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Exotic symmetries as stabilizing factors for superheavy nuclei:
Symmetry-oriented generalized concept of nuclear magic numbers
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We introduce the concept of the nuclear octupole fourfold (i.e., applying simultaneously to all the four octupole
deformations α30, α31, α32, and α33) neutron “magic number” N = 196 and discuss the physical consequences of
its presence. Our theoretical predictions are obtained using the realistic phenomenological mean-field approach
with the deformed Woods-Saxon potential, the latter employing the new parametrization optimized in our
preceding articles. Correlations among 4 parameters in the set of 12 parameters of the Woods-Saxon potential
are detected and removed employing Monte Carlo approach leading to stabilization of the predictive power of
the modeling. Our main focus is examining the impact of the four-fold octupole magic number N = 196 on
the stability properties of superheavy nuclei with 114 � Z � 130 and 166 � N � 206. Calculations suggest
that majority of the examined nuclei are either spherical or octupole deformed, octupole-tetrahedral geometry
playing the dominating role lowering the ground-state energy by up to 8 MeV. The origin and manifestations
of this domination are illustrated and discussed. It turns out that, in several cases, alternative point-group
symmetries may lead to noticeable lowering of the nuclear energy; this concerns the C2v geometry associated
with α31, the D3h geometry related to α33, and D2d corresponding to the combination of α32 and α20 quadrupole
component.
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I. INTRODUCTION

One of the most fundamental questions about atomic nuclei
concerns the limits of existence of nuclear systems, which
can be found in nature or produced in the laboratory. Nuclei
at those limits are usually referred to as exotic. Particular
questions concern the biggest proton and/or neutron num-
bers leading to sufficiently long-lived nuclear systems, which
could be identified and studied. These latter nuclei are tra-
ditionally called “superheavy.” Attempts to synthesize so-far
unknown elements beyond uranium were undertaken already
in the early 1930s. However, only 278 nuclei among about
3000 known today experimentally can be found in nature, cf.
Ref. [1].

A. Symmetries and the notion of magic numbers

To present the impact of selected symmetries on the
nuclear stability—here we consider selected geometrical
ones—it will be of certain interest to clarify the mathematical
background and generality, both hidden in the historical no-
tion of nuclear stability expressed by employing the language

*Corresponding author: jerzy.dudek@iphc.cnrs.fr

of “magic” numbers. Such a name left without a comment
might leave the impression that one is talking about some
unexpectedly big shell effects appearing incidentally “here
and there”—wherefrom the name “magic.” In reality, we are
dealing with perfectly defined quantum circumstances, which
can be specified and generalized to various contexts, e.g., of
symmetries.

This broadly used terminology was centered around the
word “magic,” taking origin in pioneering works of Goeppert-
Mayer, Wigner, and Jensen which resulted in their common
Nobel Prize in 1963. These authors succeeded in linking
properties of specific spatial configurations of the nucleonic
densities and resulting nuclear stability. They revealed on
this occasion the premier role of the nuclear spin-orbit in-
teraction potential played in their particular case. Using the
terminology of the closed spherical shells and the formalism
of the orbital, �̂, intrinsic, ŝ, and total, ĵ ≡ �̂ + ŝ, nucleonic
angular momenta they were able to associate an increased
nuclear stability—measured by sufficiently large gaps in the
corresponding energy spectra—with the numbers of nucleons
in the nucleus corresponding to the expulsion of the highest-�
orbital from its proper main N shell to the (N − 1) shell
below (intruder states). These were the special values of those
numbers of nucleons, sometimes referred to as nucleonic
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occupation numbers, which were attached to the locally
strongest binding, and on this occasion attributed the appel-
lation “magic numbers.”

Of course, from the quantum mechanics viewpoint there
are no “magic tasks” performed. One singles out an interac-
tion potential, in the discussed historical case the spin-orbit:

V̂�·s ∝ �̂ · ŝ, (1)

which, with the help of the quantum state labeling by �, s,
and j identifies the parallel or antiparallel couplings (�� ↑↑ �s)
as opposed to (�� ↑↓ �s). From now on it is sufficient to record
variations of the gaps in the single-particle spectra with the
occupation numbers and baptize as “magic” those which
provide the maximum energy gaps.

Let us notice that arguments followed so far were dealing
with the possibly simplest geometrical context: the stability
of spherical symmetry configurations within closed spherical
shells. Is this the condition sine qua non? Can the same
(appropriately defined) magic number describe more than one
physics contexts, such as, for instance, several distinct geo-
metrical symmetries? Or, following some other gap-selection
criteria not related with any symmetry at all? Since the an-
swers are affirmative and we are interested in some such cases
in the present article, we wish to add some more precision as
it seems appropriate in the context.

With this goal in mind we will try to present arguments
in a general manner by making abstraction from the intruder
orbital context exploited in the originally mentioned case.
Indeed, what has been done in the historical example of spin-
orbit interaction and what will need to be done in any new
context is the following:

(1) We need to identify or define a certain interaction term
of specific interest in the Hamiltonian, and

(2) We need to relate the size of the single-particle level
spacing impacted by this interaction term to the occu-
pation numbers and obtain the experiment-comparable
output.

In other words, the “occupation numbers” associated with
the new phenomena can still be called magic numbers to
follow the long years of tradition—but this time representing
a totally different physics content. To complete the definition
of the new context adapted to our project in this article, we
propose the following replacements in terms of terminology:

First, the spin-orbit potential will be replaced by a model
potential representing nuclear long-range multipole-multipole
interactions, i.e., V̂Q·Q replacing V̂�·s:

V̂�·s ∝ �̂ · ŝ → V̂Q·Q ∝ Q̂†
λ=3 ⊗ Q̂λ=3. (2)

Second, since we are going to be interested in the octupole
(multipolarity λ = 3) shape generated structures, the condi-
tion on the orbital angular-momentum quantum numbers for
the “bra” and “ket” states to couple will be

�̂ ↑↑ ŝ → �� = 3 and � j = 3. (3)

Third, the long past history magic numbers 8, 20, 28, 50,
82, and 126 will be replaced by the occupation numbers

realizing the biggest gaps among the single-particle spectra
under nonzero octupole deformations α3μ 	= 0.

We believe that it will inspire imagination to introduce
a new notion of magicity in nuclear structure applying in
many different contexts. For instance, in the present case
this is the magic number, say N , applying to more than
one observable at the time (here four times within four
types of geometries with deformations α30, α31, α32, and α33,
in place of the single—spherical—geometry.) Incidentally,
all the listed cases generate five different (nuclear shape)
point-group symmetries represented by one “universal” magic
number: here—N = 196.

B. Overview of the past research as the background
for the present project

Among leading mechanisms limiting nuclear existence we
find the one of nucleonic binding: As soon as the neutron
and/or proton separation energies approach zero, Bn/p → 0,
the stability of the implied systems gets impacted by particle
emission and associated decreasing or vanishing lifetimes.

Another limitation is related to the balance between the
Coulomb repulsion among the protons and the overall nuclear
binding. Both of these combined, determine the heights of the
nuclear fission barriers. Vanishing of those barriers, B f → 0,
leads to vanishing of nuclear resistance to fission and thus
stability. In other words: With the fission barriers tending to
zero, the nucleus can fission within very short fission lifetimes
down to T ≈ 10−19 s, whereas the limit of the existence of the
chemical elements defined by the spontaneous fission is about
T ≈ 10−14 s, according to Ref. [2], cf. also references therein.

On the contrary, nuclear stability against specific de-
cay modes might significantly increase thanks to quantum
symmetries since each symmetry can generate its own decay-
hindrance factors. Thus in case of competition between the
nuclear configurations not involving and involving symme-
tries, these are the latter ones which offer potentially broader
horizons, and their studies can become primordial for identifi-
cation of superheavy nuclei. By employing theory methods
and predicting possible presence of symmetries in various
areas of the nuclear chart, we might be able to formulate
optimal conditions for experimental research and successful
identification of new, possibly more and more exotic struc-
tures.

Let us notice that geometrical symmetries are going to
influence directly also the two elementary mechanisms lim-
iting the nuclear stability remarked above. On the one hand,
the nucleonic binding is directly associated with the nuclear
deformation and thus will vary when the nuclear shapes will
follow a certain stabilizing shell effect. This may slow down
or accelerate particle emission. Similar things can be said
about the variation of the form of the fission barriers depend-
ing on the actual nuclear equilibrium and the corresponding
shape.

Following this way of reasoning, which encourages exam-
ining symmetries, in Ref. [3] a universal mechanism inducing
the presence of a number exotic geometrical symmetries in
several nuclei in the Pb- and light-actinide regions was estab-
lished and discussed in detail. These symmetries successfully
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compete with those resulting from traditional “prolate-oblate
quadrupole shape coexistence” studied for a long time in the
past.

