relativistic nuclear finite-size correc-
tions. It can be calculated by

F0(Z, Ee) = 2(1 + γ )(2peR)2(γ−1)

∣∣∣∣ �(γ + iy)

�(2γ + 1)

∣∣∣∣
2

eπy, (4)

with

γ =
√

1 − (αZ )2 and y = αZEe/pe, (5)
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where R is the nuclear radius and α is the fine-structure con-
stant.

Using the sum rules and the gross approximation,
|M�(E )|2 is defined as an appropriate average of the squared
nuclear matrix elements times the final level density. The
operation of the β-decay operator on a single nucleon with
ε produces a contribution to |M�(E )|2 and this contribution is
a single-particle strength function, i.e., D�(E , ε), which is the
most basic assumption of the gross theory:

|M�(E )|2 =
∫ ε1

ε0(E )
D�(E , ε)

dn1

dε
W (E , ε)dε, (6)

where dn1/dε is the single-particle energy distribution of the
decaying nucleons determined by the Fermi gas model, ε1 is
the maximum energy of the filled single-nucleon states, and
ε0(E ) = max(εmin, ε1 − Q − E ), with εmin being the lowest
single-particle energy of the parent nucleus. The Pauli prin-
ciple is considered in the lower limit of the integral and in
the term W (E , ε), which is a weight function reflecting the
availability (the degree of vacancy) of the final states. In
the special case of the flat surface, W (E , ε) equals to unity
for ε + E > ε1 − Q and vanishes for ε + E � ε1 − Q. As
in Ref. [16], the dependence of the single-particle strength
function D�(E , ε) on ε is neglected, i.e., suppose that each
nucleon has the same decay potential, regardless of the energy
ε of the nucleon, D�(E , ε) = D�(E ). The Fermi gas model is
used to estimate the dn1/dε as

dn1

dε
= 2

(2π h̄)3
4πV

[
2M∗3

n (ε − εmin)
]1/2

, εmin = ε1 − εF,

(7)
where M∗

n is the effective nucleon masses. εF is the nucleon
Fermi energy given by

εF = 76.52

(M∗
n /Mn)r2

0

(
N1

A

)2/3

MeV, (8)

where N1 is neutron number of the parent nuclei. For the
nuclear radius R = r0A1/3, we take r0 = 1.2. Finally, the total
β-decay rate can be written as

λ = m5
ec4

2π3h̄7

∫ 0

−Q

∫ ε1

ε0(E )

[
G2

FDF(E , ε) + 3G2
GTDGT(E , ε)

]

× dn1

dε
W (E , ε) f (Z, Em)dεdE . (9)

As in Ref. [16], the single-particle energy distribution
dn1/dε and the single-particle strength function D�(E , ε) are

modified by the gap of the single-nucleon levels in the final
nucleus to consider the pairing correlation.

B. Single-particle strength function

The single-particle strength function is constructed based
on the sum rule and the energy-weighted sum rules, and it
usually takes the Gaussian form as follows:

D�(E ) = 1√
2πσ�

exp
{−(E − Δ�)2

/(
2σ 2

�

)}
, (10)

where Δ� and σ� are the resonance energy and the standard
deviation. In the case of the Gamow-Teller transition, which
is the dominant nuclear process in β decay, the sum rules are
[61] as follows: ∫ ∞

−∞
DGT(E )dE = 1, (11)

∫ ∞

−∞
EDGT(E )dE ≈ ΔGT, (12)

∫ ∞

−∞
(E − ΔGT)2DGT(E )dE ≈ σ 2

GT, (13)

which determine the amplitude, the expectation, and the
standard deviation of the single-particle strength function,
respectively. As in Ref. [16], the nucleus is assumed to be a
uniformly charged sphere of radius 1.2A1/3 fm, and we get the
following for β± decay,

ΔF = ΔC = ∓(1.44Z1A−1/3 − 0.7825) MeV, (14)

σF = σC = 0.157Z1A−1/3 MeV, (15)

where Z1 is the proton number of the daughter nucleus for
β+ decay and that of the parent one for β− decay. Here ΔC

and σC are the single-particle Coulomb displacement and the
fluctuation (or the standard deviation) of the Coulomb energy
[16]. The standard deviation of the Gamow-Teller transition is
calculated with

σ 2
GT = σ 2

F + σ 2
N, (16)

where σN is the energy spread caused by the spin-dependent
part of nuclear forces.

