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A microscopic nα cluster model was applied to 8Be, 12C, and 16O systems to investigate cluster motion in the
ground state and radial excitation. In the microscopic calculation of 12C and 16O using the generator coordinate
method with the coordinate D of the α − α distance, excited states were obtained as the large-amplitude mode
built on the ground state. A collective model was constructed to describe the cluster motion of these states
by utilizing inputs from the microscopic cluster model such as the norm kernel and energy expectation values.
Furthermore, the cluster model was extended by introducing the imaginary part of the coordinate D to incorporate
the dynamical effects on the collective mass. The collective wave function obtained with the collective model
was found to be in reasonable agreement with the results of the generator coordinate method for energies, root-
mean-square radii, and amplitude functions.
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I. INTRODUCTION

In nuclear systems, large-amplitude collective motion
plays an important role in various nuclear structure phenom-
ena such as ground-state correlation, cluster excitation, and
shape mixing, as well as in dynamical processes such as
cluster decay and nuclear fission. To describe large-amplitude
motion along a collective path in a microscopic framework,
the generator coordinate method (GCM) [1,2] is one of the
widely used approaches, particularly in the study of cluster
phenomena [3–9]. However, application of the GCM is still
limited to a few generator coordinates mainly because of the
high computational cost of superposing a number of basis
wave functions along the collective path, which requires non-
diagonal elements of the microscopic Hamiltonian. To reduce
the computational cost, semimicroscopic approaches, such as
the orthogonality condition model [10] and phenomenological
potential models, have been widely used in cluster physics.
In many studies, potentials along the collective path are phe-
nomenologically adjusted to fit existing data; however, they
are not based on a fundamental derivation.

To derive the collective Hamiltonian by incorporating mi-
croscopic effects, various prescriptions have been proposed
and are under development. One of the key problems is how
to evaluate the collective mass in the kinetic term. However,
as discussed in Ref. [11], some prescriptions, such as the
cranking mass and Gaussian overlap approximation (GOA)
mass [4,11] are known to be insufficient to quantitatively
describe collective motion. The center-of-mass motion is a
typical example that both prescriptions fail to describe. As a
further microscopic approach to deriving the collective path

and collective Hamiltonian, the self-consistent collective co-
ordinate method has been developed [12], and an adiabatic
version has been applied to large-amplitude motion, including
shape mixing and cluster phenomena [13–15]; however, it
requires solving coupled equations.

In this study, we propose a convenient derivation of a
collective model which can approximately describe the clus-
ter dynamics obtained by the microscopic calculation of the
GCM. We adopt the 2α, 3α, and 4α models for the 8Be,
12C, and 16O systems, respectively. To describe cluster motion
in the ground state and radial excitation, we use the Brink-
Bloch cluster wave functions [3] with the most symmetric nα

configurations, namely, the dumbbell, equilateral triangle, and
regular tetrahedron configurations of 2α, 3α, and 4α, respec-
tively. The α − α distance is defined by parameter D, and the
cluster motion along the coordinate D is considered. First, the
ground and excited states are microscopically calculated by
the GCM using the generator coordinate D, and the cluster
motion in the obtained states is analyzed. Then, a collective
model for the one-dimensional motion along the coordinate
D is constructed by utilizing inputs from the microscopic nα

wave functions, such as the norm kernel and energy expec-
tation values, to derive the collective Hamiltonian. Moreover,
to incorporate the dynamical effects on the collective mass,
the microscopic cluster model is extended by introducing the
imaginary part of the coordinate D. The collective Hamilto-
nian is evaluated by comparing the results for the energies,
root-mean-square radii, and collective wave functions of the
ground and excited states with the microscopic results ob-
tained by the GCM.
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This paper is organized as follows. Sections II and III
describe the microscopic nα model and the microscopic
Hamiltonian, respectively. The GCM results for the mi-
croscopic calculation are presented in Sec. IV, while the
framework and results of the collective model are described
in Sec. V. A summary is provided in Sec. VI. The Appendix
presents a detailed derivation of the physical coordinates.

II. MICROSCOPIC nα CLUSTER MODEL

A. Wave functions of nα cluster system

A basis nα wave function is expressed by the Brink-Bloch
α-cluster wave function [3,16] as

�nα (S1, . . . , Sn) = n0A{ψα (S1) · · · ψα (Sn)}, (1)

where A is the antisymmetrizer, and ψα (Sm) is the α-cluster
wave function

ψα (Sm) =
∏
i∈αm

φSm (ri )χiτi,

φSm (ri ) =
(

2ν

π

)3/4

exp[−ν(ri − Sm)2], (2)

with the nucleon-spin and -isospin functions χiτi selected
as p ↑, p ↓, n ↑, and n ↓ for four nucleons i = 4(k − 1) +
1, . . . , 4(k − 1) + 4. The Gaussian width parameter ν is set to
0.235 fm−2 in the present calculation.

The parameter Sm is usually treated as a real variable and
indicates the mean center position of the mth α cluster (αm) in
the coordinate space before antisymmetrization in the original
cluster model. However, complex variables for the Gaussian-
center parameters Sm are used in extended cluster models, as
discussed in a later section.