Let us note in passing that, in this article, we refer to
nuclear shape symmetries as exotic if

(1) they do not coincide with well-known quadrupole or
axial octupole (pear shape) symmetries, and

(2) they can formally be described by one of the point-
group (also called “molecular”) symmetries.

It turns out that the mechanism examined in Ref. [3] gen-
erates a number of exotic geometrical symmetries, such as
the recently discovered tetrahedral symmetry, Td , Ref. [4],
see also references therein, and three other symmetries, C2v ,
D2d , and D3h. The description of this mechanism has been
formulated by using the nuclear mean-field terminology of
magic numbers and related shell effects. More precisely, us-
ing the most recent parametrization of the phenomenological
realistic nuclear mean field, the authors of the above reference
derive the presence of an octupole magic number N = 136
with significant single-particle energy gaps occurring simul-
taneously for all the four octupole deformations, α30, α31,
α32, and α33, wherefrom the name universal octupole magic
number N = 136.

In the present article we generalize and extend arguments
applied to the Pb and light-actinide regions of Ref. [3] to
superheavy nuclei, for which an analogous universal octupole
magic number is shown to be N = 196. Particular selection
of superheavy nuclei to be studied in the present article was
dictated by the fact that we wish to cover, possibly optimally,
the area of the nuclear chart in which the symmetries in
question are predicted.

This recent evolution can be compared with the results
of calculations of the pear-shape octupole deformation ef-
fects in heavy and superheavy nuclei carried out by many
authors over the last decades. Within the relativistic Hartree-
Fock-Bogolyubov theory, a region of octupole deformation
in heavy nuclei around Z ≈ 98 and N ≈ 196 was predicted,
whereas the octupole effects were predicted to be absent in
these superheavy nuclei according to Refs. [5–7]. The ax-
ial reflection-asymmetric Hartree-Fock-Bogolyubov approach
suggested that many neutron-rich actinide nuclei, in partic-
ular with 184 < N < 206 are pear-shaped in their ground
states, cf. e.g., Fig. 4 in Ref. [8], and references therein. In
contrast, the existence of octupole deformed nuclei in the su-
perheavy region around Z ≈ 120 and N ≈ 190 was predicted
by the macroscopic-microscopic model in Ref. [9] and the
Hartree-Fock-Bogolyubov approach with density-dependent
Gogny interactions, Ref. [10]. Moreover, recent macroscopic-
microscopic calculations in Refs. [11,12] have shown that the
tetrahedral-octupole deformation appears in nuclei with Z ≈
98 and N ≈ 192 and Z ≈ 126 and N ≈ 192. More generally,
these articles argue that octupole deformation in superheavy
nuclei occurs at neutron numbers around N ≈ 190.

These observations indicate that there is a rather significant
overlap between the range of nuclei addressed in the cited
literature and the present study, even though certain structural

mechanism in the focus of our article will also differ in many
aspects, as shown later.

In the experimental research addressing superheavy nuclei,
the new generation of facilities have served for many years to
explore the limits of stability of very heavy and superheavy
nuclei. Between 1981 and 1992, the superheavy elements
Z = 107–112 were discovered and identified at the GSI lab-
oratories, see Ref. [13] and the references therein, where
Z = 107 was the first new synthesized element. Synthesis
of the element Z = 113 was successfully completed in the
RIKEN laboratory, cf. Ref. [14]. The recent experiments in
Dubna have discovered the superheavy nuclei Z = 114–118
and confirmed through hot fusion processes, cf. Refs. [15–18].
Other attempts to produce new elements with Z > 120 were
also discussed in Refs. [19–21].

On the theory side, selected global properties could be
reproduced by using the liquid drop model, whereas the
description of the shell structures, in particular the spher-
ical energy gaps, could be approached by a microscopic
description involving mean-field methods, and methods em-
ploying nucleon-nucleon interactions, cf., early attempts, e.g.,
in Ref. [22]. In particular, in Ref. [23], the proton number
Z = 114 and neutron number N = 184 were predicted as the
next spherical shell closures above the Z = 82 and N = 126
ones. Also, the microscopic self-consistent approaches, such
as the self-consistent Skyrme-Hartree-Fock-Bogolyubov ap-
proximation within the effective density functional formalism,
have been used leading to prediction of the spherical magic
numbers at Z = 126 and N = 184 in the superheavy region,
cf. Refs. [24,25].

Moreover, studies employing spherical relativistic and
nonrelativistic mean-field calculations suggest that the spher-
ical shell gaps occur at Z = 114, N = 184, alternatively
Z = 120, N = 172 or Z = 126, N = 184, as discussed in
Ref. [26]. Early deformed relativistic mean-field calcula-
tions predicted possible magic numbers at Z = 120 and N =
184, cf. Refs. [27,28] and references therein. More recently,
Ref. [29], involving up-to-date covariant energy density func-
tionals, studied their impact on the deformation and shell
effect evolution in superheavy nuclei. The authors concluded
that impact of the spherical gap N = 172 is limited and,
instead, important shell effects appear at N = 184, fully con-
firmed by the present project, cf. Fig. 5.

More recently, predictions of stabilizing shell effects in
superheavy nuclei using the Skyrme-Hartree-Fock approach
were extended to so-called hyper-heavy nuclei around N =
258 and 308 (where the nuclei with Z > 126 are referred to
as hyper-heavy) cf. Ref. [30], and where predictions were
based on considerations limited to the shell-energies evaluated
at spherical shapes. Within the framework of the covariant
density-functional calculations, three regions of the spheri-
cal hyper-heavy nuclei: (Z ≈ 138, N ≈ 230), (Z ≈ 156, N ≈
310), and (Z ≈ 174, N ≈ 410) were predicted, cf. Ref. [31].
This study was extended in Ref. [32] and followed up in
Ref. [33], emphasizing the abundance of nuclear toroidal
structures for Z exceeding Z ≈ 130—and analyzing the prop-
erties of the predicted structures.

From a global perspective, systematic theoretical stud-
ies of the properties of superheavy nuclei were intensively
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developed in nuclear physics over the past 70 years or so. The
interested reader may find the results with various theoreti-
cal approaches presented in several review articles, cf., e.g.,
Refs. [2,34–38].

II. MACROSCOPIC-MICROSCOPIC METHOD
AND THE PRESENT MEAN-FIELD HAMILTONIAN

In the present article we address problems of existence
and stability of selected (114 � Z � 130 and 166 � N �
206) superheavy nuclei within a realistic phenomenological
mean-field approach employing the deformed Woods-Saxon
potential and the so-called macroscopic-microscopic method.
The sections below summarize the leading lines and the basic
definitions.

A. Macroscopic-microscopic method: A summary

Without entering into details addressing the modeling used
in this article, let us limit ourselves to merely reminding the
reader about certain concepts, definitions, and notation.

The nuclear potential energies are calculated with the help
of the macroscopic-microscopic method of Strutinsky, cf.
Refs. [39,40], as

Etotal = Emacro + δEπ
micro + δE ν

micro. (4)

The first term represents the classical macroscopic liquid-drop
model contribution, whereas the two microscopic terms, each
of which contains the so-called shell-correction and pairing
correction terms, are defined after Refs. [39,40] for protons
and neutrons separately.

The macroscopic energy expression employed in this arti-
cle is that of the finite-range liquid-drop model (FRLDM) with
the surface energy term given by the Yukawa-plus-exponential
finite range model, Ref. [41]. It coincides with Eq. (62) of
Ref. [9]; otherwise we follow the formulation of Refs. [42,43].
All the concepts of the macroscopic-microscopic approxi-
mation can be considered standard; some details related to
adaptation to our context can be found in Ref. [44] and the
references therein.

B. Definition and elementary features
of the mean-field Hamiltonian

The nuclear mean-field Woods-Saxon Hamiltonian is de-
fined as usual as follows:

ĤW S = T̂ + V̂W S + V̂ so
W S + [V̂Coulomb for protons], (5)

where T̂ denotes the nucleonic kinetic-energy operator and
V̂W S is the central Woods-Saxon potential,

V̂W S (�r, α;V c, rc, ac) = V c

1 + exp [dist	 (�r, Rc; α)/ac]
. (6)

By construction it depends on the nuclear surface 	 and
involves: V c as the central potential depth parameter, rc (in
Rc = rcA1/3), the central potential radius parameter, and ac,
the central-potential diffusivity parameter.

