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Analysis of the Peierls-Yoccoz rotational energy of nuclei with a semi-realistic interaction
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The Peierls-Yoccoz (PY) rotational energy of nuclei has been analyzed by the angular-momentum projection
on the axial Hartree-Fock solutions, by using the semi-realistic effective Hamiltonian M3Y-P6. The rotational
energy is decomposed into contributions of the individual terms of the Hamiltonian, and their ratios to the total
PY rotational energy are calculated. Except for light or weakly deformed nuclei, the ratios of the individual terms
of the Hamiltonian are insensitive to nuclides and deformation. The contributions of kinetic energies are large
and close to the rigid-rotor values, although those of central forces are sizable. For light or weakly deformed
nuclei, the ratios significantly depend on nuclei and deformation. The contributions of noncentral forces are not
negligible. Regardless of nuclides, the attractive forces decrease the moment of inertia, and the repulsive forces
increase it. A general formula for the PY rotational energy is derived, which suggests that higher-order terms
of the cumulant expansion play roles in the rotational energy and the moment of inertia for light or weakly
deformed nuclei.
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I. INTRODUCTION

The rotational band is a well-known energy spectrum,
Ex(J ) ≈ J (J + 1)/2 I [1]. It is observed experimentally over
a wide range of the nuclear chart, including not only stable
nuclei but also unstable ones [2]. It indicates that the intrinsic
state of nuclei is deformed and rotates with the moment-of-
inertia I.

From a microscopic standpoint, nuclei have been described
self-consistently by the mean-field (MF) theory, such as the
Hartree-Fock (HF) and the Hartree-Fock-Bogoliubov (HFB)
approximations [3]. Because nuclei are isolated systems, the
nuclear Hamiltonian has rotational symmetry, and the angular
momentum is a good quantum number in energy eigenstates.
However, spontaneous breaking of the rotational symmetry
often occurs in the MF approximation. The rotational symme-
try breaking of the MF state corresponds with a deformation
of the intrinsic state. The deformed intrinsic state in nuclei is
not observed directly. The Nambu-Goldstone (NG) mode is
accompanied by the symmetry breaking, and it restores the
corresponding symmetry in energy eigenstates. The restora-
tion of the rotational symmetry corresponds with a whole
rotational motion of the deformed nuclei.

Several methods that treat the rotation of nuclei have been
developed. As a microscopic theory, the cranking model [3]
has been proposed. The Inglis formula [4] and the Belyaev for-
mula [5] have been derived for the moment of inertia from the
cranking model. The Thouless-Valatin formula [6] has been
obtained in connection to the random phase approximation
(RPA). The angular-momentum projection (AMP) has been
developed [3,7–17], in which the degenerate intrinsic states
along the NG mode are superposed. The J (J + 1) rule of
the excitation energy with the moment of inertia is derived

from the AMP under a reasonable approximation for well-
deformed heavy nuclei [3,7,8,10,11,13]. However, for light or
weakly deformed nuclei, it is not sufficiently clear whether
the same arguments hold. It should also be noted that the
rotation significantly affects the intrinsic state, as handled in
the cranking model [3,9,13] and the variation-after-projection
(VAP) schemes [3].

In the classical mechanics, the rotational energy arises
from the kinetic energy. The rotational energy of nuclei should
be formed from the effective Hamiltonian including the nu-
cleonic interaction. In principle, the nucleonic interaction
originates from the quantum chromodynamics (QCD) [18].
However, it is not yet easy to derive the nucleonic interaction
from the QCD which is applicable to a variety of nuclei
with good accuracy. Because the nucleonic interactions are
effectively mediated by mesons, they are represented by the
Yukawa functions [19]. The Michigan-three-range-Yukawa
(M3Y)-type interactions [20–23] are composed of the Yukawa
functions except for density-dependent terms. The parameters
of the effective interactions have been determined based on
the G matrix with some phenomenological modifications [22].
In this respect, the M3Y-type interactions are semi-realistic
effective interactions. The tensor force is also included, whose
parameters are fixed from the G matrix. It has been pointed
out via the nuclear matter response functions that the M3Y-
type interactions are free from most of the instabilities, which
sometimes occur in other interactions [24]. The MF calcula-
tions using the M3Y-P6 have described well the magic number
of nuclei over a wide range of the nuclear chart [25]. Because
it has a certain connection to the bare nucleonic interaction
and is applicable to self-consistent MF calculations including
deformation, the M3Y-type interaction is suitable for analyz-
ing the rotational energy of nuclei.
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Under these backgrounds, we shall re-examine from the
microscopic point of view how the rotational energy of nuclei
is formed. The AMP is applied to the MF wave functions
obtained by self-consistent axial-HF calculations using the
effective interaction M3Y-P6. In the present study, the ener-
gies produced from a fixed HF intrinsic state are inspected.
Namely, we restrict ourselves to the energies arising solely
from the rotation of the HF intrinsic state, separating them
out from the effects of the rotation on the intrinsic state and
ignoring the pair correlations. As obtained by the AMP of
Peierls and Yoccoz [7], we call this energy Peierls-Yoccoz
(PY) rotational energy. It should be kept in mind that the
PY rotational energy is not enough to describe the rotational
spectra in actual nuclei [9]. The contributions of the individual
terms of the semi-realistic Hamiltonian to the PY rotational
energy are focused on; in concrete, those of the kinetic en-
ergy, the density-independent and dependent central forces,
the LS force, the tensor force, and the central part of the one-
pion-exchange-potential (OPEP), which is the longest-range
term and an example of spin-dependent channels. It is noted
that the nucleonic interactions have spin-dependence, both in
these central and noncentral channels, which could contribute
to the rotational energy. Additionally, we present a general
formulation for the PY rotational energy. Compared with the
previous formulas [3,7,8,10,11,13], we find additional terms
which could be important for light or weakly deformed nuclei.

II. THEORETICAL BACKGROUND

A. Theory of AMP and rotation

The AMP is the method by which an intrinsic state is pro-
jected on angular-momentum eigenstates [3]. In the following,
we assume that Ŝ is a rotational scalar, and the intrinsic state is
an eigenstate of Ĵz whose eigenvalue is M. The intrinsic state
|�M〉 is expanded by angular-momentum eigenstates |JM〉,
where we omit indices other than J and M for simplicity,

|�M〉 =
∑

J

|JM〉〈JM|�M〉. (1)

The Wigner (small) d function [3,26,27] is defined by matrix
elements of a rotational operator around the y axis with the
angle β,

d (J )
MK (β ) := 〈JM|e−iĴyβ |JK〉. (2)

On the standard phase convention of the angular momentum,
d (J )

MK (β ) takes a real number. The expectation values of the
scalar operator Ŝ on the angular-momentum eigenstates are
obtained as follows [3]:

〈J|Ŝ|J〉 =
∫ π

0 dβ sin β d (J )
MM (β )〈�M |Ŝ e−iĴyβ |�M〉∫ π

0 dβ sin β d (J )
MM (β )〈�M |e−iĴyβ |�M〉 , (3)

where we omit the index M on the left-hand side (LHS) of
Eq. (3).