The central energy of the Gamow-Teller transition ΔGT

is certainly different from that of the Fermi transition ΔF,
while it is usually taken as ΔGT = ΔF for simplicity in the
original gross theory [16]. From Refs. [62,63], the relationship
between ΔGT and ΔF can be calculated with

ΔGT − ΔF = 1

8(N − Z )

〈
π

∣∣∣∣∣
[

A∑
i

τ i
+σ i

+,

[
H1,

A∑
j

τ
j
−σ

j
−

]]∣∣∣∣∣π
〉
, (17)

where |π〉 represent the parent nucleus. H1 stands for the spin-dependent, isospin-dependent, and spin-isospin-dependent parts
of the Hamiltonian used in Ref. [62]; it can be expressed as

H1 = −
A∑

i=1

ξil i · σ i + 1

2

κτ

A

A∑
i �= j

τ i · τ j + 1

2

κσ

A

A∑
i �= j

σ i · σ j + 1

2

κστ

A

A∑
i �= j

(τ i · τ j )(σ i · σ j ), (18)
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where κτ and κστ are the strengths of the isospin-dependent
and spin-isospin-dependent interactions, respectively. ξi and
l i are the strength of the l · σ force and the orbital angular
momentum. The average energy difference between Gamow-
Teller and Fermi transitions can then be obtained by using the
Hamiltonian H1 with the ξ l · σ force, which is

ΔGT − ΔF = 2

3T0

〈
π

∣∣∣∣∣
A∑

i=1

ξil i · σ i

∣∣∣∣∣π
〉

− 4A−1(κτ − κστ )T0

= Δls − 4A−1(κτ − κστ )T0. (19)

Here T0 = (N − Z )/2 represents the total isospin. Δls comes
from the l · σ force, reflecting the fact that particle-hole states
composed of spin-orbit partners contribute to the Gamow-
Teller modes. This formula can also be understood from the
QRPA calculations. It is known that the main configurations
of the Gamow-Teller resonance are the transitions of type j =
l + 1/2 → j = l − 1/2 ( j is the total angular momentum and
l is the orbital angular momentum of the upper component),
while the configurations of the Fermi transition are the tran-
sitions of type j = l ± 1/2 → j = l ± 1/2. Therefore, the
differences between the unperturbed energies of the Gamow-
Teller resonance and those of the Fermi transition can be
roughly estimated by Δls. Apart from the differences between
the unperturbed energies, the influence of residual interactions
on ΔGT − ΔF is certainly important, which is simulated by the
second term of Eq. (19), since this term is proportional to the
difference between the strengths of spin-isospin-dependent
and isospin-dependent interactions.

C. Model parameters

Similarly as in Refs. [62–64], in this work, ΔGT is calcu-
lated by

ΔGT = ΔF + Δls + Δκ, (20)

with

Δls = 2

3(N − Z )
Els, Δκ = 2(κστ − κτ )(N − Z )/A, (21)

where Δls is the contribution of spin-orbit splitting to ΔGT −
ΔF as derived from Refs. [62,63]. The average spin-orbit split-
ting Els is extracted from the single-particle levels of the RHB
theory with PC-PK1 [65] for each nucleus, while in previous
versions of the gross theory it is taken as a constant [17] or
a phenomenological formula only depending on A [66,67].
In the QRPA calculations, the occupation (v2) and unoccu-
pation (u2 = 1 − v2) probabilities of single-particle levels in
the canonical basis should be further included [68]. Therefore,
the single-particle levels and the occupation probabilities of
the RHB theory in the canonical basis are employed to extract
the average spin-orbit splitting, which is calculated by

Els =
∑

i

ΔEi
[(

u2
p−v2

n+
)
μp−μn+ − (

u2
p+v2

n−
)
μp+μn−

]
i

2li + 1
, (22)

where μ = 2 j + 1 is the degeneracy of the single-particle
level. Both the neutron and the proton energy levels used
here belong to the parent nucleus. p± (n±) are the single
proton (neutron) states with the opposite spin j = l ± 1/2.