We use the “universal” parametrization of the potential
taken from Ref. [44]. The adjective “universal” refers to the
fact that the underlying parametrization is applied to all the

nuclei of the nuclear chart without further modifications. The
concept of universality evolved during the years of its employ-
ment. The universal Woods-Saxon Hamiltonian and associated
so-called “universal parametrization” has been developed in
a series of articles, cf. Refs. [45–48] and summarized in
Ref. [49], cf. also Ref. [50] for further illustrations. This
approach is being used without modifications by many authors
also today.

The function dist	 (�r, Rc; α) defines the geometrical dis-
tance between the actual nucleonic position, �r ≡ {x, y, z}, and
the nuclear surface 	, the latter expressed with the help of the
spherical-harmonic basis, {Yλμ(ϑ, ϕ)}. Again we employ the
standard form of the surface definition:

	: R(ϑ, ϕ) = R0c(α)

[
1 +

∑
λμ

α∗
λμYλμ(ϑ, ϕ)

]
. (7)

The expansion coefficients αλμ are called “deformation
parameters” or “deformations.” These parameters can in
principle be complex, but in nuclear structure physics one tra-
ditionally employs a real realization only. The nuclear surface
definition in Eq. (7) contains an extra auxiliary function c(α),
with the help of which we assure that the volume encompassed
by the surface does not depend on deformation.

The third term in Eq. (5) stands for the mean-field spin-
orbit potential. By definition, its Woods-Saxon form depends
on the gradient of the central potential, with appropriately
redefined parameters

V̂ so
W S (�r, p̂, ŝ, α; λso, rso, aso) = 2h̄λso

(2mc)2

[( �∇V so
W S

) ∧ p̂
] · ŝ,

(8)

where

V so
W S (�r, α;V c, rso, aso) = V c

1 + exp [dist	 (�r, Rso; α)/aso]
. (9)

This potential depends on three adjustable parameters: λso,
which is a dimensionless spin-orbit strength scaling factor, rso

(in Rso = rsoA1/3), which represents the spin-orbit radius pa-
rameter, and aso serving as the spin-orbit diffusivity parameter.

It follows that the phenomenological, deformed mean-field
Woods-Saxon Hamiltonian depends on two sets of parame-
ters,

{V c, rc, ac; λso, rso, aso}π,ν, (10)

the one involving six parameters for protons (π ), and the one
with six parameters for neutrons (ν), respectively. Certain au-
thors introduce an alternative representation of the parameters,
which explicitly involves a smooth dependence on Z and N .
This modified representation has been of advantage, in partic-
ular when adjusting the mean-field Hamiltonian parameters in
Ref. [44] to the empirical single-nucleon energies for a series
of doubly magic spherical nuclei

16O, 40Ca, 48Ca, 56Ni, 90Zr, 132Sn, 146Gd, 208Pb, (11)

deduced using experimental results compiled in Ref. [51].
More precisely, the smooth dependence on Z and N involving
the isospin dependence in the central and spin-orbit potential
strength parameters introduces directly the isospin strength
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constants, κc and κso, so that

V c
π,ν = V c

0

(
1 ± κc N − Z

N + Z

)
(12)

and

λso
π,ν = λso

0

(
1 ± κso N − Z

N + Z

)
, (13)

with the plus sign for the protons and the minus sign for the
neutrons. The modified parametrization involves V c

0 , λso
0 as

well as κc and κso as the new adjustable constants:{
V c

0 , κc; λso
0 , κso

} ↔ {
V c

π ,V c
ν ; λso

π , λso
ν

}
, (14)

but the two sets can be seen as playing equivalent roles in the
functioning of the phenomenological Hamiltonian.

The Schrödinger equation with our mean-field Hamilto-
nian is solved by using standard diagonalization methods em-
ploying the matrix representation of the Hamiltonian within
the anisotropic harmonic-oscillator (HO) basis. The HO basis
cutoff conditions have been adjusted to assure that the calcu-
lated bound single nucleon energies remain stable within three
decimal places at the extremes of the zones of variations of the
deformation parameters; see Ref. [44] for details.

C. Impact of the parameter adjustment on stability
and uncertainties of predictions

The parameter adjustment algorithms employ experimental
data, each datum characterized by an error-bar expressing
the datum’s uncertainty. The existence of these uncertainties
implies that the resulting optimized parameters are themselves
uncertain and should be presented together with their un-
certainty probability distributions. With this information one
can estimate in particular the final modeling uncertainties of
predicted observables of interest. It then follows that contem-
porary parameter adjustment algorithms, like, e.g., χ2 tests
used to provide the optimal fit solutions represent merely the
beginning of a longer chain of steps bringing in prediction
uncertainties. Let us note that leading international journals
strongly encourage verification of the modeling uncertainties
before publishing the corresponding predictions, cf., e.g., the
Physical Review Editorial in Ref. [52].

One of the first, most direct recommendations imposed
by the inverse problem theory of applied mathematics is the
verification that the parameters resulting from the adjustment
procedure are free from parametric correlations. This require-
ment is fundamental since one may demonstrate rigorously
that modeling with parametric correlations implies an asymp-
totically vanishing predictive power for the data outside of
the fitting zone, cf., e.g., Secs. III and IV of Ref. [44] and
references therein. Occasionally one may be talking about an
exponential divergence of predictions from the results which
could be expected in case of stable solutions in such a case.

Parametrization of the Hamiltonian used in the present
project has been optimized by employing the well-established
methods of the inverse problem theory. We have used among
others the Monte Carlo simulations with the help of which
the presence of nonlinear parametric correlations has been
determined. These correlations have been consecutively elim-
inated. Not entering into details at this point let us mention

TABLE I. Parameters of the universal Woods-Saxon Hamilto-
nian from Ref. [44]; upper row—protons, lower row—neutrons. The
dependent parameters resulting from the procedure of elimination
of the parametric correlations are rc

π = 1.278 fm, rc
ν = 1.265 fm,

rso
π = 0.830 fm, rso

ν = 0.890 fm. The spin-orbit diffusivity parame-
ters are aso

π = aso
ν = 0.700 fm, see Ref. [44].

V c
0 (MeV) κc ac

π,ν (fm) λso
0 κ so

Mean values −50.225 0.624 0.594 26.210 −0.683
0.572

Standard error 0.142 0.013 0.010 0.513 0.139
0.011

that 4 among 12 original Woods-Saxon potential parameters
were found correlated. After eliminating the correlations, the
final set contains only eight independent parameters. The in-
terested reader can find the details in Ref. [44], whereas the
numerical values of the concerned parameters are given in
Table I.

It will be instructive to illustrate at this point the pre-
dicted single nucleon spectra and the spherical shell structures
together with the corresponding energy gaps. The results char-
acteristic for the nuclei in the Z/N range covered in this article
are shown in Fig. 1.

The proton spherical shell gap of the order of 2 MeV at
Z = 114 is visible from the single-particle energy diagram,
Fig. 1, top. Its size expresses directly the repulsive spin-orbit
interaction between the 2 f7/2 and 2 f5/2 orbitals. In the case of
the neutrons, the spherical shell gaps at N = 164, 184, 228,
and 258 deserve noticing—compare with early predictions in
Ref. [53].

Spherical shell gaps at Z = 114 and N = 184 were
predicted in several publications using various theory frame-
works, cf. Refs. [23,26,28]. More precisely, the spherical
neutron shell-gap sequence N = 126, 164, 184, 228, and 258
was discussed as early as in Ref. [53] based on even ear-
lier Woods-Saxon potential parametrizations, Refs. [55–57],
evidently a robust feature of this potential since reproduced
also in this project using very different parameter optimization
arguments. Some of those shell closures appear modeling
dependent, such as, e.g., N = 228, cf. Refs. [31,58,59]—
alternatively the corresponding N = 228 nuclei can be
predicted to be nonspherical.

Figures 2 and 3 complete the information about the
single-particle levels illustrated in Fig. 1, now showing the un-
certainty distributions of the nucleonic energies obtained with
the optimized Hamiltonian—representative for the mean-field
description employed in this project. The widths of probability
distributions of energy-level uncertainties turn out to vary
with nucleonic orbital angular momentum quantum number
�. They increase on average with increasing orbital angular
momentum, even though the increase undergoes certain fluc-
tuations. To give the orders of magnitude of the discussed
variation, the full width at half maximum (FWHM) for neu-
tron energies is approximately 0.24 MeV for the 1s1/2 level
and about 0.43 MeV for the 1k17/2 level.