By using the property [27] d (J )
MM (−β ) = d (J )

MM (β ), the fol-
lowing relation is derived for Ŝ and |�M〉:

〈�M |Ŝ e−iĴyβ |�M〉 =
∑

J

|〈JM|�M〉|2〈J|Ŝ|J〉d (J )
MM (β )

=〈�M |Ŝ eiĴyβ |�M〉. (4)

Therefore, 〈�M |Ŝ e−iĴyβ |�M〉 is an even function of β, and
we have 〈�M |Ŝ Ĵ 2n+1

y |�M〉 = 0 for n = 0, 1, 2, . . ., whose
particular case is 〈�M |Ĵy|�M〉 = 0.

The following function is defined:

S01(β ) := 〈�M |Ŝ e−iĴyβ |�M〉
〈�M |e−iĴyβ |�M〉 , (5)

which is also an even function of β. The correlation function
between operators Â and B̂ is defined as C[Â, B̂] := 〈ÂB̂〉 −
〈Â〉〈B̂〉, where the bracket 〈 〉 represents the expectation value
at |�M〉. The above S01(β ) is related to the correlation func-
tion between Ŝ and Ĵ 2

y ,

d 2

dβ 2
S01(β )

∣∣∣∣
β=0

= −C
[
Ŝ, Ĵ 2

y

]
. (6)

The fluctuation of an operator Â is defined as σ [Â] :=√
C[Â, Â]. The overlap function 〈�M |e−iĴyβ |�M〉 is related to

the fluctuation of Ĵy as

d 2

dβ 2
〈�M |e−iĴyβ |�M〉

∣∣∣∣
β=0

= − (σ [Ĵy])2. (7)

Concerning C[Ŝ, Ĵ 2
y ] and (σ [Ĵy])2, we have

C
[
Ŝ, Ĵ 2

x

] = C
[
Ŝ, Ĵ 2

y

] = 1
2 C[Ŝ, Ĵ

2
], (8a)

(σ [Ĵx])2 = (σ [Ĵy])2 = 1
2 (〈�M |Ĵ 2|�M〉 − M2). (8b)

Let us restrict ourselves to the even-even nuclei with M = 0.
Extension to the M �= 0 case is almost straightforward. We
further assume that the state |�0〉 has the following symmetry:

R̂|�0〉 = |�0〉, R̂ := e−iĴyπ , (9)

then 〈J0|�0〉 = 0 for odd J . By using Eq. (4), the following
equation is derived:

〈�0|Ŝ e−iĴy (π−β )|�0〉 = 〈�0|Ŝ e−iĴyβ |�0〉. (10)

From Eq. (10) and d (J )
00 (π − β ) = (−)Jd (J )

00 (β ), the range of β

integration in Eq. (3) can be reduced to [0, π/2] [10,15].
The J (J + 1) rule of rotational energy and the mo-

ment of inertia connected with Eq. (3) were discussed in
Refs. [3,7,8,10,11,13]. If the overlap function 〈�0|e−iĴyβ |�0〉
has a sharp peak at β ≈ 0, the energy spectrum is close to
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the J (J + 1) rule. However, it is not always clear whether
〈�0|e−iĴyβ |�0〉 has a sharp peak at β ≈ 0. In the following, we
present a more general argument on the rotational energy than
those in Refs. [7,10] by using the cumulant expansion [28].
This formulation is useful in some cases, as will be discussed
in Sec. III.

We expand d (J )
00 (β ) by the power series of β,

d (J )
00 (β ) =

∞∑
n=0

c2nβ
2n, (11a)

c2n = (−)n

(2n)!
〈J0|Ĵ 2n

y |J0〉 = 〈J0|(Ĵ+ − Ĵ−)2n|J0〉
(2n)! 22n

.

(11b)

Equation (11b) leads to

c0 = 1, (12a)

c2 = − 1
2! 2 J (J + 1), (12b)

c4 = 1
4! 23 J (J + 1)[3J (J + 1) − 2], · · · . (12c)

The coefficient c2n depends only on J . The cumulant of oper-
ators X̂1, X̂2, . . ., X̂n [28] is defined by

〈X̂1; · · · ; X̂n〉cum := ∂

∂t1
· · · ∂

∂tn
ln

〈
exp

(
n∑

i=1

tiX̂i

)〉∣∣∣∣∣
t1=···=tn=0

,

(13)
where [X̂i, X̂ j] = 0 for all i and j. The following equation is
derived:

〈X̂1etX̂2〉
〈etX̂2〉 =

∞∑
n=0

t n

n!

∂

∂t1

∂n

∂t n
2

ln〈et1X̂1+t2X̂2〉
∣∣∣∣∣
t1=t2=0

=
∞∑

n=0

t n

n!
〈X̂1; X̂2; · · · ; X̂2︸ ︷︷ ︸

n

〉cum. (14)

Via Eq. (14), S01(β ) in Eq. (5) is expanded as follows:

S01(β ) =
∞∑

n=0

s2nβ
2n, (15a)

s2n = (−)n

(2n)!
〈�0|Ŝ; Ĵy; · · · ; Ĵy︸ ︷︷ ︸

2n

|�0〉cum. (15b)

Equation (15b) leads to

s0 = 〈�0|Ŝ|�0〉, (16a)

s2 = − 1
2! C

[
Ŝ, Ĵ 2

y

]
, (16b)

s4 = 1
4!

(
C

[
Ŝ, Ĵ 4

y

] − 6C
[
Ŝ, Ĵ 2

y

]
(σ [Ĵy])2

)
, · · · . (16c)

The coefficient s2n is independent of J , depending only on
|�0〉 and Ŝ . By defining the following quantities:

N2n :=
∫ π/2

0
dβ sin β β2n〈�0|e−iĴyβ |�0〉, (17a)

Λ2n := N2n

N0
, (n = 0, 1, 2, · · · ), (17b)

which are determined only by |�0〉, Eq. (3) is rewritten as

〈J|Ŝ|J〉 =
∫ π/2

0 dβ sin β d (J )
00 (β )〈�0|e−iĴyβ |�0〉S01(β )∫ π/2

0 dβ sin β d (J )
00 (β )〈�0|e−iĴyβ |�0〉

=
∑∞

m,n=0 c2ms2nN2m+2n∑∞
�=0 c2�N2�

=
∑∞

m,n=0 c2ms2nΛ2m+2n∑∞
�=0 c2�Λ2�

. (18)

For J = 0, c2n vanishes for n � 1, and the following equa-
tion is obtained:

〈0|Ŝ|0〉 =
∞∑

n=0

s2nΛ2n = 〈�0|Ŝ|�0〉 +
∞∑

n=1

s2nΛ2n. (19)

In the present expression, the energy difference 〈J|Ĥ |J〉 −
〈0|Ĥ |0〉 for an axial-HF state |�0〉, where Ĥ is the Hamil-
tonian, is the PY rotational energy.

For the denominator on the right-hand side (RHS) of
Eq. (18), we have

∞∑
n=0

c2nΛ2n = 1 +
∞∑

n=1

c2nΛ2n = 1

2J + 1

∣∣∣∣ 〈J0|�0〉
〈00|�0〉

∣∣∣∣2

. (20)

The inequality |∑∞
n=1 c2nΛ2n| < 1 is usually satisfied. We

have numerically confirmed via the RHS of Eq. (20) that this
inequality is indeed satisfied in all cases handled in Sec. III.
We then expand Eq. (18) as

〈J|Ŝ|J〉 =
( ∞∑

m,n=0

s2nc2mΛ2n+2m

)(
1 +

∞∑
�=1

c2�Λ2�

)−1

=
( ∞∑

m=0

∞∑
n=0

s2nc2mΛ2n+2m

)

×
[

1 −
∞∑

�=1

c2�Λ2� +
( ∞∑

�=1

c2�Λ2�

)2

− · · ·
]
.