The summation on i runs over all spin-orbit partners and
ΔEi is their spin-orbit splitting for proton energy levels.
The reason for it is that we assume that the energy dif-
ference of the spin-orbit partners is the same for neutrons
and protons. When the pairing correlation is switched off,
Eq. (22) clearly becomes the average spin-orbit splitting
among spin-orbit partners of (neutron) particle-(proton) hole
pairs. Taking the closed-shell nucleus 48Ca as an example,
whose protons occupy the major shells and N − Z = 8 neu-
trons fill the j = l + 1/2 (1 f7/2) shell, only the spin-orbit
partners (1 f7/2, 1 f5/2) can contribute the average spin-orbit
splitting in Eq. (22). Therefore, Els(48Ca) = 48�E1 f /7 and
hence the Δls(48Ca) in Eq. (21) equals 2Els(48Ca)/24 =
4�E1 f /7. For 208Pb, whose protons occupy up to the
1h11/2 shell and neutrons up to the 1i13/2 shell, the con-
tributions from the spin-orbit partners (2 f7/2, 2 f5/2) and
(3p3/2, 3p1/2) cancel out, so only the remaining partners
(1h11/2, 1h9/2) and (1i13/2, 1i11/2) can contribute the average
spin-orbit splitting. Therefore, Els(208Pb) = 120�E1h/11 +
168�E1i/13 and hence Δls(208Pb) equals 2Els(208Pb)/132 =
4(5�E1h/11 + 7�E1i/13)/11. These results are consistent
with the formulas Δls(48Ca) = 4ξ3 and Δls(208Pb) = 4(5ξ5 +
7ξ6)/11 in Refs. [62,63] by using ξl = ΔEi/(2l + 1). There-
fore, we use Eq. (22) to extract the average spin-orbit splitting.

Clearly, there are only two independent parameters in
this gross theory, i.e., σN and (κστ − κτ ). The parameter
(κστ − κτ ) is determined by fitting the experimental differ-
ence between the central energies of the Gamow-Teller and
the Fermi transitions of Zr, Sn, and Pb isotopes [69–71],
which is −4.8765 MeV. Using the least-square method, the
optimal value of the last remaining parameter σN is obtained
by fitting the experimental β-decay half-lives to minimize

S =
N0∑

n=1

[
log10

(
T cal

1/2(n)
/

T exp
1/2 (n)

)]2
, (23)

where n represents the nth nucleus and N0 is the total number
of nuclei. In principle, the parameter σN should be refitted for
the gross theory with Q values from other mass models, while
it is very similar for most nuclear mass models, so we adopt
the value of σN in the gross theory based on the WS4 mass
model for the gross theory based on the KTUY mass model,
which is 7.6996 MeV.

The direct inputs for calculating the β-decay half-life are
the proton number Z , the neutron number N , and the β-decay-
energy Q value. In this work, the β-decay-energy Q values are
provided by the WS4 mass model, whose root-mean-square
(rms) deviation to the latest experimental mass evaluation
AME2020 [72] is about 300 keV, even better than that in the
SHFB [42] and FRDM12 [47] mass models. For simplicity,
the improved gross theory is referred to as the WS4+GT
model hereafter. In order to give better descriptions of nu-
clear half-lives, σN is refitted with experimental half-lives
NUBASE2016 [73], in which only nuclei with T1/2 < 100 s
and decaying 100% by the β mode are considered. In addition,
ΔGT is improved by including the spin-orbit corrections and
the term of (κστ − κτ ) in this work. Since the experimental
ΔGT − ΔF can be well reproduced, the spin-orbit corrections
and the term of (κστ − κτ ) can be used for all gross theories,
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FIG. 1. Differences of log10(T1/2) between KTUY+GT and
WS4+GT predictions.

not only for the one based on the WS4 mass model. Therefore,
it is possible the WS4+GT model is better able to reproduce
the real physics and hence better able to describe nuclear
β-decay half-lives.

III. RESULTS AND DISCUSSION

From Eq. (2), it is clear that the Q value and the inte-
grated Fermi function f play important roles in predictions
of nuclear β-decay half-lives. By taking the KTUY and WS4
mass models as examples, Figure 1 shows the logarithmic
difference of the β-decay half-lives obtained using different
Q values from these two mass models. It can be seen that the
differences between the predicted log10(T1/2) of KTUY+GT
and WS4+GT generally become smaller and smaller when
moving towards the neutron drip line. In the very neutron-rich
region, the logarithmic differences of β-decay half-lives of the
two models are generally within 0.25, while these differences
are even larger than 0.5 for nuclei near the stability line. These
large differences for nuclei near the stability line can be under-
stood by their very small Q values and hence minor changes
in their Q values would induce large changes in half-lives.
Figure 2 shows the comparison between the half-life cal-
culations with the approximate integrated Fermi function in
Ref. [16] and the improved integrated Fermi function in
Eq. (3). Clearly, the approximate integrated Fermi function
widely used in the gross theory is very accurate in the very
neutron-rich region and the light nuclei region with Z � 70.
However, for heavy nuclei with Z � 70 near the stability line,

FIG. 2. Differences between log10(T1/2) obtained using two dif-
ferent integrated Fermi functions. The superscripts f 1 and f 2
represent the approximate integrated Fermi function in Ref. [16] and
the improved integrated Fermi function in Eq. (3), respectively.