The characteristics of the proton levels are similar.
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FIG. 1. Single-particle proton (top) and neutron (bottom) ener-
gies showing the spherical orbital energies and the accompanying
strongest spherical shell gaps. These results were obtained with the
newly adjusted parameters using the spherical doubly magic nuclei
which can be considered relatively far from the mass zone of in-
terest here; parametric correlations were detected and removed, cf.
Ref. [44]. The appearance of the N = 196 universal magic gap turns
out to result from the octupole repulsion between the �� = 3 neutron
orbitals 2h11/2 and 1k17/2 visible above the spherical gap Nsph = 184,
cf., the arguments we present qualitatively in the vicinity of Eq. (2);
It follows that 184 + (2 j + 1)| j=11/2 = 184 + 12 → N = 196.

III. TETRAHEDRAL SYMMETRY AND OTHER
OCTUPOLE-TYPE SHELL EFFECTS ON STABILITY

OF SUPERHEAVY NUCLEI

We now address the issues of the symmetry-induced in-
crease in stability of the discussed superheavy nuclei. Such
an increase takes place when the energy minima are get-
ting lower (increasing binding) and the separating potential
barriers get higher (generally weakening the corresponding
decay modes). To examine these effects we employ the real-
istic phenomenological nuclear mean-field theory techniques
introduced earlier, combined with the geometrical symmetry

considerations, which involve application of the molecular
point group concepts.

Let us begin with the tetrahedral symmetry effects
generated by the so-called “tetrahedral-octupole” (α32) defor-
mation, below also referred to as “tetrahedral” for short. This
symmetry should be given all our attention since it is clearly a
dominating one. We will address separately alternative point-
group symmetries C2v , D2d , and D3h generated, respectively,
by α31 alone or a combination of α31 and α20, by combination
of α32 and α20 and by α33 alone or a combination of α33 and
α20.

Before discussing the properties of the nuclear potential-
energy surfaces generated by the presence of the point-group
symmetries and the nuclei in which the discussed mechanisms
are the strongest, it will be instructive to illustrate the octupole
shell effects and the underlying single-nucleon energy gaps.
With this goal in mind, in the next section we will compare the
diagrams of the proton and neutron single-particle energies
as functions of the four octupole deformations: α30, α31, α32,
and α33.

A. Single-particle spectra generated by pure octupole
deformations: Octupole shell effects

Proton single-particle energy spectra generated by the four
octupole deformations are presented in Fig. 4, where all other
deformations are set equal to zero. The strongest proton shell
gaps appear at α32 tetrahedral deformation. They are mani-
fested by single-gap patterns for Z = 106, 116, 124, and 136.
Otherwise, the octupole proton shell effects “measured by
gaps” do not appear strong from reading single-particle dia-
grams except for the low level-density zones in the vicinity of
Z = 124. Generally, for heavy nuclei with relatively densely
distributed single-particle energies, the analysis by reading
single-particle energy diagrams is often inconclusive or mis-
leading so that the effective comparison of various zones can
only be accomplished by presenting calculated nuclear shell
energies, which will be done next.

Analogous single-particle energy spectra for neutrons are
shown in Fig. 5. The strong shell effects manifested by a
strong-gap pattern are seen only for the tetrahedral-symmetry
deformation at N = 196, an effect accompanied by a smaller,
secondary gap at N = 202.

Let us emphasize that the size of the N = 196 tetrahedral
gap is comparable with the size of the spherical gap at N =
184, both gaps corresponding to about 2 MeV spacing. How-
ever, as indicated by all four diagrams, our calculations also
predict octupole effects in the form of the low-density pattern
of single-particle levels for other octupole deformations—
placed in the vicinity of the same N = 196 particle-number
zone. Under these circumstances there is only one way of ac-
complishing the analysis of the effective octupole shell effects
in the studied case: by effectively calculating and comparing
the Strutinsky shell energies. This will be discussed more
systematically later in the following sections.

The specificity of the tetrahedral symmetry consists in the
fact that the underlying tetrahedral double point group T D

d , the
tetrahedral-symmetry group of the mean-field fermion Hamil-
tonian, is one of the most exotic in the family of molecular
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FIG. 2. Monte Carlo simulated probability distributions of single-particle level position uncertainties for protons in the 314Og nucleus;
selected levels surround the Z = 114 gap. The vertical bars accompanied by the spectroscopic labels show the positions of the corresponding
peaks of the distributions; for details cf. Ref. [54].

(point-group) symmetries. It contains 48 symmetry elements
and among its three irreducible representations there are two
two-dimensional and one four-dimensional, the latter thus
inducing the fourfold degenerate single nucleon energies. It
has been argued in our earlier articles that these special prop-
erties contribute to lowering, on average, the single-particle
level densities leading occasionally to particularly strong gap
openings and strong shell-effects (low level density zones) as
indeed manifested in the illustrated spectra.

As is visible from Fig. 1, bottom, the neutron spacing at
N = 196 (attention, the corresponding gap is not strongly
visible at spherical shape and is not marked with the occu-
pation label) separates the sequence of “lower-lying orbitals”
ending at 2h11/2 from the sequence of “higher-lying orbitals”
beginning with 1k17/2. The fact that the octupole shell ef-
fects around the neutron number N = 196 occur at all four
octupole deformations can be attributed to the repulsion by
the residual octupole-octupole interaction between the orbitals
1k17/2 from the N = 8 shell and 2h11/2 from the N = 7
shell (�� = � j = 3)—according to spectroscopic labeling in
Fig. 1.

In fact there are more orbitals characterized by the �� =
� j = 3 condition, which contribute to the repulsion at N =
196, caused by the residual octupole-octupole interaction

Hamiltonian proportional to Q̂†
3 ⊗ Q̂3 interaction term (al-

ternatively octupole-deformed mean-field potential); these
orbitals are listed in Table II.

Let us recall that the relation between the pairs of in-
teracting or repelling orbitals together with the generated
gap-openings and induced shell structures as function of the
preselected multipolarity λ has been discussed in detail in
Ref. [60] in relation to the multipole-multipole residual inter-
action Hamiltonians (alternatively, the mean field deformed
ones). Analytical expressions addressing the mechanism of
repulsion between the �� = 3 orbitals leading to possibly
strong shell gaps when increasing the octupole deformations
can be found in Appendix C of the above reference, cf. in
particular Eq. (C1).

B. Characteristic behavior of potential energies
in the vicinity of N = 196 octupole gap

Potential-energy surfaces within {α20-vs-α3μ=0,1,2,3} repre-
sentation are illustrated after minimization over α40 for the
310
114Fl196 nucleus in Fig. 6. A comparison shows that all the
double minima at α3μ ≈ 0.15 correspond to the vanishing
quadrupole deformation α20 = 0, similarly to the case of
218
82Pb136, cf. Fig. 6 of Ref. [3]. These results indicate that the

FIG. 3. Illustration similar to the preceding one but for the neutron levels surrounding the N = 184 gap.
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FIG. 4. Proton single-particle energies as functions of the octupole deformations α3μ=0,1,2,3 predicted for the superheavy nuclei discussed
in this article. The central nucleus is chosen to correspond to the center of the (Z, N )-zone addressed in this article: Z0 = 122 and N0 = 186 ↔
(114 � Z � 130 and 166 � N � 206). It has been verified by direct calculations that no characteristic features illustrated depend significantly
on this choice. All other deformation parameters are set to zero. In the case of α32 deformation, the results indicate the presence of “narrow
vertical gaps” at Z = 106, 116, and 124, whereas for all other deformations there are no strong octupole shell effects visible, except for
Z = 106 spacing. Let us emphasize the unusual, original property of the α32-type diagrams: some curves are labeled with two Nilsson labels.
This happens where the level belongs to a four-dimensional irreducible representations of the double tetrahedral point group T D

d , as discussed
in the text.

neutron magic number N = 196 has indeed all the features of
the universal fourfold octupole magic number introduced in
the cited article.

The highest barrier separating the octupole twin minima
visible from the plot corresponds to the tetrahedral deforma-
tion, with the barrier heights of the order of 3 to 4 MeV. The
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FIG. 5. Neutron single-particle energies as functions of the octupole deformations α3μ=0,1,2,3 predicted for the superheavy nuclei studied
in this article. All other deformation parameters are set to zero, central nucleus Z0 = 122 and N0 = 186. The strongest octupole shell effect
is visible at N = 196, caused by the tetrahedral-symmetry α32 deformation, but the area of low density of single-particle energies—which
directly influences Strutinsky shell energies—extends between N = 196 and 202. Similarly, low-density zones (without strong gaps sensu
stricto at N = 196) are visible also for the deformations α30, α31, and α33, where the N = 196 area is clearly accompanied by the low level
densities. We emphasize that, as in the case of the proton α32-diagrams, certain orbitals are identified with the double Nilsson labels, i.e.,
those belonging to the four-dimensional irreducible representations of the double tetrahedral point group T D

d . It is this latter property which
greatly contributes to the strong shell effects generated by tetrahedral symmetry, as discussed in the text and in the earlier publications by our
collaboration.
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TABLE II. Orbitals with �� = � j = 3, which are found in the
single-particle spectrum on the opposite sides of the N = 196 sep-
aration and thus contribute to an increase of the corresponding gap
size with increasing α3μ.