(21)

In order to analyze J dependence of 〈J|Ŝ|J〉, with taking
account of c2n ∼ J2n, it is appropriate to arrange Eq. (21) by
c2n as

〈J|Ŝ|J〉 =
( ∞∑

n=0

s2nΛ2n + c2

∞∑
n=0

s2nΛ2n+2 + c4

∞∑
n=0

s2nΛ2n+4 + · · ·
)

[1 − (c2Λ2 + c4Λ4 + · · · ) + (c2Λ2)2 + · · · ]

=
∞∑

n=0

s2nΛ2n + c2

∞∑
n=1

s2n(Λ2n+2−Λ2nΛ2) + c4

( ∞∑
n=1

s2n(Λ2n+4−Λ2nΛ4)

)
−(c2)2

( ∞∑
n=1

s2n[Λ2n+2Λ2−Λ2n(Λ2)2]

)
+ · · · . (22)
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Compared with the Kamlah expansion [3,13], the cumulant
expansion of Eq. (15) enables a more organized expansion
of the rotational energy. We call the n � 2 terms of c2n in
Eq. (22) higher-c2n terms, and those of s2n higher-s2n terms. If
the higher-c2n terms are neglected, Eq. (22) is approximated
as

〈J|Ŝ|J〉 ≈ 〈0|Ŝ|0〉 + J (J + 1)

2 I[S]
, (23)

where

1

I[Ŝ]
:=

∞∑
n=1

s2n

[
−1

2
(Λ2n+2 − Λ2nΛ2)

]
. (24)

For Ŝ = Ĥ , the parameter I[Ĥ] is interpreted as the moment
of inertia. If the higher-s2n terms are neglected in Eqs. (19)
and (24), 〈0|Ŝ|0〉 and I[Ŝ] are approximated as

〈0|Ŝ|0〉 ≈ 〈�0|Ŝ|�0〉 − 1

2
C

[
Ŝ, Ĵ 2

y

]
Λ2, (25a)

1

I
[
Ŝ

] ≈ 1

4
C[Ŝ, Ĵ 2

y ] [Λ4 − (Λ2)2]. (25b)

Equation (25b) gives the moment of inertia of Peierls and
Yoccoz [7,10]. Equation (24) is regarded as a generalization of
Eq. (25b). From Eqs. (19), (24), and (25), it is noticed that the
higher-s2n terms may contribute to 〈0|Ŝ|0〉 and I[Ŝ]. We shall
see such a situation in Sec. III B. Further approximation based
on the Gaussian approximation [3,8,11,13] with the higher-s2n

terms is discussed in Appendix A.

B. Semi-realistic effective Hamiltonian

We have implemented AMP calculations in Eq. (3) for the
axial-HF solutions using the semi-realistic interaction M3Y-

P6 [22,23,29,30]. It is the first application of the M3Y-type
interactions to the AMP calculations.

Because nuclei are finite and isolated systems, their
effective Hamiltonian should have rotational, parity, and time-
reversal symmetry, with number conservation. We assume that
the individual terms of the Hamiltonian also have isospin
symmetries except for the Coulomb force. The Hamiltonian
is composed of the following terms:

H = K + Vnucl + VCoulomb − Hc.m.. (26)

The kinetic energy is K = ∑
i p2

i /2M, the nucleonic interac-
tion between two nucleons is Vnucl = ∑

i< j vi j , the Coulomb
interaction between protons is denoted as VCoulomb, and the
center-of-mass term is Hc.m. = P2/2AM, with the total mo-
mentum P = ∑

i pi and the mass number A = Z + N . The
effective nucleonic interaction is formed by the following
terms:

Vnucl = V (C) + V (LS) + V (TN) + V (Cρ ), (27a)

V (X) =
∑
i< j

v
(X)
i j , (X = C, LS, TN, Cρ ), (27b)

where V (C), V (LS), and V (TN) are the central, the LS, and the
tensor forces. The central density-dependent term is distin-
guished from V (C) and represented by V (Cρ ). The individual
terms of Eq. (27a) have the following forms:

v
(C)
i j =

∑
n

(
t (SE)
n PSE + t (TE)

n PTE + t (SO)
n PSO + t (TO)

n PTO
)

f (C)
n (ri j ),

v
(LS)
i j =

∑
n

(
t (LSE)
n PTE + t (LSO)

n PTO
)

f (LS)
n (ri j ) Li j · (si + s j ),

v
(TN)
i j =

∑
n

(
t (TNE)
n PTE + t (TNO)

n PTO
)

f (TN)
n (ri j ) r2

i j Si j,

v
(Cρ )
i j =(

t (SE)
ρ PSE · [ρ(ri )]

α(SE) + t (TE)
ρ PTE · [ρ(ri )]

α(TE))
δ(ri j ),

(28)

where ri j := ri − r j , ri j := |ri j |, r̂i j := ri j/ri j , pi j := (pi −
p j )/2, Li j := ri j × pi j , and

Si j := 3(σ i · r̂i j )(σ j · r̂i j ) − σ i · σ j . (29)

The spin- and isospin-exchange operators between two nucle-
ons are defined as

Pσ := 1 + σ i · σ j

2
, Pτ := 1 + τ i · τ j

2
, (30)

then the projection operators on singlet-even (SE), triplet-even
(TE), singlet-odd (SO), and triplet-odd (TO) channels are

defined as

PSE := 1 − Pσ

2

1 + Pτ

2
, PTE := 1 + Pσ

2

1 − Pτ

2
,

PSO := 1 − Pσ

2

1 − Pτ

2
, PTO := 1 + Pσ

2

1 + Pτ

2
.

(31)

We use the Yukawa function fn(r) = e−μnr/(μnr) for the ra-
dial functions, except for v

(Cρ )
i j . The longest-range term in v

(C)
i j

is fixed to be that of the OPEP. This central OPEP, which is
denoted by V (OPEP), is an example of spin-dependent interac-
tions. The values of the parameters for M3Y-P6 are given in
Ref. [22].
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C. Implementation of AMP

In this work, we apply the projection after variation for
the AMP to the axial-HF solutions. The numerical method
of Eq. (3) has been discussed in Refs. [3,15]. The intrinsic
state could gradually change for increasing J , often ac-
companied by breaking of the axial and the time-reversal
symmetry. While these effects can be handled in the cranking
model [3,9,13] and in the VAP schemes [3], they are ignored
in the present study, and we focus on rotational energy arising
from a fixed intrinsic state in this paper, as stated in the
Introduction. Furthermore, the AMP calculations for the HFB
solutions are left for future works.

The Gaussian expansion method (GEM) has been applied
in which complex-range Gaussian bases are used to expand
the radial part of the single-particle wave function [31,32].
The angular function is the spinor spherical harmonics. The
advantages of the GEM in the MF calculations are taken over
to the AMP calculations. Additionally, the spherical bases
enable precise numerical calculations of the AMP relatively
easily. Some details of the AMP calculations for nonorthogo-
nal bases are given in Appendix B.