FIG. 3. The differences between the central energies of the
Gamow-Teller and the Fermi transitions for Zr, Sn, and Pb isotopes.
The corresponding experimental data [69–71] and theoretical results
are denoted by circles and squares, respectively. For comparison, the
spin-orbit splitting term Δls is denoted by triangles.

large differences in the integrated Fermi function are found
and hence induce systematic deviations of half-life predic-
tions. Therefore, it is necessary to adopt more accurate Q
values and integrated Fermi functions, and we use Q values
from the WS4 mass model and the integrated Fermi function
in Eq. (3) to predict nuclear β-decay half-lives hereafter. Fig-
ure 3 shows the differences between the central energies of
the Gamow-Teller and the Fermi transitions (ΔGT − ΔF) as
a function of isospin (N − Z )/A. The contribution from the
spin-orbit splitting term Δls is shown as well. It is found that
Δls plays a key role in describing the experimental ΔGT − ΔF,
such as the abrupt increase and decrease at 90Zr and 208Pb.
The interaction term Δκ provides the main decreasing trend
of (ΔGT − ΔF) with the isospin, which is also important
to reproduce the absolute value of ΔGT − ΔF. From Fig. 3,
the predicted differences between the central energies of the
Gamow-Teller and Fermi transitions by Eq. (20) are in ex-
cellent agreement with experimental data in a large range
of isospins from about 0.1 to about 0.22. In order to in-
vestigate the evolution of the central energies of Fermi and
Gamow-Teller transitions as a function of neutron number,
and the contributions from the spin-orbit coupling term Δls,
the central energies of the Gamow-Teller and Fermi transi-
tions for Ni and Sn isotopes are shown in Fig. 4 as well as
Δls. The Δls value slowly decreases with the increasing of
the neutron number, while its change becomes slower and
even slightly increases when the neutron number approaches
the magic numbers 50 and 82. This also demonstrates again
the importance of the interaction term Δκ , that is, providing
the downward trend of the Gamow-Teller transition central
energy ΔGT with the number of neutrons N . The Fermi tran-
sition central energy is mainly related to the nuclear proton
number, so its change is small in one isotopic chain, which
is only about 1 MeV for Ni isotopes and 1.5 MeV for Sn
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FIG. 4. Central energies of the Fermi transition and the Gamow-
Teller transition, and the average value of spin-orbit splitting for Ni
and Sn isotopes.

isotopes. However, the change of the Gamow-Teller transi-
tion central energy is very large, which is about 6.4 MeV
for Ni isotopes and 5.3 MeV for Sn isotopes. These energy
reductions are further checked with the corresponding QRPA
calculations with SkM*. From the QRPA calculations, it is
found that the Gamow-Teller transition energies are reduced
by 8.2 MeV (from 10.0 MeV of 68Ni to 1.8 MeV of 102Ni)
and 7.1 MeV (from 12.3 MeV of 130Sn to 5.2 MeV of 176Sn)
for Ni and Sn isotopes, which supports the decreasing trend
of Gamow-Teller transition central energy with the neutron
number towards the neutron drip line in Fig. 4. Therefore, it
is necessary to consider the differences between the Gamow-
Teller and Fermi transition central energies. The effect of
different Gamow-Teller transition central energies ΔGT on
the nuclear half-lives was further investigated. Taking the Ni
and Sn isotopes as examples, their half-lives are shown in
Fig. 5. Compared with the results with ΔGT = ΔF, the inclu-
sion of the interaction term Δκ reduces the predicted β-decay
half-lives, and its influence becomes larger and larger as the
neutron number is increased. By further including the Δls

term in the calculations of ΔGT, the underestimate of half-lives
is effectively eliminated and hence can well reproduce the ex-
perimental half-lives. From Fig. 4, it is found that ΔGT values
of Ni (Sn) isotopes are larger than ΔF values when N < 53
(N < 85), so their half-lives would increase by including the
differences between ΔGT and ΔF, but this influence on half-
lives is not obvious from Fig. 5. Thus, a good description of
half-lives can also be obtained using ΔGT = ΔF in the known

FIG. 5. Nuclear β-decay half-lives of Ni and Sn isotopes. The
dot-dashed, dotted, and solid lines represent the half-lives with
ΔGT = ΔF, ΔGT = ΔF + Δκ , and ΔGT = ΔF + Δκ + Δls, respec-
tively. The experimental values are denoted by solid squares.

