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α formation probability in 10Be and 12Be within a microscopic cluster model

Qing Zhao ,1,* Masaaki Kimura,2,3,4 Bo Zhou,5 and Seung-heon Shin 3

1School of Science, Huzhou University, Huzhou 313000, Zhejiang, China
2Nuclear Reaction Data Centre (JCPRG), Hokkaido University, Sapporo 060-0810, Japan

3Department of Physics, Hokkaido University, Sapporo 060-0810, Japan
4RIKEN Nishina Center, Wako, Saitama 351-0198, Japan

5Institute of Modern Physics, Fudan University, Shanghai 200433, China

(Received 27 July 2022; accepted 1 November 2022; published 14 November 2022)

The α clustering in 10Be and 12Be has been studied within the framework of the real-time evolution method
(REM). By using the effective interaction tuned to reproduce the charge radii and the threshold energies, we have
evaluated the α reduced width amplitude (RWA) and spectroscopic factor (S factor) for the ground and excited
states. With several improvements made in this work, comparing with our previous calculations, larger rates of
clustering results are obtained for 10Be and 12Be with correct asymptotics at large distance.
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I. INTRODUCTION

In nuclear physics, clustering phenomena have been in-
tensively investigated by many experimental and theoretical
studies [1–4]. One of the most important examples is the
Hoyle state [5–12], which has a clustered structure composed
of three α particles, and plays an essential role in the synthesis
of carbon in the universe [13]. For decades, the clustering in
light stable nuclei has been studied by various experimental
methods such as resonant scattering, transfer reactions, and
breakup reactions [14,15]. On the other hand, the clustering in
neutron-rich nuclei is not known in as much detail as that in
stable nuclei, due to limited experimental techniques [16,17].

Recently, the proton-induced α knockout reaction (p, pα)
was established as a quantitative measure of α-cluster forma-
tion at the nuclear surface [18–23]. The reaction was used to
measure the α clustering in the Sn isotope chain [24], and
revealed negative correlation between the α-cluster formation
and the neutron-skin thickness [25]. This fascinating exper-
iment opened a gate to explore the α clustering in the light
neutron-rich nuclei. In fact, a (p, pα) experiment is in prepa-
ration to measure the α clustering in the Be and C isotopes.
Combined with the data obtained from breakup reactions, it
will provide comprehensive information on how the clustering
in the ground and excited states evolves as a function of neu-
tron number. Therefore, an accurate microscopic calculation
is highly desired for deeper understanding of the α clustering
in light neutron-rich nuclei.

In our previous work, we adopted the antisymmetrized
molecular dynamics (AMD) framework to evaluate α forma-
tion probability in Be and C isotopes [26,27]. The calculations
showed the negative correlation between α clustering and
neutron-skin thickness in the C isotopes, which is qualita-
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tively consistent with what was observed in the Sn isotopes.
However, from a quantitative point of view, those AMD re-
sults may underestimate the α formation probability for the
following reasons. First, the Gogny D1S density functional
in our previous study cannot describe light s- and p-shell
nuclei accurately, because its parameters are optimized for
medium- and heavy-mass nuclei [28]. In particular, it does
not reproduce the α and 6He decay threshold energies and
radii of He isotopes, both of which strongly affect the cluster
formation probability. Second, in our AMD+GCM (genera-
tor coordinate method) calculation, we used the quadrupole
deformation parameter β as the generator coordinate. How-
ever, this choice does not span a model space large enough
to describe various cluster motions in nuclei, in particu-
lar that at a large intercluster distance. In fact, it has been
pointed out that an AMD+GCM calculation undershoots
the α cluster formation probability of 48Ti by an order of
magnitude [29].

To overcome those defects, we perform alternative theo-
retical calculations with the following improvements. First,
we adopt the Volkov No. 2 interaction [30] for the nucleon-
nucleon interaction, which reproduces the radius of the α

particle and the phase shift of the α-α scattering. For the
spin-orbit interaction, we employed the G3RS interaction. We
tuned the parameter sets of these interactions to reproduce
the threshold energies. We also note that the combination
of those interactions has been adopted in many microscopic
calculations to discuss the energy spectrum of light nuclei
[31,32]. Second, we employ the real-time evolution method
(REM) to generate basis wave functions to describe various
cluster motions. This method has successfully described the
α clustering of Be and of C isotopes [33–35]. With these
improvements, we obtained a more reliable cluster formation
probability which has the correct asymptotics at a large dis-
tance. As we a priori assume the α + α + xn cluster structure
of 10Be and 12Be, this work will give the upper limit of α
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cluster formation probability, whereas our previous study by
AMD may give the lower limit.