The parity and the time-reversal operators are represented
as P̂ and T̂ , respectively. For the sake of simplicity, we say
“Ô symmetry” when Ô|�0〉 = |�0〉 is satisfied. In the MF
calculations, P̂ , T̂ , R̂ [see Eq. (9)], and axial symmetries
are assumed. Owing to the R̂T̂ symmetry, the elements of
the matrices U and V in Eq. (B2) which represent the MF
solutions are real numbers. The MF state |�0〉 is a direct
product of the parts having specific isospin and parity,

|�0〉 = |�0(p+)〉 ⊗ |�0(p−)〉 ⊗ |�0(n+)〉 ⊗ |�0(n−)〉.
(32)

The overlap function 〈�0|e−iĴyβ |�0〉 has been calculated
by the Onishi formula [3,12,14] [see Eq. (B14)]. The sign
problem of the Onishi formula is well known, and some so-
lutions have been proposed [33,34]. In the present cases, the
sign problem does not occur owing to non-negativity of the
overlap function, as proven in Appendix C.

There is also a problem in the density-dependent co-
efficients in v

(Cρ)
i j in the AMP calculations [16,35]. The

density-dependent term in Eq. (28) is not a rotational scalar
when the density does not have the spherical symmetry. In
the present calculations, the standard treatment in Ref. [15]
has been adopted, replacing the density ρ(r) in Eq. (28) with
“generalized density ” ρ̄(r; β ) which is defined as

ρ̄(r; β ) :=
∑

τ

∑
σ

ρ01(rστ ; β ), (33a)

ρ01(rστ ; β ) :=
∑
k1k2

ρ01
k1k2

(β )ϕk1 (rστ )ϕ∗
k2

(rστ ), (33b)

where ρ01
k1k2

(β ) is the generalized density matrix in Eq. (B11a),
and ϕk (rστ ) := 〈rστ |k〉, σ and τ are the spin and the isospin
indices. According to the T̂ symmetry, the generalized density
in Eq. (33a) becomes a real number. However, there is a case
in which ρ̄(r; β ) becomes negative and its fractional power
ρ̄ α (r; β ) may become multivalued. In the M3Y-P6 interaction,
the fractional powers α are α(SE) = 1 and α(TE) = 1/3 [22].
The phase of ρ̄ α (r; β ) has been chosen negative when ρ̄(r; β )

is negative. For a rotational scalar Ŝ , the following equa-
tion should hold:

〈�0|Ŝ|�0〉 =
∑

J

(2J + 1)
∫ π/2

0
dβ sin β d (J )

00 (β )

× 〈�0|Ŝ e−iĴyβ |�0〉. (34)

There is no mathematical guarantee that Eq. (34) is fulfilled
for V̂ (Cρ) when the LHS is evaluated by the MF state and the
RHS is calculated with ρ̄(r; β ). Nonetheless, in the present
calculations, Eq. (34) is satisfied for V̂ (Cρ) comparably well
to those for the other terms of the Hamiltonian in Eqs. (26)
and (27).

III. NUMERICAL RESULTS

In the present work, the AMP calculations in Eq. (3) have
been applied to deformed 12Mg [23,29], 40Zr [30], 60Nd,
and 62Sm isotopes, including stable and unstable nuclei. An
important evidence for the deformation is their ratios of exci-
tation energies Ex(4+)/Ex(2+) close to 10/3 [2,36–38]. 24

12Mg
is known as a light stable well-deformed nucleus. 34–38

12 Mg are
well-deformed unstable nuclei [38]. 40

12Mg is near the neutron
dripline [39], and a deformed halo structure of the intrinsic
state has been suggested [40]. 80

40Zr is a deformed unstable
nucleus near the proton dripline [41]. 100–110

40 Zr are neutron-
rich well-deformed nuclei [2,36,37]. 150–154

60 Nd and 152–156
62 Sm

are well known as deformed nuclei [1,2,42].

A. Contribution of individual terms of effective Hamiltonian to
PY rotational energy

In this subsection, we present composition of the PY rota-
tional energy. The expectation values of the individual terms
of the effective Hamiltonian at angular-momentum eigen-
states are calculated. The following quantity is defined via
Eq. (3):

Sx(J+) := 〈J+|Ŝ|J+〉 − 〈0+|Ŝ|0+〉. (35)

For Ŝ = Ĥ , where Ĥ is the Hamiltonian, Sx(J+) corresponds
with the excitation energy (i.e., the PY rotational energy),

Ex(J+) = 〈J+|Ĥ |J+〉 − 〈0+|Ĥ |0+〉. (36)

By taking Ŝ to be individual terms of Ĥ , the values Sx(J+)
give their contributions to the rotational energy. In the follow-
ing, Ŝ is an element of the set

Ŝ ∈ {Ĥ , K̂, V̂ (C), V̂ (LS), V̂ (TN), V̂ (Cρ), V̂ (OPEP)}, (37)

where each ingredient has been defined in Sec. II B.
The ratios of the individual terms in the effective Hamil-

tonian Sx(J+)/Sx(2+) have been calculated as well as the
ratio of the total excitation energy Ex(J+)/Ex(2+). The re-
sults for the deformed 40Zr, 154

60 Nd, and 154
62 Sm nuclei at their

lowest minima are shown in Fig. 1. The ratios Ex(4+)/Ex(2+)
obtained by the present work are close to those of the ex-
periments and 10/3. The values of Sx(J+) are negative for
V̂ (TN) and V̂ (Cρ) as will be shown in Fig. 3. As well as
Ex(J+)/Ex(2+), Sx(J+)/Sx(2+) well obeys the J (J + 1) rule,
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FIG. 1. The ratios Ex(J+)/Ex(2+) and Sx(J+)/Sx(2+) for the
deformed 80,100,104

40 Zr, 154
60 Nd, and 154

62 Sm nuclei at their lowest minima.
The open circles are the ratios Ex(J+)/Ex(2+) of experiments [2],
and the circles filled in black are those obtained by the present work.
The ratios Sx(J+)/Sx(2+) are also shown for Ŝ = K̂ (red circles),
V̂ (C) (blue circles), V̂ (LS) (yellow circles), V̂ (TN) (green circles), V̂ (Cρ )

(pink circles), and V̂ (OPEP) (sky-blue circles). The rigid-rotor value of
J (J + 1)/6 is presented by the horizontal lines.

up to high angular-momentum J ≈ 12. The experimental val-
ues gradually get smaller than the J (J + 1) line in many nuclei
at high J . Additional quantum correlations such as gradual
change of the intrinsic state should be considered in order to
reproduce experimental values more accurately.

FIG. 2. The ratios Ex(J+)/Ex(2+) and Sx(J+)/Sx(2+) for the
deformed 12Mg isotopes at their lowest minima. See Fig. 1 for
conventions. The experimental values of Ex(J+)/Ex(2+) are taken
from Refs. [2,38,43]. For 40

12Mg, the spin and parity of the observed
excited states have not been confirmed yet.

FIG. 3. The ratios Sx(2+)/Ex(2+) for the deformed nuclei at
their lowest minima.

In Fig. 2, the ratios Ex(J+)/Ex(2+) and Sx(J+)/Sx(2+)
for the deformed 12Mg isotopes at their lowest minima are
shown. Note that for 40

12Mg, the spin and parity of the excited
states have not yet been confirmed experimentally. The ratios
Ex(4+)/Ex(2+) obtained by the present work are close to
those of the experiments and 10/3 except for 40

12Mg. The ratios
Sx(4+)/Sx(2+) are also close to 10/3, as well. As J increases,
the ratios deviate from the J (J + 1) lines.