FIG. 6. β-decay half-lives of Zn and Ag isotopes. The results
of the WS4+GT, RHB+QRPA [31], FRDM12+QRPA [32], and
SHFB+FAM [36] models are shown with solid, dot-dashed, dotted,
and dashed lines, respectively. For comparison, the experimental data
are shown with solid squares.

region for the early version of the gross theory. However,
this influence becomes larger and larger when extrapolating
towards neutron drip-line nuclei and even approaches an or-
der of magnitude. Therefore, it is necessary to consider the
differences between the Gamow-Teller and Fermi transition
central energies for better describing β-decay half-lives of
nuclei from near the stability line to the neutron drip line. For
comparison with experimental and other models’ results, e.g.,
the QRPA methods based on the FRDM (FRDM12+QRPA)
[32] and the RHB theory (RHB+QRPA) [31], as well as
the FAM based on the SHFB theory (SHFB+FAM) [36],
we take even-Z Zn and odd-Z Ag isotopes as examples,
whose half-lives are shown in Fig. 6. For Zn isotopes, the
FRDM12+QRPA and RHB+QRPA models overestimate nu-
clear β-decay half-lives for those with N < 50, while the
WS4+GT and SHFB+FAM models well reproduce all known
half-lives. For Ag isotopes, WS4+GT and RHB+QRPA mod-
els well reproduce the known β-decay half-lives, while the
FRDM12+QRPA model generally underestimates the half-
lives of long-lived nuclei (T1/2 � 1 s) and SHFB+FAM model
overestimates the half-lives of short-lived nuclei (T1/2 � 1 s).
When extrapolating to the very neutron-rich region, the half-
lives predicted by the WS4+GT model are systematically
larger than those of the FRDM12+QRPA and RHB+QRPA
models and are close to those of the SHFB+FAM model, es-
pecially for the Ag isotopes. The RHB+QRPA model usually
predicts shorter half-lives for very neutron-rich nuclei, this
may originate from the inclusion of isoscalar proton-neutron
pairing interaction, whose strength becomes larger for these
neutron-rich nuclei. In addition, the half-lives of N = 50,
82, and 126 isotones, which are important for r-process nu-
cleosynthesis, are investigated, and the results are shown in
Fig. 7. For N = 50 isotones, the RHB+QRPA [31] model
overestimates the experimental half-lives when Z > 28. The
WS4+GT model underestimates the half-lives of N = 50
isotones with odd Z , but it describes well the half-lives of
N = 50 isotones with even Z . Therefore, the WS4+GT model
predicts an odd-even staggering of half-lives for N = 50
isotones in the known region, while it becomes very weak
when Z < 27. This odd-even staggering is also remarkable
in FRDM12+QRPA [32] predictions, even extrapolating to
the unknown neutron-rich region. For the N = 82 isotones,
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FIG. 7. Same as Fig. 6, but for N = 50, 82, and 126 isotones.

the WS4+GT and RHB+QRPA models better reproduce the
experimental data, while the SHFB+FAM [36] model system-
atically overestimates the known half-lives. For the odd-even
staggering of half-lives of N = 82 isotones, it is already very
weak even in the known region for the WS4+GT model,
while it is still remarkable for the FRDM12+QRPA model.
For N = 126 isotones, the RHB+QRPA model does not show
the odd-even staggering phenomenon, but remarkably under-
estimates the known half-lives, which may be due to the large
strength of isoscalar proton-neutron pairing interaction. Both
the FRDM12+QRPA and SHFB+FAM models overestimate
the known half-lives, while the WS4+GT model better re-
produces the experimental data. The odd-even staggering of
half-lives for SHFB+FAM and WS4+GT models is much
weaker than that for the FRDM12+QRPA model. The odd-
even staggering of half-lives can be related to the odd-even
staggering of Q values, so it is very important to construct a
reliable strength function to weaken or eliminate the odd-even
staggering of half-lives. The weak odd-even staggering of
half-lives for the RHB+QRPA and SHFB+FAM models may
indicate the self-consistency of the model plays an important
role in getting reliable strength functions. From the above
discussions, it is clear that the WS4+GT model can well
describe nuclear β-decay half-lives not only for the even-Z
and odd-Z isotopes but also for the isotones. The β-decay