To describe the intercluster motion in the GCM approach,
the basis nα wave functions are superposed with respect to the
generator coordinates Sm as


GCM =
∫

dS1, . . . , dSn f (S1, . . . , Sn)�nα (S1, . . . , Sn),

(3)

where the coefficients f (S1, . . . , Sn) are determined by solv-
ing the Hill-Wheeler equation [1].

B. 2α, 3α, and 4α models for 8Be, 12C, and 16O systems

1. Model space

In the 2α system for 8Be, we define the distance parameter
D = |S| by taking S1 = −S2 = S/2 and consider the relative
motion between two α′s in one-dimensional model space with
distance D.

To describe the ground states and radial excitation of the
3α and 4α systems for 12C and 16O, we take highly sym-
metric configurations by setting the α-cluster positions in the
equilateral triangle and regular tetrahedron configurations as
illustrated in Fig. 1(b) and 1(c), respectively, and we describe
the radial motion of α′s using the GCM approach. We define
the α − α parameter D = |Sm − Sl | (k �= l ). Note that the
radial distance d = |Sm| measured from the origin is obtained
by scaling D as d = D/2, D/

√
3, and

√
3/8D, in the 2α, 3α,

FIG. 1. Spatial configurations of the 2α, 3α, and 4α models for
(a) 8Be, (b) 12C, and (c) 16O systems.

and 4α systems, respectively. The GCM calculation with the
coordinate D is equivalent to that with d .

2. GCM calculation

In the GCM calculation, the parity-projected wave func-
tions �±

nα (Dj ) at the mesh points of the coordinate Dj are
superposed as


±
k =

∑
j

f ±
k (Dj )�

±
nα (Dj ), (4)

�±
nα (Dj ) ≡ P̂±�nα (Dj )

〈P̂±�nα (Dj )|P̂±�nα (Dj )〉1/2
, (5)

where P̂± is the parity-projection operator. Sixteen mesh
points Dj = {0.5 fm, . . . , 8.0 fm} ( j = 1, . . . , 16) with an
interval of �D = 0.5 fm are used in the present calcula-
tions. The energy E±

GCM,k and coefficients f ±
k (Dj ) for the kth

parity(±) state are determined by diagonalization of the norm
and Hamiltonian matrices

N±
i j = 〈�±

nα (Di )|�±
nα (Dj )〉, (6)

H±
i j = 〈�±

nα (Di )|Ĥ |�±
nα (Dj )〉. (7)

For the GCM wave function 
±
k obtained for the (±)k

states, we define the amplitude function G±
GCM,k (Di ) as

G±
GCM,k (Di ) ≡

∑
j

{N 1/2}i j f ±
k (Dj ), (8)

where N 1/2 is the square root of the 16 × 16 matrix N±
i j in

the basis space Di (i = 1, . . . , 16). Since the norm kernel N±
i j

is defined in a finite-size subspace Di � 8.0 fm of the full
D space, G±

GCM,k (Di ) sometimes exhibits oscillatory behavior
near the boundary Di ≈ 8.0 fm because of the finite-size ef-
fect; however, it is out our region of interest. We also calculate
the overlap function G(2),±

GCM,k (Di ) of 
±
k with a basis wave

function �±
nα (Di ) at Di as

G(2),±
GCM,k (Di) ≡ 〈�±

nα (Di )|
±
k 〉 =

∑
j

N±
i j f ±

k (Dj ). (9)
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TABLE I. Energies and root-mean-square radii (rmsr) calculated
with the microscopic nα model of 8Be, 12C, and 16O. The values
obtained by the generator coordinate method (GCM) and by single-
basis calculation at the minimum-energy distance D0 are presented
in the second and third columns, respectively. The D0 values are
displayed in parentheses. For 12C(+) and 16O(+), the values of
two-basis diagonalization for the small-amplitude calculation are
presented in the fourth column.

GCM Single Small-amp.
E , rmsr E , rmsr(D0) E , rmsr

(MeV), (fm) (MeV), (fm) (MeV), (fm)

8Be(+)1 −46.3, 2.67 −44.5, 2.37(3.2)
12C(+)1 −74.9, 2.35 −73.9, 2.31(2.2) −73.8, 2.30
12C(+)2 −60.1, 2.90 −52.8, 2.37
12C(−)1 −67.8, 2.58 −66.7, 2.54(3.0)
16O(+)1 −127.1, 2.20 −126.7, 2.19(1.0) −126.7, 2.19
16O(+)2 −102.6, 2.46 −95.6, 2.24
16O(−)1 −113.7, 2.34 −113.0, 2.31(1.7)