Because the ratios Sx(4+)/Sx(2+) are close to 10/3 ir-
respective of Ŝ and nuclides in Figs. 1 and 2, we focus on
compositions of the first excitation energies Ex(2+). Figure 3
shows the ratios Sx(2+)/Ex(2+) at their lowest minima, all
of which have prolate shapes. Except for the 12Mg region,
these ratios are insensitive to nuclides. The contributions of K̂ ,
V̂ (C), and V̂ (Cρ) are about 75%, 75%, and −50%, respectively.
The large positive contribution of K̂ is harmonious with the
rotational energy in classical mechanics. Both V̂ (C) and V̂ (Cρ)

give sizable contributions, although they tend to cancel to a
certain extent. The contributions of V̂ (LS) and V̂ (TN) are small.
These noncentral forces mainly contribute near the surface
of nuclei. Therefore, these forces become relatively small
compared to the central forces when the mass number in-
creases. In the 12Mg region, the ratios significantly depend on
nuclei. The LS force widens the rotational band, and the tensor
force narrows it, whose ratios are large compared to those of
80,104

40 Zr, 154
60 Nd, and 154

62 Sm nuclei. Regardless of nuclides, V̂ (C)

and V̂ (LS) act attractively, and V̂ (TN) and V̂ (Cρ) do repulsively
on the binding energies. The contributions of the former are
positive, and those of the latter are negative for the rotational
energies. In other words, the attractive forces decrease the
moment of inertia of nuclei, and the repulsive forces increase
it. The contributions of V̂ (OPEP) are about 10% at most. The
contributions of V̂Coulomb and Ĥc.m. to the excitation energies
are no more than a few percent. The latter results indicate that
the center-of-mass motion and the rotational motion, both of
which are NG modes in the MF approximation, hardly couple
each other.
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FIG. 4. The a20 (quadrupole deformation parameter) dependence
of Ex(J+)/Ex(2+) for the 34

12Mg, 40
12Mg, 80

40Zr, and 154
60 Nd nuclei. Their

lowest minima are represented by the filled circles. The J (J + 1)/6
values are presented by the horizontal lines.

We define the quadrupole deformation parameter a20 as [1]

a20 := q0

1.09A5/3
, (38)

where q0 is the mass quadrupole moment of the MF state
in units of fm2 [29]. Figure 4 shows the a20 dependence of
Ex(J+)/Ex(2+) for axial-HF solutions of the 34

12Mg, 40
12Mg,

80
40Zr, and 154

60 Nd nuclei, including their local minima. For
low J , the ratios Ex(J+)/Ex(2+) are close to those given by
the J (J + 1) rule, which indicates that the approximation in
Eq. (23) is good. For the 80

40Zr and 154
60 Nd nuclei, the ratios

become closer to the J (J + 1) line up to high J as |a20|
increases. For the 34,40

12 Mg nuclei or the minima having small
|a20| values, the ratios get deviating from the J (J + 1) line as
J increases, though the intrinsic states are fixed. This devia-
tion indicates that the higher-c2n terms are not negligible in
Eq. (22).

In Fig. 5, the a20 dependence of Sx(4+)/Sx(2+) is shown.
For 80

40Zr and 154
60 Nd, the ratios are close to 10/3, which is

almost independent of a20 and Ŝ with only a few exceptions.
For a20 = 0.56 of 34

12Mg and a20 = 0.47 of 40
12Mg, the ratios

are also close to 10/3, which is independent of Ŝ . However,
at the other minima of 34,40

12 Mg, the results strongly depend on
a20 and Ŝ .

In Fig. 6, the a20 dependence of the ratio Sx(2+)/Ex(2+)
is shown. For 80

40Zr and 154
60 Nd, the ratios become almost

constant for a20. In particular, the ratios of K̂ are almost
independent of the deformation parameter. The contributions
of V̂ (C) and V̂ (LS) become positive, and those of V̂ (Cρ) and
V̂ (TN) do negative apart from a few exceptions. The ratios
of these interactions fluctuate in the regions where |a20| is
not large. For 34,40

12 Mg nuclei, the ratios strongly depend on
the individual MF states. For 40

12Mg, we find an extraordi-
nary result that the ratio of K̂ is negative at a20 = −0.34.
At this MF state, J = 2 gives the lowest value of S (J+) for
Ŝ = K̂ .

We define the ground-state correlation as [see Eq. (19)]

ΔEg.s.c. := 〈�0|Ĥ |�0〉 − 〈0+|Ĥ |0+〉. (39)

FIG. 5. The a20 dependence of Sx(4+)/Sx(2+) for Ŝ = K̂ (red circle), V̂ (C) (blue squares), V̂ (LS) (yellow stars), V̂ (TN) (green triangles),
V̂ (Cρ ) (pink diamonds), and V̂ (OPEP) (sky-blue pluses).
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FIG. 6. The a20 dependence of Sx(2+)/Ex(2+).

The values of ΔEg.s.c. obtained by the AMP calculations for
the deformed 12Mg, 40Zr, and 62Sm isotopes at their lowest
minima are shown in Fig. 7. While ΔEg.s.c. is not sensitive to
the mass number, it correlates well to a20 with the correlation
coefficient 0.89. Thus, ΔEg.s.c. increases as deformation of
nuclei does, as expected.

B. Influence of higher-c2n terms and higher-s2n terms

In this subsection, we investigate influence of higher-c2n

terms and higher-s2n terms in Eq. (22), for the 34
12Mg, 40

12Mg,
80
40Zr, and 154

60 Nd nuclei, including their local minima.

FIG. 7. The ground-state correlations ΔEg.s.c. obtained by the
AMP calculations for the deformed 24,34–40

12 Mg (red crosses),
80,100–110

40 Zr (blue triangles), and 152–156
62 Sm (green squares) isotopes

at their lowest minima. The horizontal axes are the mass number A
and the quadrupole deformation parameter a20.

It is important for the J (J + 1) rule in Eq. (23) that the
higher-c2n terms are small compared to the c2 term in Eq. (22).
To examine influence of the higher-c2n terms and the higher-
s2n terms in Eq. (22), the Λ2n and Λ2n+2/Λ2n values are shown
in Fig. 8. For the well-deformed minima of 80

40Zr and 154
60 Nd,

the values of Λ2n are small compared to the 34,40
12 Mg nuclei or

the weakly deformed minima. As |a20| and the mass number
increases, Λ2n+2/Λ2n decreases for fixed n. Small Λ2n+2/Λ2n

values help both the J (J + 1) rule and the approximation of
Eq. (25), although c2n and s2n also play roles.

We next investigate the validity of the approximation in
Eq. (25). The values of s2 and s4 are calculated by using
Eq. (15a) via numerical differentiation for Ŝ = Ĥ . In Fig. 9,
the a20 dependence of the following quantities is shown [see
also Eqs. (19), (24), and (39)]:

ε(k)
g.s.c. := −∑k

n=1 s2nΛ2n − ΔEg.s.c.