This paper is organized as follows. In the next section, the
theoretical framework of the generator coordinates method
(GCM) with the real-time evolution method (REM) and the
method to evaluate the reduced width amplitude (RWA) are
briefly explained. In Sec. III, we present the numerical results
and discuss the differences in the results between the AMD
and the REM. The final section summarizes this work.

II. THEORETICAL FRAMEWORK

A. The Hamiltonian and the wave function

The Hamiltonian adopted in this study is given as

Ĥ =
A∑

i=1

t̂i − T̂c.m. +
A∑

i< j

v̂N (ri j ) +
A∑

i< j

v̂C (ri j ) +
A∑

i< j

v̂LS (ri j ),

(1)

where t̂i and T̂c.m. denote the kinetic energy operators of each
nucleon and the center of mass, respectively. v̂N , v̂C , v̂LS

denote the effective nucleon-nucleon interaction, the Coulomb
interaction, and the spin-orbit interaction, respectively.

In this work, we use the Volkov No. 2 interaction
for the central nucleon-nucleon interaction [30], which is
expressed as

v̂N (ri j ) = (W − MP̂σ P̂τ + BP̂σ − HP̂τ )

× [
V1 exp

( − r2
i j/c2

1

) + V2 exp
( − r2

i j/c2
2

)]
, (2)

where W , M, B, and H denote the Wigner, Majorana, Bartlett,
and Heisenberg exchanges, whose strengths are explained in
the next section. The other parameters are, V1 = −60.65 MeV,
V2 = 61.14 MeV, c1 = 1.80 fm, and c2 = 1.01 fm. For the
spin-orbit interaction, we use the G3RS potential [36,37],

v̂LS (ri j ) = Vls
(
e−d1r2

i j − e−d2r2
i j
)
P̂31L̂ · Ŝ. (3)

Here P̂31 projects the two-body system into a triplet odd state,
which can be expressed as P̂31 = 1+P̂σ

2 · 1+P̂τ

2 . The Gaussian
range parameters d1 and d2 are set to 5.0 and 2.778 fm−2,
respectively.

We approximate the He and Be isotopes as being composed
of α clusters plus valence nucleons. Thus, the wave functions
of these isotopes are written as

�(zα1 . . . Z1, Z2 . . . ) = A{
�α

(
zα1

)
. . . φ(Z1)φ(Z2) . . .

}
, (4)

where �α (zα ) is the antisymmetrized wave function of the
α cluster with (0s)4 configuration oriented at zα . φ(Z ) are
the single-neutron wave functions. The single-particle wave
functions φ(r, Z ) are expressed in a Gaussian form multiplied
by the spin-isospin part χτ as

φ(r, Z ) =
(

2ν

π

)3/4

exp

[
−ν

(
r − z√

ν

)2

+ 1

2
z2

]
χτ,

Z ≡ (z, a, b). (5)

Here Z represents the time-dependent parameters of the wave
function, which includes the three-dimensional coordinate z
for the spatial part of the wave function as well as the spinors
a and b for the spin part χ = a |↑〉 + b |↓〉. The isospin part
is τ = {proton or neutron}. The harmonic oscillator parame-
ter is set to b = √

1/(2ν) = 1.46 fm for both the α cluster
and neutron wave functions, which is same with that used in
Refs. [31,38].

B. Real-time evolution method

We use the real-time evolution method (REM) [34,35] to
generate the basis wave functions, which have various cluster
configurations in the phase space. From the time-dependent
variational principle,

δ

∫
dt

〈
�

(
zα1 , . . . , Z1, Z2, . . .

)∣∣ ih̄d/dt − Ĥ |�(
zα1 , . . . , Z1, Z2, . . .

)〉
〈
�

(
zα1 , . . . , Z1, Z2, . . .

)∣∣�(
zα1 , . . . , Z1, Z2, . . .