�� = � j = 3

1k17/2 ↔ 2h11/2

1 j13/2 ↔ 2g7/2

3 f7/2 ↔ 4s1/2

2h9/2 ↔ 3d3/2

fission barrier in the case of the (α32-vs-α20) plane reaches
the energy order of 3 to 4 MeV as well. In contrast with
tetrahedral deformation, the remaining octupole components,
i.e., α30, α31, and α33, produce the relatively low fission barrier
heights of the order of 1.5 to 2 MeV.

Since, as shown in the preceding illustration, tetrahedral
deformation manifests the strongest shell effects, which lead
to lowering the nuclear potential energies most significantly
and generating the most pronounced shape competition ef-
fects, it will be instructive to examine the evolution of these
effects at the expected strongest tetrahedral-bound neutron
configuration N = 196 for varying proton number. The cor-
responding sequence of potential-energy maps for Z = 118,
122, 126, and 130 is illustrated in Fig. 7. Two tendencies can
be observed.

First, a very characteristic strong increase of the barri-
ers separating the two tetrahedral minima, beginning with
5.5 MeV for Z = 118 and continuing with 8 MeV at Z = 122
up to the huge, probably the highest so far calculated in
nuclear structure, 10 MeV at Z = 126 and about 12 MeV at
Z = 130.

Second, an increase in proton number from Z = 118 to
130 is accompanied by lowering the energy of the competing,
axially symmetric quadrupole minimum at α20 ≈ −0.28, to-
gether with the simultaneous increase in the barriers between
those and tetrahedral twin-minima.

The comparisons presented in Figs. 6 and 7 can be seen as
showing extreme (the strongest) form of manifestation of the
tetrahedral symmetry effects and their impact on an increase
in stability of superheavy nuclei in the studied region. In many
surrounding nuclei similar types of dependencies apply, even
though the extreme energy variations visible here are getting
less and less pronounced.

C. Shell energies as functions of octupole deformations

As noticed earlier, for nuclei with big numbers of nucleons
and relatively closely spaced single-particle energies, it is in
general difficult to deduce the information about quantum
shell closures by reading single-particle spectra. It will there-
fore be instructive to present the related numerical results for
the shell energies directly as obtained from the Strutinsky
approach.

Figure 8 shows the nuclear shell energies, composed of
Strutinsky and BCS pairing correlation energies, as functions
of octupole deformations α30, α31, α32, and α33, for nuclei
with Z = 114 and neutron numbers varying between N = 190

FIG. 6. Projections of the total energy on (α20, α3μ=0,1,2,3) planes,
contour-line separation of 0.5 MeV, minimized at each deformation
point over axial hexadecapole deformation α40, for the 310

114Fl196 nu-
cleus. Let us notice that, for μ 	= 2, the octupole deformed double
minima are accompanied by relatively low fission barriers and are
thus less fission-stable (fission barriers of the order of 2 MeV)
whereas for the tetrahedral symmetry minima the fission barriers are
of the order of 3 to 4 MeV.

and N = 210. The presence of the octupole energy minima
in all four octupole deformation components at α3μ ≈ ±0.2
confirms the presence of the underlying low-level-density
zones in the studied superheavy nuclei, deduced qualitatively
from Figs. 4 and 5.

Figure 9 contains similar illustrations for the shell-energies
with varying proton number at the fixed neutron number,
N = 196. The close-lying curves corresponding to the varying
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FIG. 7. Selected potential-energy projections with contour-line
separations of 0.5 MeV. They present octupole-tetrahedral shape
evolution at N = 196 for oganesson, unbibium, unbihexium, and
untrinilium, thus with proton numbers Z = 118, 122, 126, 130, re-
spectively. The two symmetric tetrahedral (twin) minima with
quadrupole deformation α20 = 0 are very well developed. They are
separated by the potential barriers of up to 10 MeV. The fission
barrier heights increase with increasing proton number.

proton number signify that the structure of the octupole depen-
dence of the studied quantities is mainly due to the neutrons.
The proton effects on the variation of the shell-energy minima
are restricted to a couple of hundred keV.

Observing the average energy positions of the shell-energy
minimum values and comparing with one another in each
of the four diagrams in Fig. 9 (they are centered approxi-
mately, at the level of −4 MeV for the α30 and α31 cases,
at −3 MeV for α33, as compared with −9 MeV for α32)
we may conclude that the tetrahedral symmetry again wins
significantly the competition among all four octupole defor-
mation effects.

FIG. 8. Nuclear shell energies as functions of octupole deforma-
tions α3μ=0,1,2,3 for Z = 114 and neutron numbers between N = 190
and N = 210. The strongest shell effects show up in the case of α32

deformation (tetrahedral symmetry) dominated by N = 196.

The discussed global (repetitive) behavior of the results in
the two diagrams confirms the usefulness of both the concept

054314-11



J. YANG et al. PHYSICAL REVIEW C 106, 054314 (2022)

FIG. 9. Illustration similar to that in Fig. 8, but for the neutron
number N = 196 with varying proton numbers from Z = 114 to
Z = 136. Once again, the most pronounced nuclear shell effects
appear for tetrahedral-α32 deformation for all nuclei.

and terminology behind the universal (or fourfold) octupole
magic number. This magic number can be seen as the name

TABLE III. Energies at the equilibrium before allowing the α32

minimization, column five, compared with the equilibrium energies
when allowing the minimization over α32, column four, and the
deformation at the minimum, column three. Differences between the
two energy minima with α32 	= 0 and α32 = 0, column six. Results
correspond to nuclei with proton number Z = 106 and neutron num-
bers varying between N = 190 and N = 210. Energies are in MeV.

Z N αmin
32 Eα32 	=0

min Eα32=0
min �Emin

106 190 0.10 −3.017 1.013 4.030
106 192 0.11 −3.308 2.041 5.349
106 194 0.13 −3.682 2.926 6.609
106 196 0.15 −4.418 3.658 8.076
106 198 0.13 −3.554 4.236 7.790
106 200 0.12 −2.937 4.654 7.591
106 202 0.12 −2.253 4.913 7.166
106 204 0.12 −1.445 5.010 6.455
106 206 0.11 −0.565 4.952 5.516
106 208 0.11 0.257 4.736 4.479
106 210 0.10 0.981 4.368 3.387

of the mechanism manifesting very strong energy-stabilizing
quantum relation impacting literally dozens of even-even nu-
clei directly illustrated in our diagrams. One should be aware
that the even-even nuclei very often predetermine the shape
properties of the neighboring even-odd and odd-even neigh-
bors, which triples the number of affected cases. Including the
odd-odd nuclei, whose energy vs deformation effects are to
far extent predetermined by the same neighboring even-even
ones, we are going to increase the number of cases for the sec-
ond time. We may conclude that the two discussed diagrams
with a few dozen curves contribute to a synthetic message
about octupole instability in several hundreds of superheavy
nuclei in the studied zone.

Analogous conclusions can be drawn out of the comparison
of the total potential-energy diagrams, which will be presented
in the following section.

Before completing the overview, it may be instructive to
compare energies gained by each nucleus when allowing en-
ergy minimization over α32. The corresponding results are
shown in Tables III and IV for series of isotopes related to
Z = 106 and Z = 124, respectively.

D. Comparison of nuclear potential energies:
Universal fourfold octupole magic number

Arriving at this point of the discussion we know al-
ready that the leading role in generating the four-dimensional
octupole-type shape-driving effects as well as the associated
relative mass stabilization in the discussed superheavy nuclei
is played by the N = 196 fourfold octupole magic gap. Thus,
as before, we construct the illustrations in such a way that
the leading element (N = 196 configuration) remains in the
center of the diagram, which will be filled in with the curves
for the neighboring N values. In this way we will be able to
accentuate possible similarities of behavior associated with
the neutron shell structures, since in such a selection the
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TABLE IV. Similar to Table III, but for nuclei with proton num-
ber Z = 124.

Z N α32 Eα32 	=0
min Eα32=0

min �Emin

124 190 0.11 −2.363 1.127 3.490
124 192 0.12 −2.650 2.147 4.797
124 194 0.13 −3.030 3.004 6.034
124 196 0.15 −4.413 3.685 8.098
124 198 0.14 −3.509 4.187 7.696
124 200 0.14 −3.012 4.505 7.517
124 202 0.14 −2.458 4.637 7.096
124 204 0.13 −1.662 4.586 6.248
124 206 0.13 −0.876 4.347 5.224
124 208 0.12 −0.155 3.926 4.081
124 210 0.10 0.478 3.338 2.861

proton shell effects will be, to leading order, nearly equal for
each family of isotopes.