ΔEg.s.c.
, (40a)

ε(k)
x := 3

∑k
n=1 s2n

[ − 1
2 (Λ2n+2−Λ2nΛ2)

] − Ex(2+)

Ex(2+)
,

(40b)

for k = 1, 2. At well-deformed minima of 80
40Zr and 154

60 Nd nu-
clei, both ε(1)

g.s.c. and ε(1)
x are less than a few percents. However,

they are large for 34,40
12 Mg nuclei or weakly deformed minima.

Regardless of nuclides, |ε(2)
g.s.c.| is smaller than |ε(1)

g.s.c.|. Except
for a20 = −0.42 of 34

12Mg, |ε(2)
x | is also smaller than |ε(1)

x |. The
contributions of the s4 terms to ΔEg.s.c. and Ex(2+), thereby
to the moment of inertia, turn out to be significant for 34,40

12 Mg
nuclei or weakly deformed minima.

C. Angle dependence of overlap function

In this subsection, the dependence of the overlap functions
〈�0|e−iĴyβ |�0〉 and S01(β ) in Eq. (5) on the angle β are
discussed for further understanding of the numerical results
in Secs. III A and III B, such as the J (J + 1) rule and the ratio
Sx(2+)/Ex(2+).

In Fig. 10, the overlap functions 〈�0|e−iĴyβ |�0〉 are shown
for the deformed nuclei at their lowest minima. The over-
lap functions for the 80

40Zr and 154
62 Sm nuclei have sharper

peaks than those for the 34,40
12 Mg nuclei. The fluctuation σ [Ĵy]

is connected to the coefficient of the second derivative of
〈�0|e−iĴyβ |�0〉 at β = 0 via Eq. (7). The values of (σ [Ĵy])2

for 24
12Mg, 34

12Mg, 80
40Zr, 104

40 Zr, and 154
62 Sm, which are calculated

from 〈�0|Ĵ 2|�0〉 [see Eq. (8b)], are 10.1, 17.2, 51.9, 64.2, and
86.6, respectively. The Gaussian approximation in Eq. (A1)
holds well except at β ≈ π/2, although the overlap functions
for 12Mg nuclei have broad peak. Recall that (σ [Ĵy])−1 is the
width of the Gaussian in this approximation.

In the present AMP calculations, the overlap function
〈�0|e−iĴyβ |�0〉 can be factorized via isospin and parity as
Eq. (32) because the rotational operator e−iĴyβ does not mix
isospin and parity. Figure 11 shows the components of the
overlap functions 〈�0(τπ )|e−iĴyβ |�0(τπ )〉 (τ = p, n and π =
+,−), for the deformed 34

12Mg, 40
12Mg, 80

40Zr, and 154
62 Sm nuclei at

their lowest minima. For the 12Mg nuclei, some components
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FIG. 8. The Λ2n and Λ2n+2/Λ2n values at the various a20 values shown in the insets.

have almost spherical structure and hardly depend on the β

angle. For the 40
12Mg nucleus, the (n−) component is well

deformed, which may be related to the deformed halo with
peanut shape [32]. For the 80

40Zr nucleus, all τπ components
are similarly deformed. For the 154

62 Sm nucleus, the (n−) com-
ponent is strongly deformed, though the others are not so
strongly deformed.

Figure 12 shows 〈�0|e−iĴyβ |�0〉 for minima of the 34
12Mg,

40
12Mg, 80

40Zr, and 154
60 Nd nuclei, including their local minima

with various a20 values. The overlap functions have sharper
peaks near β = 0 as |a20| increases, irrespective of nuclides.
A similar result is obtained in Ref. [16]. The sharpness of
the peak near β = 0 of 〈�0|e−iĴyβ |�0〉 corresponds with the

fluctuation σ [Ĵy]. The large fluctuation takes place when |a20|
is large for the heavy nuclei [3], which leads to a sharp peak
near β = 0. The overlap function depends on the mass number
as well as on a20. The Gaussian approximation sometimes
fails for the 12Mg nuclei or the weakly deformed minima. As
Λ2n in Eq. (17) is determined only by 〈�0|e−iĴyβ |�0〉, it is fair
to say that the results in Fig. 8 originates from those in Fig. 12.

We show −ΔS01(β ) which is defined by

ΔS01(β ) := S01(β ) − S01(β = 0), (41)

for the deformed 24
12Mg, 34

12Mg, 80
40Zr, and 154

62 Sm nuclei at their
lowest minima in Fig. 13. These results are related to those in

FIG. 9. The a20 dependence of ε(k)
g.s.c. and ε(k)

x for k = 1, 2 in Eq. (40).
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FIG. 10. The overlap functions 〈�0|e−iĴyβ |�0〉 for the deformed
nuclei at their lowest minima. Gray lines are obtained by the Gaus-
sian approximation in Eq. (A1).

Fig. 3. As in Eq. (6), we have

− d 2

dβ 2
ΔS01(β )

∣∣∣∣
β=0

= C
[
Ŝ, Ĵ 2

y

]
. (42)

The values of C[Ŝ, Ĵ 2
y ] for Ŝ = K̂ , V̂ (C), and V̂ (LS) are pos-

itive, and those for V̂ (TN) and V̂ (Cρ) are negative. As the
mass number increases, the values of |C[Ŝ, Ĵ 2

y ]| significantly

increase except for Ŝ = V̂ (LS), V̂ (TN), and V̂ (OPEP). Although
they are not shown, −ΔS01(β ) ≈ 0 and C[Ŝ, Ĵ 2

y ] ≈ 0 for
V̂Coulomb and Ĥc.m., independent of nuclides. The values of
−ΔS01(β ) far from β ≈ 0 strongly depend on nuclides,
which are influenced by the higher-order terms of the cumu-
lant expansion in Eq. (15).

FIG. 11. 〈�0(τπ )|e−iĴyβ |�0(τπ )〉(τ = p, n, π = +, −) for the
deformed 34

12Mg, 40
12Mg, 80

40Zr, and 154
62 Sm nuclei at their lowest minima.

FIG. 12. The overlap functions 〈�0|e−iĴyβ |�0〉 for the 34
12Mg,

40
12Mg, 80

40Zr, and 154
60 Nd nuclei, including their local minima. The

individual lines correspond to the various a20 values shown in the
insets.

In the present work, the values of C[Ŝ, Ĵ 2
y ] for Ŝ = K̂ are

almost always positive. However, there exists an exception;
the local oblate minimum of 40

12Mg. We decompose −ΔS01(β )
for K̂ as

S01(β; τ π ) := 〈�0(τπ )|Ŝ e−iĴyβ |�0(τπ )〉
〈�0|e−iĴyβ |�0〉

, (43a)

ΔS01(β; τ π ) := S01(β; τ π ) − S01(β = 0; τ π ), (43b)

FIG. 13. The behavior of −ΔS01(β ) for the individual terms of
the Hamiltonian for the deformed 24

12Mg, 34
12Mg, 80

40Zr, and 154
62 Sm nuclei

at their lowest minima.
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FIG. 14. The function −ΔS01(β; τ π ) in Eq. (43) for Ŝ = K̂ at
the oblate minimum of 40

12Mg.

for τ = p, n and π = +,−, and show −ΔS01(β; τ π ) in
Fig. 14 for the oblate minimum of 40

12Mg. The curvature of
−ΔS01(β; n −) at β ≈ 0 is negative and significant although
those for the others are positive and small. This anomalous
result is related to the negative contribution of K̂ exhibited in
Fig. 6.