)〉 . (6)

We obtain the equation of the motion (EOM) for all the time-dependent parameters Z (t ) as

ih̄
∑

j=α1,1,2

∑
σ=x,y,z,a

Ciρ jσ
dZjσ

dt
= ∂Hint

∂Z∗
iρ

, (7)

Hint ≡
〈
�

(
zα1 , . . . , Z1, Z2, . . .

)∣∣ Ĥ |�(
zα1 , . . . , Z1, Z2, . . .

)〉
〈
�

(
zα1 , . . . , Z1, Z2, . . .

)∣∣�(zα1 , . . . , Z1, Z2, . . . )
〉 , (8)

Ciρ jσ ≡ ∂2 ln
〈
�

(
zα1 , . . . , Z1, Z2, . . .

)∣∣�(
zα1 , . . . , Z1, Z2, . . .

)〉
∂Z∗

iρ∂Zjσ
. (9)

By solving this EOM starting from a certain wave function, a series of basis wave functions for the generator coordinate method
(GCM) is obtained.

Under the framework of GCM, the basis wave functions with different parameters Z are superposed to describe the total wave
function

�Jπ

M =
∫ Tmax

0
dt

J∑
K=−J

P̂Jπ

MK fK (t )�
(
zα1 (t ), . . . , Z1(t ), Z2(t ), . . .

)
, (10)

054313-2



α FORMATION PROBABILITY IN 10Be … PHYSICAL REVIEW C 106, 054313 (2022)

where P̂Jπ

MK is the parity and the angular momentum projector.
This integral can be approximately discretized as

�Jπ

M =
∑
i,K

P̂Jπ

MK fi,K (t )�i. (11)

The corresponding coefficients fi,K and the eigenenergy E are
obtained by solving the Hill-Wheeler equation.

C. α reduced width amplitude

To evaluate the degree of α clustering, we calculate the
α reduced width amplitude (RWA) from the obtained wave
functions, which is defined as the overlap amplitude between
the A-body wave function of the mother nucleus � and the
reference state composed of clusters with mass numbers C1

and C2,

ayl (a) = a

√
A!

(1 + δC1C2 )C1!C2!

〈
δ(r − a)

r2
�C1�C2Yl (r̂)

∣∣∣∣�
〉
,

(12)

where �C1 and �C2 are the ground state wave functions of the
two clusters. In Refs. [39,40], the approximated RWAs of 10Be
and 12Be were calculated. In the current work, this equation is
calculated by using the Laplace expansion method [41]. The
α clustering may be evaluated by the α spectroscopic factor,
which is defined as the squared integral of the RWA,

Sα =
∫ ∞

0
r2dr y2

l (r). (13)

Note that Sα is not normalized to unity because of the anti-
symmetrized effects between the clusters. In addition, we also
introduce the root-mean-square radius of RWA,

Rrwa =
√∫ ∞

0 r4dr, y2
l (r)∫ ∞

0 r2dr y2
l (r)

, (14)

which is a measure of the average distance between clusters.

III. RESULTS

A. Structure properties of 10,12Be and applied
interaction parameters

For the calculation of 10Be, we set the strengths of the
central and spin-orbit interactions as W = 0.4, M = 0.6, B =
H = 0.125, and Vls = 2000 MeV. This parameter set has
already been adopted in many calculations for this nucleus
[31,32]. The obtained numerical results are denoted as “REM
(set1)” in Table I, where the numerical results are compared
with those obtained by the AMD calculation with the Gogny
D1S interaction. The α-decay threshold energy is an important
quantity for the discussion of the α-cluster formation. We see
that the AMD fails to reproduce it, while the REM yields
a consistent result with the experimental data. The charge
radius is another important quantity to discuss the α formation
probability. The AMD results overestimate the charge radii of
light nuclei. The REM also overestimates them but is smaller
than the AMD result. In short, the REM with the Volkov No. 2
interaction provides a better description of α threshold energy

TABLE I. The numerical results of the 0+ ground states of 10Be,
6He, and 4He. “Expt.,” “AMD,” and “REM (set1)” denote the results
from experimental data, AMD calculations, and REM calculations,
respectively. Rc denotes the charge radius, which is calculated from
the point proton radius. The experimental data of charge radius are
from Ref. [45]. �E (α) represents the threshold energy of 6He + 4He.