FIG. 8. Differences of log10(T1/2) between WS4+GT predictions
and experimental data.

half-lives are then systematically calculated for the neutron-
rich nuclei from Ca to Pb isotopes by using the WS4+GT
model, whose data table is available as the Supplemental
Material [74]. For comparison with the experimental data, the
differences of log10(T1/2) between WS4+GT predictions and
experimental data are shown in Fig. 8. The WS4+GT model
better describes nuclear β-decay half-lives, and the differ-
ences of log10(T1/2) between the experimental half-lives and
the WS4+GT predictions are generally within 0.5 (100.5 =
3.2 times), which further verifies the reliability of the β-decay
half-lives predicted by the WS4+GT model. This improve-
ment in the half-life accuracy can also be reflected from the
rms deviations of log10(T1/2); the corresponding rms values
of the WS4+GT, SHFB+FAM [36], RHB+QRPA [31], and
FRDM12+QRPA [32] models for nuclei with experimental
T1/2 < 100 s are 0.40, 0.62, 0.80, and 0.53, respectively. The
very large values of predicted half-lives (T1/2 > 106 s) are
excluded in the rms calculation of the RHB+QRPA model in
order to get a reasonable evaluation of its half-life accuracy.
Finally, as shown in Fig. 9, the WS4+GT predictions are

FIG. 9. Logarithmic values for the comparison of WS4+GT
predictions with SHFB+FAM [36] and FRDM12+QRPA [32]
predictions.
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compared with the SHFB+FAM and FRDM12+QRPA pre-
dictions, respectively. The WS4+GT predictions are generally
closer to those of the SHFB+FAM model, especially in the
very neutron-rich region without experimental data. The cor-
responding σrms of log10(T1/2) between WS4+GT predictions
and SHFB+FAM (FRDM12+QRPA) predictions is only 0.45
(0.46), which shows their half-life predictions are generally
within about 3 times.

IV. SUMMARY

In summary, the gross theory for predicting nuclear β-
decay half-lives is improved by employing more reliable
Gamow-Teller transition central energies. In this treatment,
the Gamow-Teller transition central energies include the in-
teraction term and the spin-orbit coupling term, which are
found to be very important for reproducing the experimen-
tal data. The influence of the Q value from different mass
models on the calculations of β-decay half-lives is studied
with an improved integrated Fermi function. Based on the
mass predictions of the WS4 model and the spin-orbit splitting

extracted from the relativistic Hartree-Bogoliubov theory, the
gross theory is employed to systematically calculate nuclear
β-decay half-lives for neutron-rich nuclei from Ca to Pb iso-
topes. The effects of the interaction term and the spin-orbit
coupling term on the β-decay half-lives are also investi-
gated in detail. By comparing with microscopic SHFB+FAM,
RHB+QRPA, and FRDM12+QRPA models, the WS4+GT
model better reproduces known β-decay half-lives, whose rms
deviation of log10(T1/2) is only 0.4 (100.4 = 2.5 times) for
nuclei with experimental T1/2 < 100 s. When extrapolated to
the unknown neutron-rich region, the WS4+GT predictions
are generally close to the SHFB+FAM predictions.

ACKNOWLEDGMENTS

This work was partly supported by the National Natural
Science Foundation of China under Grants No. 11875070
and No. 11935001 and by the Anhui project (Grant
No. Z010118169). The authors acknowledge the High-
performance Computing Platform of Anhui University for
providing computing resources.

[1] F. G. Kondev, M. Wang, W. J. Huang, S. Naimi, and G. Audi,
Chin. Phys. C 45, 030001 (2021).

[2] D. Lunney, J. M. Pearson, and C. Thibault, Rev. Mod. Phys. 75,
1021 (2003).

[3] E. Nácher, A. Algora, B. Rubio, J. L. Taín, D. Cano-Ott, S.
Courtin et al., Phys. Rev. Lett. 92, 232501 (2004).