D. Comparison of Ex(2+) with rigid-rotor model and
experiment

Figure 15 shows the calculated excitation energies Ex(2+)
and Sx(2+), the latter of which is the contribution of the
individual terms of the effective Hamiltonian to the rotational
energies [see Eq. (35)], for the deformed 12Mg, 40Zr, and 62Sm
isotopes at their lowest minima. As expected, the calculated
Ex(2+) tends to decrease as A increases. The absolute values
of Sx(2+) for the individual terms of the effective Hamiltonian

FIG. 15. The excitation energies Ex(2+) for the deformed
24,34–40

12 Mg, 80,100–110
40 Zr, and 152–156

62 Sm isotopes at their lowest minima.
The black cross symbols represent the values of Ex(2+) in the present
calculations. The corresponding values of Sx(2+) are also shown.
The green dashed line is the rigid-rotor value in Eq. (44) [1].

FIG. 16. The excitation energies for the deformed nuclei at their
lowest minima. The horizontal axis is the value of J (J + 1) with
the non-negative integer J . The experimental values are displayed by
black cross [2], blue square [38], and sky-blue triangle symbols [43].
The green dashed lines are the rigid-rotor values calculated from
Eq. (44). The red plus symbols are obtained by the present work.

do, as well. The rigid-rotor value [1] is also shown,

E (RR)
x (J+) = J (J + 1)

2 I (RR)
,

I (RR) ≈ 0.0138 A5/3[MeV−1]. (44)

In the classical mechanics, the rotational energy of the rigid
body comes from kinetic energy. Interestingly, the values of
Sx(2+) for Ŝ = K̂ are close to the rigid-rotor value in the 40Zr
and 62Sm regions.

Figure 16 shows the excitation energies for the deformed
nuclei at their lowest minima, all of which have prolate
shapes. The rigid-rotor energies are low compared to the ex-
perimental ones, e.g., for the 40Zr, 60Nd, and 62Sm regions.
The excitation energies obtained by the present calculations
are close to the experimental values of Ex(2+) for all nu-
clides. However, we should be careful in comparing the values
obtained by the present AMP calculations with those of the
experiment. The pair correlations will reduce the moment of
inertia and raise the excitation energies [5], while the intrinsic
state is not always stable for increasing J , tending to decrease
the excitation energies. It should also be noted that there
is uncertainty in treating the density-dependent terms in the
AMP calculations.
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IV. CONCLUSION

The Peierls-Yoccoz (PY) rotational energy of nuclei has
been analyzed by the AMP calculation for the self-consistent
axial-HF solutions, using the semi-realistic effective Hamil-
tonian M3Y-P6. The contributions of the individual terms
of the Hamiltonian to the rotational energies have been an-
alyzed. Except for the light nuclei or the weakly deformed
solutions, their ratios are insensitive to nuclides and states.
The contributions of the kinetic energies are large and close
to the rigid-rotor values. A large cancellation occurs between
the density-dependent channel and the density-independent
one in the central force, although their sum is still sizable. The
contributions of the noncentral forces are small. In contrast,
the results significantly depend on nuclei and deformation for
the light nuclei or the weakly deformed solutions. The contri-
butions of the noncentral forces are not negligible. Regardless
of nuclides, the attractive forces decrease the moment of iner-
tia, and the repulsive forces increase it. The pair correlations
and the J-dependence of the intrinsic state may influence the
results for actual nuclei, and we leave them for future works.

By using the cumulant expansion, a general formula for the
PY rotational energy is derived on the basis of the AMP. This
formula is a generalization of those in Refs. [3,7,8,10,11,13].
It is suggested that the newly found higher-order terms of the
cumulant expansion play roles in the light nuclei or the weakly
deformed solutions, contributing to the rotational energy.
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APPENDIX A: GAUSSIAN APPROXIMATION
CONNECTED TO AMP

In this Appendix, the Gaussian approximation [3,8,11,13]
for the rotational energy in Sec. II A is discussed with higher-
s2n terms in Eq. (22). There are certain cases that the overlap
function 〈�0|e−iĴyβ |�0〉 is well approximated by the Gaussian
function as

〈�0|e−iĴyβ |�0〉= 1 − 1
2 〈�0|Ĵ 2

y |�0〉β2 + · · · ≈ e− 1
2 (σ [Ĵy])2β2

.

(A1)
The width (σ [Ĵy])−1 is not always narrow. For x > 0, the
following functions are defined:

N (G)
2n (x) :=

∫ π/2

0
dβ sin β β2ne− 1

2 xβ2
, (A2a)

Λ
(G)
2n (x) := N (G)

2n (x)

N (G)
0 (x)

, (A2b)

FIG. 17. Λ
(G)
2n (x) for n = 0, . . . , 5.

analogously to Eq. (17). The function Λ
(G)
2 (x) is called uni-

versal function in Ref. [44].
In Fig. 17, Λ

(G)
2n (x) in Eq. (A2b) is shown. For small n and

large x, the following relation is satisfied:

Λ
(G)
2n (x) > Λ

(G)
2n+2(x). (A3)

The recurrence relations of N (G)
2n (x) and Λ

(G)
2n (x) are

d

dx
N (G)

2n (x) = −1

2
N (G)

2n+2(x), (A4a)

d

dx
Λ

(G)
2n (x) = −1

2

[
Λ

(G)
2n+2(x) − Λ

(G)
2n (x)Λ(G)

2 (x)
]
. (A4b)

Equations (19) and (24) are approximated as

〈0|Ŝ|0〉 ≈
∞∑

n=0

s2nΛ2n
(G)(x)

∣∣∣∣∣
x=(σ [Ĵy])2

, (A5a)

1

I[Ŝ]
≈

∞∑
n=1

s2n
d

dx
Λ2n

(G)(x)

∣∣∣∣∣
x=(σ [Ĵy])2

, (A5b)

regardless of the value of (σ [Ĵy])2.
If the width of the Gaussian (σ [Ĵy])−1 is narrow enough,

N (G)
2n (x) is approximated by taking sin β ≈ β in Eq. (A2a),

N (G)
2n (x) ≈

∫ π/2

0
dβ β2n+1e− 1

2 xβ2 = 2n
∫ λ

0
du une−xu, (A6)

where λ := π2/8. The recurrence relation in Eq. (A4a) is
satisfied for the approximate N (G)

2n (x) in Eq. (A6). For n = 0,
the integration in Eq. (A6) can be done analytically

N (G)
0 (x) ≈ 1

x
(1 − e−λx ). (A7)

By using Eqs. (A4a) and (A7), an analytical expression of
N (G)

2n (x) is obtained

N (G)
2n (x) ≈ 2nn!

xn+1

(
1 − e−λx

n∑
m=0

(λx)m

m!

)
. (A8)
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By widening the range of integral π/2 → ∞ (i.e., λ →
∞) in Eq. (A6), the following equation is obtained:

N (G)
2n (x) ≈ 2nn!

xn+1
(A9)

and

Λ
(G)
2n (x) ≈ 2nn!

xn
. (A10)

Equation (A10) satisfies Eq. (A3) for small n and large x.
Although Eq. (A3) breaks down at extremely large n for any
x, c2n in Eq. (11b) eases a problem of convergence in Eq. (18)
via

〈J0|(Ĵ+ − Ĵ−)2n|J0〉 ∼
(

2n
n

)
(−)nJ2n (A11)

and

c2n Λ
(G)
2n ∼ 1

n!