10Be Expt. AMD REM (set1)

E (6He) −29.27 MeV −33.04 MeV −27.68 MeV
E (4He) −28.30 MeV −29.68 MeV −27.57 MeV
E (10Be) −64.98 MeV −66.46 MeV −62.46 MeV
Rc(10Be) 2.34 fm 2.62 fm 2.55 fm
�E (α) −7.41 MeV −3.75 MeV −7.21 MeV

and the charge radius. We will discuss how these differences
affect the RWA in the next subsection.

It has been known that the 8He + 4He and 6He + 6He
configurations and even the 7He + 5He configuration play
important roles in the low-lying states of 12Be [2,17,42,43].
The ground state of 12Be is dominated by the configuration
with the breaking of the N = 8 magic number [32,42,44], and
the 0+

2 state has N = 8 closed shell structure. The numerical
results are shown as “REM (set1)” in Table II. We found that
REM does not reproduce many properties of 12Be if we ap-
ply the same interaction parameters as 10Be.Furthermore, the
order of α+8He and 6He + 6He channels, denoted by �E (α)
and �E (6He), is inverted from the experimental data. We also
find that the breaking of the magic number in the ground state
cannot be reproduced from the RWA results. Therefore, we
slightly changed the Majorana parameters and the strength
of the spin-orbit interaction to be M = 0.58 (W = 1 − M)
and Vls = 2800 to reproduce the following properties: the
breaking of the magic number in the ground state, the α+8He
and 6He + 6He threshold energies, and the excitation energy
of the 0+

2 state. The results obtained by the fitted interaction
are denoted by “REM (set2)” in Table II. This guarantees
consistency with the observed data.

TABLE II. The numerical results of the 0+ ground states of 12Be,
8He, and 4He. The meanings of the symbols are the same as in
the previous table. The experimental data of charge radius are from
Ref. [46]. Ex (0+) denotes the excitation energy of the first excited
0+ state. �E (α) and �E (6He) represent the threshold energies of
8He + 4He and 6He + 6He, respectively.

12Be Expt. AMD REM (set1) REM (set2)

E (12Be) −68.65 MeV −68.70 MeV −60.89 MeV −69.80 MeV
Ex (0+) 2.25 MeV 1.96 MeV 5.54 MeV 2.76 MeV
Rc(12Be) 2.50 fm 2.82 fm 2.47 fm 2.45 fm
E (8He) −31.40 MeV −33.65 MeV −26.18 MeV −35.64 MeV
E (6He) −29.27 MeV −33.04 MeV −27.68 MeV −29.85 MeV
E (4He) −28.30 MeV −29.68 MeV −27.57 MeV −27.57 MeV
�E (α) −8.96 MeV −5.37 MeV −7.13 MeV −6.59 MeV
�E (6He) −10.11 MeV −2.63 MeV −5.53 MeV −10.11 MeV
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FIG. 1. The calculated RWA of the ground state of 10Be in the
6He + 4He channel. All the nuclei are in the ground state.

B. RWA and Whittaker function

Before we discuss the RWA, we recall the structure of 10Be
and 12Be, which have been fully investigated by many kinds
of microscopic models [47–53]. Two valence neutrons of 10Be
occupy the p shell, whereas two of four valence neutrons in
12Be are promoted to the sd shell across the N = 8 shell gap.
We then compare the RWA calculation results to see the sim-
ilarities and differences in the α cluster formation probability
obtained by AMD and REM frameworks. Figure 1 shows the
RWA of the ground state of 10Be for the 6He + 4He channel.
It shows that the REM provides a much larger amplitude
than the AMD calculation at the peak region, which indicates
the larger possibility of α formation in 10Be. This is due to
the α cluster assumption in the REM wave function, while the
AMD does not assume it. Therefore, the current REM result
provides the upper limit of clustering. In addition to the dif-
ference in the amplitude, it can be found that the positions of
the nodes of RWA from REM are shifted slightly to the inner
part compared with the AMD calculations, which indicates a
shorter spatial distribution of the α cluster. This is because
REM gives a smaller radius of the 10Be ground state. Thus,
REM yields a more enhanced but narrower distribution of the
α cluster.

An advantage of REM over AMD is that it can describe the
correct asymptotics of RWA. As explained in the Appendix,
the RWA should be identical to the Whittaker function at a
large distance. We compare the logarithmic derivatives of the
RWA and the Whittaker function in Fig. 2. We can see that
the RWA calculated from the AMD is inconsistent with the
Whittaker function, whereas REM yields the correct asymp-
totics. From this result, we can easily obtain the asymptotic
normalization constant (ANC), which is calculated as 5.3.