[4] V. Tripathi, S. L. Tabor, P. F. Mantica, Y. Utsuno, P. Bender, J.
Cook et al., Phys. Rev. Lett. 101, 142504 (2008).

[5] O. Sorlin, D. Guillemaud-Mueller, A. C. Mueller, V. Borrel, S.
Dogny, F. Pougheon et al., Phys. Rev. C 47, 2941 (1993).

[6] E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle,
Rev. Mod. Phys. 29, 547 (1957).

[7] T. Kajino, W. Aoki, A. B. Balantekin, R. Diehl, M. A. Famiano,
and G. J. Mathews, Prog. Part. Nucl. Phys. 107, 109 (2019).

[8] J. J. Cowan, C. Sneden, J. E. Lawler, A. Aprahamian, M.
Wiescher, K. Langanke, G. Martínez-Pinedo, and F. K. Thiele-
mann, Rev. Mod. Phys. 93, 015002 (2021).

[9] Z. Li, Z. M. Niu, and B. H. Sun, Sci. China Phys. Mech. Astron.
62, 982011 (2019).

[10] G. Lorusso et al., Phys. Rev. Lett. 114, 192501 (2015).
[11] J. Wu, S. Nishimura, P. Möller et al., Phys. Rev. C 101, 042801

(2020).
[12] J. Wu, S. Nishimura, G. Lorusso et al., Phys. Rev. Lett. 118,

072701 (2017).
[13] T. Kurtukian-Nieto et al., Eur. Phys. J. A 50, 135 (2014).
[14] Y. Zhou, Z. H. Li, Y. B. Wang et al., Sci. China Phys. Mech.

Astron. 60, 082012 (2017).
[15] M. Shi, J. Y. Fang, and Z. M. Niu, Chin. Phys. C 45, 044103

(2021).
[16] K. Takahashi and M. Yamada, Prog. Theor. Phys. 41, 1470

(1969).
[17] T. Tachibana, M. Yamada, and Y. Yoshida, Prog. Theor. Phys.

84, 641 (1990).
[18] H. Nakata, T. Tachibana, and M. Yamada, Nucl. Phys. A 625,

521 (1997).
[19] H. Koura and S. Chiba, Phys. Rev. C 95, 064304 (2017).

[20] J. Engel, M. Bender, J. Dobaczewski, W. Nazarewicz, and R.
Surman, Phys. Rev. C 60, 014302 (1999).

[21] F. Minato and C. L. Bai, Phys. Rev. Lett. 110, 122501 (2013).
[22] Z. M. Niu, Y. F. Niu, H. Z. Liang, W. H. Long, and J. Meng,

Phys. Rev. C 95, 044301 (2017).
[23] I. N. Borzov and S. Goriely, Phys. Rev. C 62, 035501 (2000).
[24] K. Langanke and G. Martínez-Pinedo, Rev. Mod. Phys. 75, 819

(2003).
[25] G. Martínez-Pinedo and K. Langanke, Phys. Rev. Lett. 83, 4502

(1999).
[26] T. Suzuki, T. Yoshida, T. Kajino, and T. Otsuka, Phys. Rev. C

85, 015802 (2012).
[27] Q. Zhi, E. Caurier, J. J. Cuenca-García, K. Langanke, G.

Martínez-Pinedo, and K. Sieja, Phys. Rev. C 87, 025803 (2013).
[28] Z. M. Niu, Y. F. Niu, H. Z. Liang, W. H. Long, T. Nikšić, D.
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[58] T. Nikšić, D. Vretenar, P. Finelli, and P. Ring, Phys. Rev. C 66,
024306 (2002).

[59] S. G. Zhou, J. Meng, and P. Ring, Phys. Rev. C 68, 034323
(2003).

[60] K. Zhang, M. K. Cheoun, Y. B. Choi, P. S. Chong, J. Dong, L.
Geng et al., Phys. Rev. C 102, 024314 (2020).

[61] K. Takahashi, M. Yamada, and T. Kondon, At. Data Nucl. Data
Tables 12, 101 (1973).

[62] T. Suzuki, Phys. Lett. B 104, 92 (1981).
[63] T. Suzuki and M. Yamada, Nucl. Phys. A 379, 110 (1982).
[64] S. Fracasso and G. Colò, Phys. Rev. C 76, 044307 (2007).
[65] P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C 82,

054319 (2010).
[66] A. R. Samana, C. Barbero, S. B. Duarte, A. J. Dimarco, and F.
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