Since the strongest proton octupole shape effects are pre-
dicted to be centered at Z = 106 and Z = 124, cf. Fig. 4, we
collect the corresponding curves for Z = 106 nuclei in Fig. 10
presenting the dependencies in terms of α30, α31, α32, and α33

in separate diagrams. In analogy, Fig. 11 collects the results
for the Z = 124 isotopes.

Let us suggest, as the first step of the proposed comparative
analysis, observing analogies between the left-hand side and
the right-hand side partner diagrams in each series. This com-
parison is facilitated by the graphical display rules attributing
to the same isotone the same typographical characteristics:
the compared curves are either marked both as dashed or full
lines, and both in the same color. Indeed, the similarities are
far-reaching.

One can directly observe pronounced analogies between
the two groups of isotopes despite the fact that the proton
numbers differ by nearly 20 charge units. In particular, the
minimum energies of compared curves in the case of tetrahe-
dral deformation are spread in about 5 MeV energy intervals
in both groups. In the case of the pear-shape deformations the
corresponding spreading interval is about 3 MeV for Z = 106
and about 2 MeV for Z = 124. At the same time, the spread-
ing in question amounts to 2 MeV for Z = 106 and about
1.5 MeV for Z = 124 in the case of α31 and α33.

It is neither our intention nor the place in this article
to review the rich literature of the systematic predictions
of equilibrium deformations or other predicted properties of
superheavy nuclei published so far by other authors. Neverthe-
less, we believe that a limited overview focused specifically
on the predictions related to the octupole shapes and re-
lated symmetry effects will be instructive. Among the four
octupole-deformation components, the one with axial symme-
try, i.e., the “pear-shaped” deformation, was receiving by far
more attention than the others.

In particular, pear-shape deformations for Z = 106 and
N = 194 to 200 nuclei were predicted in Ref. [5] follow-
ing the calculations with the NL3∗ type covariant energy
density-functional mean-field formulation. The predictions of
the octuple-α30 deformation in the region of Z ≈ 100 and

FIG. 10. Illustration of nuclear potential energies as functions of
octupole deformations for nuclei with the proton number Z = 106
with varying neutron numbers from N = 190 to N = 210. The
strongest nuclear deformation-driving effects appear for the
tetrahedral-α32 deformation for all nuclei. Normalization is speci-
fied by setting the macroscopic energy equal to zero at vanishing
deformation.
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FIG. 11. Illustration similar to that in Fig. 10, but for the proton
number Z = 124 with varying neutron numbers from N = 190 to
N = 210. As in the preceding case, the most pronounced nuclear
shell effects appear for the tetrahedral-α32 deformation for all nuclei.
For normalization of the curves, see caption to Fig. 10.

N ≈ 196 using various theoretical methods are collected in
Fig. 7 of Ref. [6], see also references therein. It follows that
the results presented in these articles show the strong octupole
effect in Z ≈ 106 with N ≈ 196 and Z ≈ 120 with N ≈ 190,
and correspond well with our calculations in Fig. 10.

Systematic studies of pear-shape deformation in neutron-
rich actinide and superheavy nuclei in Ref. [7] confirmed
again the presence of the sought effects in Z ≈ 96 and N ≈
196 region, but did not confirm in the area of Z � 108. In con-
trast, our calculations show the presence of the rich octupole
effects also in the region of nuclei surrounding those with
proton number Z = 124 and neutrons in the neighborhood of
N = 196, cf. Fig. 11.

As far as tetrahedral symmetry goes, the results in Ref. [11]
reporting the presence of α32 	= 0 minima in Z = 106 and
N = 190 to 192 as well as Z = 126 with N ≈ 192 nuclei show
a good correspondence with the results of our calculations
presented in this article, indicating also the presence of the
tetrahedral symmetry zone in Z ≈ 98 with N ≈ 192.

There seem to be no systematic predictions in the literature
addressing the α33 effects, thus pointing to the D3h symmetry
comparable to our results visible in Figs. 10 and 11, bottom
parts.

Let us mention in passing that, whereas the results cited
above can be seen as representing various manifestations of
octupole effects in nuclei and in a way as parts of various
projects, our calculations can be seen as based on the common
root and manifesting the specific role of the fourfold universal
magic octupole N = 196 effect. From this perspective, our
predictions can be seen as expressing the common micro-
scopic mechanism contributed by the �� = 3 = � j octupole-
octupole repulsion over the N = 196 universal octupole magic
gap. From this viewpoint, such a repulsion is contributed
to principally by four neutron couples viz.: 1k17/2 ↔ 2h11/2

and 1 j13/2 ↔ 2g7/2 together with 3 f7/2 ↔ 4s1/2 and 2h9/2 ↔
3d3/2, as discussed earlier in Sec. III-A, cf. Table II.

IV. OVERVIEW OF THE PREDICTED SHAPE EFFECTS
AND THEIR EVOLUTION

We proceed illustrating in a synthetic manner nuclear shape
variations with proton and neutron numbers in an attempt
of deducing the roles of various spherical-harmonics as well
as the evolution and possible appearance and disappearance
of exotic symmetries throughout the nuclear chart. We be-
gin with the traditional leading quadrupole and hexadecapole
components α20 and α40 illustrated in Figs. 12 and 13, respec-
tively.

In reference to the self-explanatory Fig. 12, let us no-
tice two characteristic aspects. First, note the dominating
quadrupole axial deformations corresponding to oblate
shapes. Some of the discussed nuclei can be qualified as
superdeformed oblate: those with α20 ≈ −0.50 or so, whereas
a few others are hyperoblate, with α20 ≈ −0.80. Second, there
is a spherical (α20 ≈ 0) area coinciding with the ensemble
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FIG. 12. Predicted α20 ground-state quadrupole deformations
obtained within the nuclear chart zone 114 � Z � 130 together with
166 � N � 206.

of nuclei in the vicinity of N = 196 fourfold magic num-
ber, where the dominating ground-state shapes correspond
to exotic point-group symmetries—often with pure octupole
deformations.

Figure 13 shows the distribution of accompanying hex-
adecapole deformations in the considered ground states. Let
us notice that, whereas hexadecapole deformations lie princi-
pally in the interval α40 ∈ [−0.10,+0.10], nearly half of the
values correspond to approximately vanishing α40 ≈ 0.

We proceed to overviewing the evolution of octupole shape
component α3μ-contributions presented in Fig. 14. Illustration
shows the impact of the four octupole degrees of freedom on
the stability of the superheavy nuclei in the studied zone of
the nuclear landscape.

The corresponding comparison begins with the effects of
the octupole pear-shape α30 	= 0 deformations shown on top
of Fig. 14, as indicated. The pear-shape deformations lie
principally in the zone α30 ∈ [0.10, 0.15] in nuclei with Z ∈
[114, 124] and N in the vicinity of 196.

The impact of the nonaxial octupole shape effects repre-
sented by α31 deformation is shown on the diagram second

FIG. 13. Similar to the preceding one but for ground-state hex-
adecapole deformation α40.

FIG. 14. From top to bottom: predicted appearance of the oc-
tupole components α30, α31, α32, and α33 in the ground-state
deformations obtained from three-dimensional mesh calculations
projected on (α20, α3μ) planes after minimization over hexadecapole
deformation α40. Observe the dominating coupling of the D3h-
symmetry α33 components with the oblate quadrupole shape visible
from comparison with Fig. 12.
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from the top. The latter indicates at the same time the nuclei
with the C2v point-group symmetry, forming two islands, one
with Z ≈ 114 and another one with Z ≈ 130.

By far the strongest nonaxial octuple symmetry insta-
bilities are generated by α32 deformation leading to pure
tetrahedral Td point group symmetry, or, when combined with
quadrupole-axial α20 shape admixtures, leading to the D2d

point-group symmetry. The discussed mechanisms are con-
centrated mainly in the isotones of N ∈ [192, 200], as seen
from Fig. 14, third diagram.

A specific behavior among nonaxial octupole shapes is
manifested by α33 deformation leading to D3h point-group
symmetry with characteristic three-fold symmetry axis among
elements of this group. There are two observations which need
mentioning. First, α33 is present in the equilibrium deforma-
tions of nearly half of the nuclei in the zone of the nuclear
chart considered in this project, thus dominating among the
four types of octupole shapes. The second observation relates
to the combination of this information with the one contained
in Fig. 12 indicating that in the majority of the nuclei con-
sidered here, the α33 	= 0 components combine with α20 < 0,
i.e., oblate deformation of non-negligible size.