Unlike 10Be, the discussion of 12Be is complicated because
of its more exotic structure. In Fig. 3, we show the RWA
of the ground state of 12Be calculated by using the original
and modified interaction parameters. First, we note that the
number of nodes of RWA is different depending on the choice
of the interaction parameter sets. This is due to the difference
in the structure of the ground state. In the case of the original
parameter set, all valence neutrons occupy the p shell in con-
tradiction to the experimental fact. On the other hand, in the

FIG. 2. The comparison of results between the calculated RWA
and the Whittaker function for 10Be beyond 3.5 fm. The vertical
axis shows the ratio between the derivatives of the functions as in
Eq. (A6).

case of the modified parameter set, the ground state is domi-
nated by the 2h̄ω configuration, in which two valence neutrons
are excited into the sd shell across the N = 8 shell gap. As
a result, the RWA obtained by using the modified parameter
set has an additional node. Second, we again see a larger
amplitude at the peak value in the modified parameter set
calculation than the AMD result, which can also be attributed
to the cluster assumption node in the REM calculation. We
also see that the RWA from the AMD calculation is much
more spread out than the REM (set2) calculation. This is
because of the much-overestimated radii of the AMD results.

The comparison between the RWA and the Whittaker func-
tion is shown in Fig. 4. The deviations from the Whittaker
function are found for both of the AMD and REM (set2)
calculations. This result may be explained as follows. The
Whittaker function assumes a two-body system. However, as
already been discussed in many papers [42,54], the ground
state of 12Be is an admixture of the 8He + 4He, 6He + 6He,
and 5He + 7He channels. This fact can also be seen in Fig. 5,

FIG. 3. The calculated RWA of 12Be in the 8He + 4He channel.
All the nuclei are in the ground state.
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FIG. 4. The comparison results between the calculated RWA and
the Whittaker function for 12Be. The vertical axis shows the ratio
between the derivatives of the functions as in Eq. (A6).

where the amplitudes of RWAs for 12Be are compared be-
tween 6He + 6He and 8He + 4He channels. Therefore, the
ground state of 12Be cannot be simply treated as a two-body
system, which causes a departure from the Whittaker function.

In addition to the limitation of the two-body system as-
sumption, the requirement that the cluster is only affected by
the Coulomb interaction may also be violated by the RWA to
cause the departure from the Whittaker function. As already
shown in Table III, the rms radii of point neutrons are much
larger than those of point protons for 12Be, especially in the
REM calculations. It suggests that the formed cluster in 12Be

FIG. 5. The comparison of calculated RWA for 12Be between the
8He + 4He channel and the 6He + 6He channel. All the nuclei are in
the ground state.

TABLE III. The calculated rms radii of point neutron and proton
distributions. All the units are in fm.

10Be(g.s.) 12Be(g.s.) 12Be(0+
2 )

AMD REM AMD REM (set2) AMD REM (set2)

rn 2.50 2.53 2.91 2.50 2.67 2.52
rp 2.43 2.35 2.63 2.23 2.52 2.21

may be surrounded by valence neutrons even in the outer
region of the nucleus so that the cluster still feels residual
nuclear force. This residual nuclear force from the neutrons
also leads to the departure from the Whittaker function. An-
other cause can be found from the RWA results of the 0+

2 state
for 12Be shown in Fig. 6. It shows that the middle region of
12Be is dominated by the 6He + 6He channel while the outside
region is dominated by the 8He + 4He channel, which should
satisfy the assumption of a two-body system. However, the
amplitudes of RWA are only visible within about 5 fm, where
the nuclear force cannot be neglected. This narrow distribution
of RWA also causes the departure from the Whittaker function
as shown in Fig. 7.

Finally, we show the α spectroscopic factors and the rms
radii of RWA in Table IV.It explicitly shows that the AMD
result may provide a lower limit of the α clustering in the
Be isotopes, while the REM procedure with the Volkov No
2 interaction may provide the upper limit. Both calculations
show the suppression of clustering with increasing neutron
number, especially in the REM calculation, which satisfies
the discussion on the effect of the neutron-skin thickness
in Ref. [24] and our previous work [26]. In addition, AMD
suggests counterintuitive enhanced rms radii of RWA, which
describes a broader average region of α clustering even with
the suppression by the neutron skin thickness. However, the
REM calculations, in contrast, can show a slight suppression
of radii. These results again suggest that the REM procedure
with the Volkov No. 2 interaction under the cluster model
could be more appropriate for the description of the α clus-
tering in the light nuclei.