(
−J 2

2x

)n

. (A12)

If we neglect higher-s2n terms in Eq. (A5), 〈0|Ŝ|0〉 and I[Ŝ]
are approximated by using Eq. (A10),

〈0|Ŝ|0〉 ≈ 〈�0|Ŝ|�0〉 − C
[
Ŝ, Ĵ 2

y

]
(σ [Ĵy])2

, (A13a)

1

I[Ŝ]
≈ C[Ŝ, Ĵ 2

y ]

(σ [Ĵy])4
. (A13b)

Equation (A13) is the result of the Kamlah expansion [3,13],
and Eq. (A13b) is the Yoccoz moment of inertia [3,8,11].

APPENDIX B: AMP FOR NONORTHOGONAL BASES

A summary of the MF theory for nonorthogonal bases, par-
ticularly the HFB theory, is given in the Appendix of Ref. [45].
In this Appendix, we present a part of the method of AMP
that is characteristic of the nonorthogonal bases. The single-
particle (s.p.) base ket is represented by |k〉, and Nkk′ := 〈k|k′〉
is the norm matrix. We assume that N is positive definite, then
the completeness holds,

∑
kk′ |k〉(N−1)kk′ 〈k′| = 1̂, where 1̂ is

the identity operator in the s.p. space. We denote the creation
(annihilation) operator for the s.p. basis k by c†

k (ck). They
obey the fermionic anticommutation relations

{ck, c†
k′ } = Nkk′ , {ck, ck′ } = 0, {c†

k , c†
k′ } = 0. (B1)

The particle vacuum |0〉c is defined by ck|0〉c = 0 for all k,
which satisfies c〈0|0〉c = 1.

The generalized Bogoliubov transformation is given as [3]

α
†
i :=

M∑
k=1

(c†
kUki + ckVki ),

αi :=
M∑

k=1

(ckU∗
ki + c†

kV∗
ki ), (B2)

where M is the number of the bases, the matrices U and V are
M × M square matrices. In the vector and matrix representa-

tion, Eq. (B2) can be expressed as

(α† α) = (c† c)W, W :=
(

U V∗
V U∗

)
, (B3)

where (c† c) represents (c†
1 · · · c†

M c1 · · · cM ). In contrast to c†
k

and ck , α†
i and αi obey the usual fermionic canonical anticom-

mutation relations,

{αi, α
†
i′ } = δii′ , {αi, αi′ } = 0, {α†

i , α
†
i′ } = 0. (B4)

The matrix W satisfies the following equation:

W†N′W = 1, N′ :=
(

N 0
0 N∗

)
. (B5)

The HFB vacuum |�〉 is defined by αi|�〉 = 0 for all i, and
satisfies 〈�|�〉 = 1.

The transformation by the rotational operator e−iĴyβ for the
s.p. bases is represented as

e−iĴyβ (c† c)eiĴyβ =: (c† c)D′, D′ =
(

D 0
0 D∗

)
. (B6)

In the case of the spherically symmetric s.p. bases k =
(ν� jmtz ), as in the GEM of Refs. [31,32],

e−iĴyβc†
ν� jmtz

eiĴyβ =
∑

m′
c†
ν� jm′tz d

( j)
m′m(β ), (B7)

and the matrix elements of D in Eq. (B6) are Dkk′ =
δνν ′δ��′δ j j′δtzt ′

z
d ( j)

mm′ (β ). We define a matrix T,

e−iĴyβ (α† α)eiĴyβ =: (α† α)T, T =
(

T11 T12
T21 T22

)
, (B8)

which satisfies the relation

T = W−1D′W = W†N′D′W (B9)

with T22 = T11
∗ and T21 = T12

∗.
For simplicity, we express |0〉 := |�〉 and |1〉 := e−iĴyβ |�〉,

and assume that 〈0|1〉 does not vanish. For the Hamiltonian Ĥ
consists of the one-body term K̂ and the two-body term V̂ , we
get the following equation by using the generalized Wick’s
theorem [3,14]:

〈0|Ĥ |1〉
〈0|1〉 =

∑
k1k2

〈k2|K̂|k1〉ρ01
k1k2

+ 1

4

∑
k1k2k3k4

〈k3k4|V̂ |k1k2〉a
(
2ρ01

k1k3
ρ01

k2k4
+ κ01

k1k2
κ10∗

k3k4

)
,

(B10)

where the matrix elements of V̂ are antisymmetrized, and we
have defined “generalized density matrix” ρ01, and “general-
ized pairing tensors” κ01 and κ10,

(Nρ01N)kk′ := 〈0|c†
k′ck|1〉

〈0|1〉 , (B11a)

(Nκ01N∗)kk′ := 〈0|ck′ck|1〉
〈0|1〉 , (B11b)

(Nκ10N∗)kk′ := 〈1|ck′ck|0〉
〈1|0〉 . (B11c)
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The matrices ρ01, κ01, and κ10 in Eq. (B11) can be expressed
as [3,14]

ρ01 = Ṽ∗VT, κ01 = Ṽ∗UT, κ10 = V∗ŨT (B12)

with

Ṽ := V + U∗X∗, Ũ := U + V∗X∗, X := T12T22
−1

.

(B13)
The overlap function 〈0|1〉 can be calculated by the Onishi
formula [3,12,14]

〈0|1〉 = 〈�|e−iĴyβ |�〉 =
√

detT22(β ). (B14)

APPENDIX C: PROOF FOR NON-NEGATIVITY OF
OVERLAP FUNCTION

We define a A × A square matrix G for a HF state
|�〉 whose elements are 〈i′|e−iĴyβ |i〉, where i denotes the
occupied s.p. state obtained by the HF calculation, i.e.,
|�〉 = ∏A

i=1 a†
i |0〉c. We then have 〈�|e−iĴyβ |�〉 = det(G).

If T̂ |�〉 = |�〉 (T̂ is the time-reversal operator), |�〉
contains time-reversal partners |i〉 and |ī〉, which satisfy
〈ī′|e−iĴyβ |ī〉 = 〈i′|e−iĴyβ |i〉∗ and 〈ī′|e−iĴyβ |i〉 = −〈i′|e−iĴyβ |ī〉∗
(∵ T̂ e−iĴyβ T̂ −1 = e−iĴyβ). Thus G has the following structure:

G =
(

A −B
B∗ A∗

)
. (C1)

It is proven that the structure of Eq. (C1) ensures det(G) � 0
as follows.

The structure of Eq. (C1) derives the property

ΣyGΣy = G∗, Σy :=
(

0 −i
i 0

)
. (C2)

For the νth eigenvalue and eigenvector of G,

Gxν = λνxν, (C3)

there always exists a partner

G(Σyx∗
ν ) = λ∗

ν (Σyx∗
ν ), (C4)

because of Eq. (C2). Even when λν = λ∗
ν , the eigenvectors are

linearly independent because (Σyx∗
ν )†xν = xT

ν Σyxν = 0. While
a matrix with the property (C2) is not necessarily diagonal-
izable, the Jordan blocks associated by λν and λ∗

ν have equal
dimensions, as were given in the duality argument in Ref. [46].
It is now proven

det(G) =
∏
ν

|λν |2 � 0. (C5)

The non-negativity of matrices with the property (C1) was
proven for quaternion matrices in Refs. [47,48].
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