It will be instructive to analyze the stability properties of
the octupole ground-state minima presented so far, Fig. 15.
This can be done by employing as the first criterion, a com-
parison of the energies of the states in question and the nearest
competing excited minimum at no-zero quadrupole deforma-
tion, the latter in the majority of the cases corresponding to
vanishing octupole deformations. Another, more direct crite-
rion of stability is provided by the heights of potential-energy
barriers between the two types of minima just mentioned,
Fig. 16.

The properties of the total energy maps—regarding the
first of the above criteria—are very characteristic, cf. Fig. 7.
Indeed one can observe that double minima related to the
octupole-type symmetry are accompanied by the axial sym-
metry minima with α3μ = 0 and α20 < 0, the latter of the
order of α20 ≈ −0.25. Comparison of the relative energies of
those two minima provides a direct estimate of the energy
gain between the states with exotic symmetries at α3μ 	= 0
and the quadrupole deformed competing partner minima with
α3μ = 0.

Let us emphasize that such a comparison becomes im-
practicable in a number of cases with the energy landscapes
resembling those in Fig. 6, cf. the α30 and α31 projections
for 310Fl, where the role of the single oblate shape min-
ima mentioned is played by slightly-higher-lying but still
double-octupole minima, with both the octupole and the
quadrupole deformations nonvanishing. It turns out that, for
α31-projection, this will be the case for all nuclei studied in
this project, whereas in the case of the other three projections,
only some nuclei present the lack of quadrupole minimum.
This is also why in the illustrations in Figs. 15 and 16 the
α31-projection is totally missing.

After these introductory observations, let us summarize the
information about the energy gains due to the octupole de-
formations α30, α32, and α33. The corresponding information
is collected in Fig. 15, in the form of chessboard plots, pre-
senting energy differences E (α20, α3μ = 0)− E (α20, α3μ 	= 0)

FIG. 15. From top to bottom: the predicted energy differences
between the nearest quadrupole-shape minimum (with α3μ = 0) and
the indicated octupole-deformed configuration α30, α32, and α33

in the ground-state deformations obtained from three-dimensional
mesh calculations projected on (α20, α3μ) planes after minimization
over hexadecapole deformation α40.

with the three corresponding diagrams as indicated. Accord-
ing to this convention, the displayed energies are positive. One
can summarize by saying that the energy gains due to the
discussed octupole deformations do not bypass the limits of
the order of �E ≈ 2 MeV.

Using analogous graphical convention, in Fig. 16 we
present the collection of the barrier heights separating
octupole shape twin-minima from those with the pure axial
quadrupole shape introduced earlier in relation to the results
in Fig. 15. In the majority of the cases the discussed separating
barriers remain within the range between 1.5 and 2.5 MeV
above the octupole deformed ground states, only in a very few
cases the limit of 3 MeV is bypassed.
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FIG. 16. From top to the bottom: Predicted barrier heights be-
tween the nearest quadrupole-shape minimum (with α3μ = 0) and
the indicated octupole-deformed configuration α30, α32, and α33

obtained from three-dimensional mesh calculations projected on
(α20, α3μ) planes after minimization over hexadecapole deformation
α40.

V. COMPARING SELECTED UNIVERSAL
PARAMETERIZATIONS OF THE

WOODS-SAXON POTENTIAL

Adjustment of parameters of theoretical modeling by em-
ploying stochastic methods of inverse problem theory of
applied mathematics is a technique more and more often
employed today. It facilitates, at the same time, examining
uncertainties of model predictions. In the past, more elemen-
tary means of addressing uncertainties and stability of model
predictions by directly comparing the results of alternative
Hamiltonian parametrizations were often used, for instance
parametrizations obtained using different experimental data
sets. Within the present project, an instructive test of this kind

would consist in comparing Hamiltonian parametrizations
based on experimental single-particle energies from spherical,
as opposed to deformed nuclei, and we will follow this line as
one of the possibilities.

At this point we address uncertainties of modeling with
our Hamiltonian by comparing results with various types of
parameter sets corresponding either to different time periods
(thus in particular to different qualities of the experimental
data sets) or to nonequivalent ways of extracting the experi-
mental information. It turns out that it will be possible for us
to combine both types of comparisons by considering the time
stretches of over 40 years between the variants of “universal
parametrization,” whereas illustrating at the same time the
impact of adjustments to experimental single-particle levels
extracted from the spherical-nuclei vs deformed-nuclei data
sets.

A. Stability of predictions related to octupole deformations

In this section we would like to address a comparison
of the nuclear shell energies as functions of nuclear oc-
tupole deformations, α30, α31, α32, and α33, for three different
parametrizations just introduced.

We begin by comparing in Fig. 17 the results for three
selections of parameter sets of the phenomenological Woods-
Saxon potential serving as universal, i.e., applicable to
all nuclei in the nuclear chart. They are referred to as
Parametrization 1 (in the latter case the parameters were
optimized to reproduce the information about experimental
single-particle levels in deformed nuclei, Ref. [46]), followed
by Parametrization 2 (based on Ref. [48] in which case the
experimental information about single-particle levels in spher-
ical nuclei was used), and the recent Parametrization 3 based
on the results from Ref. [44], discussed and commented in
several places in the present article.

Compared with the results in Fig. 17, the curves in Fig. 18
indicate clearly that the impact of the numbers of protons is
limited to the interval of the octupole deformation around the
origin of the reference frame, α30 ∈ [−0.2,+0.2], and this
for all the three parametrizations. Outside of this interval all
curves approximately coincide, which manifests the indepen-
dence of the results of the proton numbers. The combined
dependence on the neutron number and α30 is qualitatively
similar, but there are systematic differences in the quantitative
level. This applies particularly to the results with the newest
parametrization compared with the oldest ones, cf. top and
middle diagrams vs the bottom one in Fig. 17.

Very similar observations can be made about the shell-
energy behavior as function of the first nonaxial deformation
α31 shown in Figs. 19 and 20. Let us remark the similarities
in the details of deformation dependence between the curves
in Figs. 17 and 19 on the one side and Figs. 18 and 20 on the
other.

Arriving at the tetrahedral symmetry deformation α32 in
Figs. 21 and 22, we notice two characteristic features. First,
the qualitative behavior of the compared curves can be con-
sidered very similar within the sequence of three diagrams
illustrating Z = 114 configurations on the one hand and the
three diagrams illustrating the N = 196 configurations on
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FIG. 17. Comparison of the nuclear shell-energies with varying
number of neutrons for fixed proton number Z = 114 as functions of
pear-shape octupole deformation parameter α30. “Parametrization 1”
based on Ref. [46] employs the experimental input from deformed
nuclei, whereas “Parametrization 2,” [48] from spherical ones, and
finally “Parametrization 3,” the newest one, employs the modern
treatment with parametric correlation removal [44].

the other, whereas the groups differ. However, the ampli-
tudes of variations between the neighboring extreme points
visible in all the diagrams are 30% to 50% larger in the
α32 case as compared with all the other deformations. This,
as mentioned earlier has to do with the presence of four-
dimensional irreducible representations of the double tetrahe-
dral group, T D

d , the symmetry group of the mean-field fermion
Hamiltonian.

FIG. 18. Similar to the preceding one but comparing the shell
energies with varying number of protons at fixed neutron number
N = 196 as functions of the octupole deformation α30. For further
comments see caption to Fig. 17.

Referring to α33 deformation, the last in the sequence, all
that has been said about the preceding cases can be repeated
at this point, both concerning the similarities between the
Z = 114 curves among themselves and the N = 196 curves
among themselves, and systematic differences when compar-
ing the two sets.

To summarize: Illustrations in Figs. 17–24 show striking
robustness of the Hamiltonian through far-reaching similari-
ties of total shell energy curves despite the differences in the
experimental sources used to extract the parameters consid-
ered optimal in each given context.

054314-18



EXOTIC SYMMETRIES AS STABILIZING FACTORS FOR … PHYSICAL REVIEW C 106, 054314 (2022)

FIG. 19. Similar to illustration in Fig. 17, i.e., shell energies for
varying N but for the nonaxial octupole deformation α31 at fixed
Z = 114.

B. Stability of predictions related to elongation

Finally, let us present the shell effects illustrated in Figs. 25
and 26 and the underlying single-particle spectra shown in
Fig. 27, here focusing separately on the neutron and proton
effects as functions of the nuclear elongation, quadrupole
deformation α20. In contrast with the preceding illustrations
where we addressed the octupole deformation driving mech-
anisms around octupole magic number N = 196, here we
confront the neutron and proton single-particle spectra with
shell energies.