FIG. 6. The calculated RWA of the second 0+ state of 12Be in the
8He + 4He and 6He + 6He channels. All the nuclei are in the ground
state.
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FIG. 7. The comparison results between the calculated RWA and
the Whittaker function for 12Be. The vertical axis shows the ratio
between the derivatives of the functions as in Eq. (A6).

IV. SUMMARY

The RWAs of 10Be and 12Be were calculated with the
REM procedure, where the cluster model and the Volkov
No. 2 interaction are adopted. Compared with the results
from previous AMD calculations, the new results can re-
produce the charge radii and the threshold energies. These
quantities could be more important for the description of α

clustering. The RWA results from these frameworks show
that the REM procedure may provide the upper limit of
α clustering, while the AMD gives the lower limit. Be-
sides, the suppression in rms radius of RWA by the neutron
skin thickness can be correctly obtained by the REM
calculations.

The Whittaker function is expected to be an important
criterion for testing the calculation of cluster formation. The
comparison with the Whittaker function shows that the current
REM result of 10Be provides the correct asymptotics at large
distance, which indicates more reliable description on the α

cluster formation.

TABLE IV. The calculated S factor and rms radius of RWA.

10Be 12Be
AMD REM AMD REM (set2)

Sα 0.35 0.54 0.24 0.33
Rrwa 3.23 fm 3.41 fm 4.07 fm 3.36 fm

For the calculation of 12Be, the breaking of the N = 8
magic number is reproduced by slightly modifying the pa-
rameters of the interaction. The RWA results of 12Be suggest
the mixing of the8He + 4He channel and 6He + 6He chan-
nel in the ground state. This complex structure causes the
departure from the Whittaker function. In addition to this,
the narrow distribution of the RWA and the influence of the
valence neutrons may also affect the asymptotics of RWA.
The behavior of RWA in nuclei with exotic cluster structures
or neutron skin will be further investigated in our future
works.
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APPENDIX: WHITTAKER FUNCTION

The RWA can be treated as the wave function of the α

cluster in the mother nucleus. Therefore, it should be the
solution of the time-independent Schrödinger equation:

− h̄2

2m
∇2ψ + V (r)ψ = Eψ. (A1)

In the case of two-body system, r is the distance between
two particles and m is the reduced mass. V (r) represents the
potential between two particles and the eigenvalue E will be
the threshold energy between them.

Considering the situation when the formed cluster is too far
away from the residue nucleus, only the Coulomb potential
is present, then the solutions of Eq. (A1) are the Whittaker
functions [55,56]:

u1 = M−η,l+ 1
2
(2kr)

u2 = W−η,l+ 1
2
(2kr) (A2)

where l is relative angular momentum between two particles
and other parameters are summarised as

reduced mass: m = m1m2/(m1 + m2)

wave number: k =
√

−2mE/h̄2

× dimensionless Sommerfeld parameter:

η = Z1Z2e2m/4πε0 h̄2k. (A3)

Among these two solutions, we only adopt the Whittaker W
function for the physical meaning.

In this sense, if the RWA calculated from a framework
is accurate enough, it should be identical to the Whittaker
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function starting from a large distance a with an normalization
factor C as

ryl (r) = CW (r) for r > a. (A4)

This factor C is called asymptotic normalization constant
(ANC), which is of importance for the study of the astrophys-
ical reactions [57–59]. In addition, if C is really a constant in
the calculation, the derivative of Eq. (A4) should still hold as

[ryl (r)]′ = CW ′(r) for r > a. (A5)

Therefore, by comparing the ratios between Eqs. (A4)
and (A5),

[ryl (r)]′

ryl (r)
,

W ′(r)

W (r)
, (A6)

the existence of the constant C can be confirmed if these two
ratios are identical. The comparison between RWA and the
Whittaker equation can be treated as an important criterion
of the accuracy of the calculation. In this work, we compare
the RWA obtained from AMD and REM calculations with the
Whittaker function to discuss the model dependence of the
description of cluster formation.
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