Let us emphasize again that the similarities among the shell
energies corresponding to the three compared parametriza-

FIG. 20. Analogous to the preceding one with the exchanged
roles of protons and neutrons, here at fixed neutron number N = 196.

tions visible in Figs. 25 and 26 are far-reaching, especially as
Parametrizations 1 and 2 are concerned, for which even details
in the curve variations remain nearly the same. The results cor-
responding to Parametrization 3 keep very close quantitative
resemblance to the two preceding ones, once again signaling
what we refer to as a robustness of the modeling: It is not true
that one could be afraid of that different parametrizations lead
to dramatically different or opposite theory predictions.

To terminate the discussion we present the single-particle
neutron energies as functions of the quadrupole deformation,
Fig. 27, corresponding to the results in the preceding two
figures. Understandably, the single-nucleon spectra generated
by the compared parametrizations are similar and we restrict
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FIG. 21. Similar to preceding ones but for the shell energies with
increasing neutron number at fixed Z = 114 for varying tetrahedral
symmetry deformation α32.

ourselves to presenting the case of the newest one, from
Ref. [44]. As mentioned earlier in this article the diagrams
like those shown here represent many levels in the relatively
narrow energy windows, which makes it difficult to attribute
particular importance to one gap or the other. This being said,
one can still distinguish the propagation of, in particular, the
high- j orbitals over the presented energy windows, and this
despite the relatively broad α20 deformation stretch.

FIG. 22. Analogous to the preceding one with varying proton
number at fixed neutron one at N = 196, as functions of α32.

C. Parameterizations and their comparisons:
Comments about different ways of comparing

We would like to add a few observations to complete
our section devoted to the problem of robustness of the
Hamiltonian used in the present project and the stability of its
predictions of the evolution of nuclear shapes and symmetries.
These issues were illustrated by comparing the results of,
in principle, nonequivalent parametrizations. We wish to ad-
dress specifically the question of parametrizations optimized
to the experimental data related to spherical, as opposed to
deformed, nuclei.

It is well known that certain single-particle levels in spheri-
cal nuclei strongly couple to the collective surface-oscillations
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FIG. 23. The final illustration completing the sequence of
Figs. 17, 19, 21, showing the shell energies for varying neutron num-
ber, here for D3h-symmetry-generating deformation α33 at Z = 114.

generated by the low-energy quadrupole or octupole vibra-
tions. This type of coupling should be taken into account
within model-dependent procedures of extraction of what is
referred to as experimental single-particle energies.

The reader should recall at this point that the con-
cept of an isolated single-particle motion introduced in the
mean-field theory discussions by statements like “consider a
free motion of a nucleon in a deformed mean field without in-
teractions” is a mathematical abstraction. All measured effects
are contributed to by all nuclear interactions simultaneously.
Consequently, comparisons between single-particle effects

FIG. 24. Partner illustration for the preceding one. It completes
the sequence of Figs. 18, 20, 22 with the shell energies for varying
proton number and deformation α33 at fixed neutron magic number
N = 196.

obtained within the mean-field theory and experiment is and
has always been based on model-dependent algorithms within
which one is trying to model and extract the energies repre-
senting the free nucleonic motion, cf. e.g., Sec. 2 in Ref. [51].
It then follows that, if the experimental single-particle energy
extraction algorithms take into account vibration coupling as
a leading perturbing mechanism in spherical nuclei, the so-
obtained information should be consistent with that obtained
from the deformed ones. In this way we may argue that the
effect of coupling of the single-particle states with vibrations
have been in a way “subtracted” and the so-obtained exper-
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FIG. 25. Neutron shell energies as functions of the quadrupole
elongation α20 and neutron number for Z = 114 and for the three
parametrizations introduced in the text: Partner illustration to the one
in Fig. 27, top.

imental single-particle energies should be comparable with
pure mean-field ones.

Under these circumstances, i.e., with the appropriate tech-
niques of extraction of the single nucleon energies out
of the experimental data bases on either spherical or de-
formed nuclei—taking into account the perturbing effects
of coupling with shape oscillations—one may expect that
the comparison with theory will not depend in any essential
manner on the parametrization used since the energies of
the vibration-coupling were “subtracted out.” Indeed, all the

FIG. 26. Analogous to the preceding one but for proton shell
energies with varying α20 and the proton number at fixed N = 196;
to be compared with Fig. 27, bottom.

results presented in the present section confirm these expecta-
tions.

VI. SUMMARY AND CONCLUSIONS

This article is devoted to examining the impact of exotic
geometrical symmetries associated with the octupole degrees
of freedom on the stabilization of superheavy nuclei in the
mass range limited by 114 � Z � 130 and 166 � N � 206.
This mass range selection was guided by the idea of covering
the area of the nuclear landscape, in which the symmetries
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FIG. 27. Quadrupole deformation dependence of the single-
particle levels for the neutrons, top, and the protons, bottom,
characteristic for all the three parametrizations presented in previous
figures. Here we employed the newest parametrization, Ref. [44],
which, given the equivalence of the deduced shell energies nearly
independent of the parametrization—as discussed in the text—can
be considered representative for all the three. The central nucleus
is chosen to correspond to the center of the (Z, N )-zone addressed
in this article: Z0 = 122 and N0 = 186 ↔ (114 � Z � 130 and
166 � N � 206).

in question were predicted by our mean-field calculations.
Indeed, extending our recent studies of the symmetry-induced
nuclear stability of heavy nuclei in the lead and actinide
regions, Ref. [3], we have discovered an existence of the
universal, fourfold octupole magic number N = 196, an ana-
log of the similar fourfold, i.e., applying to all four octupole
deformations α30, α31, α32, and α33, magic number N = 136.
The latter was shown to importantly stabilize the mentioned
lighter nuclei.

To study the stability properties of the selected superheavy
nuclei we employed the phenomenological nuclear mean-field
approach using the deformed Woods-Saxon potential with
its universal (i.e., applying simultaneously to all nuclei in
the nuclear chart) parametrization together with the standard
macroscopic-microscopic method. Parameter optimization of
the corresponding Hamiltonian has been recently completed
in Ref. [44], following the rules of the inverse problem theory
of applied mathematics combined with Monte Carlo sim-
ulations. The presence of parametric correlations among 4

parameters generated by the original set of 12 of the Hamil-
tonian has been detected. These correlations were removed
applying Monte Carlo approach. Removal, according to the
well-known general theorems of inverse problem theory, leads
to stabilization of the corresponding theoretical predictions
and increases the predictive capacities of the corresponding
Hamiltonian and implied modeling, according to stochastic
arguments.

As the starting-point test we have verified that the spherical
shell gaps at proton number Z = 114 and the neutron numbers
N = 164, 184, 228, and 258 predicted earlier by other au-
thors are obtained employing our optimized parametrization
without extra adjustments. We believe that this supports ex-
tending our calculations with removed parametric correlations
to superheavy nuclei and argues in favor of their predictive ca-
pacities. The uncertainty distributions of single-particle level
positions for protons and neutrons are presented. Results indi-
cate that the FWHM values increase with the orbital angular
momentum and vary, typically, between about 200 keV for the
s1/2 and 450 keV for the k17/2 levels.

The octupole shell effects and the underlying single-
nucleon energy-gap structures and shell energies are analyzed
in detail. Among four octupole deformations, α30, α31, α32,
and α33, the tetrahedral one (α32) manifests the strongest shell
effects at neutron number N = 196. These strong neutron
shell effects are accompanied by weaker octupole shell effects
at proton numbers Z = 106, 116, and 124. The correspond-
ing impacts in terms of the intensity of the effect expressed
by the depth of the potential-energy minima and heights of
the separating potential barriers are illustrated and discussed.
We associate the origin of the underlying particularly strong
single-nucleon energy-gap structures with the special group-
theory properties of the T D

d tetrahedral double group: The
presence of four-dimensional irreducible representations and
associated fourfold degeneracies of single-particle levels.

Let us observe that the size of the single-particle tetrahedral
gap at N = 196 is comparable to the size of the spherical
gap at N = 184, both of the order of 2 MeV. This signifies
that the exotic (tetrahedral) shape-symmetry generates shell
effects comparable with the strongest ones known so far in
the studied nuclei.

Let us emphasize that certain point groups with nonax-
ial symmetry are predicted to generate numerous isomeric
configurations. For instance, the tetrahedral symmetry hin-
ders emission of collective electric-quadrupole (E2) and
electric-dipole (E1) transitions just increasing the chances
that low-lying excited states lead to measurable lifetimes.
One may expect that the full class of particle-hole excitations
will be carrying the mentioned symmetries and generating
isomers, some of which could become measurable.
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