Note that, owing to the orthonormality 〈
±
k |
±

l 〉 = δkl , the
amplitude function G±

GCM,k (Di ) satisfies the orthonormal con-
dition ∑

i

G±∗
GCM,k (Di )G

±
GCM,l (Di ) = δkl , (10)

but the overlap function G(2),±
GCM,k (Di ) does not. Considering the

transformation �D
∑

Di
→ ∫

dD, we redefine the amplitude
function g±

GCM,l (D) ≡ G±
GCM,l (D)/

√
�D to satisfy the stan-

dard normalization in the coordinate D space as∫
g±∗

GCM,k (D)g±
GCM,l (D)dD = δkl . (11)

III. MICROSCOPIC HAMILTONIAN

The microscopic Hamiltonian Ĥ used in the present nα

model consists of the single-nucleon kinetic energy, effective
nucleon-nucleon (NN) forces, and NN Coulomb force. We
use the effective central nuclear force given in a two-range
Gaussian form of the Volkov No. 2 force [17] with the Ma-
jorana parameter m = 0.62, which has been used for cluster
models in many studies. The total center of mass (cm) motion
can be exactly separated, and its kinetic energy is subtracted
from the Hamiltonian.

IV. RESULTS OF MICROSCOPIC CALCULATION

A. Energies and radii

The positive- and negative-parity states of 8Be, 12C, and
16O were calculated by the GCM of the nα model. The re-
sults obtained for the energies and root-mean-square radii
for the lowest (±)1 and first excited states (±)2 of each
parity are presented in Table I. The calculated energy of the
16O(+)1 state is in reasonable agreement with the experimen-
tal value E exp(gs) = −127.6 MeV of the 16O ground state,
whereas the calculated energies of the 8Be(+)1 and 12C(+)1

states are more than 10 MeV higher than the experimental

values E exp(gs) = −56.50 and −92.16 MeV, respectively.
These binding energy defects can be partially explained by
the energy gain due to the total angular momentum projection
for 8Be and 12C, and also by the spin-orbit attraction in 12C,
neither of which is taken into account in the present nα model.

The lowest negative-parity states 12C(−)1 and 16O(−)1

correspond to the Kπ = 3− bands because of the point-group
symmetry of the triangle and tetrahedron configurations, re-
spectively. The calculated excitation energy Ex of the 12C(−)1

state, 7.1 MeV, is in reasonable agreement with the exper-
imental value E exp

x (3−
1 ) = 9.64 MeV of the bandhead state,

whereas that of 16O(−)1, 13.4 MeV, overestimates the experi-
mental value E exp

x (3−
1 ) = 6.13 MeV of the 16O(3−

1 ) state.
We also present the single-basis calculation results at the

minimum-energy distance D0 optimized for the diagonal ele-
ments of the Hamiltonian E±(D) = 〈�±

nα (D)|Ĥ |�±
nα (D)〉. A

comparison of the single-basis and GCM results indicates
that the 12C(±)1 and 16O(±)1 states can be approximately
described by the single configuration at D0, whereas the
8Be(+)1 state cannot be. This indicates that the α − α motion
in 8Be(+)1 is not localized at a fixed distance, but exhibits
large fluctuation along the generator coordinate D, which
significantly increases the binding energy gain and radius of
8Be(+)1 in the GCM calculation.

The first excited positive-parity states, 12C(+)2 and
16O(+)2, are radial excitations on the lowest states and have
larger radii than the 12C(+)1 and 16O(+)1 states. The 12C(+)2

and 16O(+)2 states are associated with monopole excitation
but cannot be assigned to the observed 0+ states in the 12C
and 16O spectra. These theoretical radial excitation modes
may couple with other degrees of freedom, including α-cluster
motion and single-particle excitation, and may be fragmented
into several cluster states and also partially contribute to the
giant monopole resonance. For 8Be, no excited state is ob-
tained as a bound-state solution.

B. Potential energy curve and radial motion

To discuss the radial motion along the generator coordinate
D, we present the potential energy curve E±(D), the GCM
energies E±

GCM,k , and the GCM amplitude functions g±
GCM,k (D)

for the (±)1 and (±)2 states in Fig. 2.
In 8Be, the energy curve displays effective repulsion in the

interior region because of the antisymmetrization effect and
a shallow energy pocket at D ≈ 3 fm. The GCM amplitude
g+

GCM,1(D) is spread widely around the energy minimum. As
the number n of α clusters increases in 12C and 16O, the
energy pocket increases and shifts toward the interior region.
Consequently, the amplitude g+

GCM,1 of the 12C(+)1 state is
drawn inward, and that of the 16O(+)1 state concentrates
around D ≈ 0 to form a compact 4α state, which approxi-
mately corresponds to the p-shell closed state. For the excited
positive-parity states (+)2 of 12C and 16O, one can observe
nodal behavior of g+

GCM,2 exhibiting vibration features of the
radial (D) excitation built on the lowest states.

For the negative-parity states, the potential energy in-
creases particularly in the interior region, and the energy
minima slightly shift outward. Moreover, the amplitudes
g−

GCM,k shift somewhat outward, but they show qualitatively
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FIG. 2. GCM results of the energy curves E±(D), GCM energies E±
GCM,k , and GCM amplitude functions g±

GCM,k (D) for (a) 8Be(+), (b)
12C(+), (c) 12C(−), (d) 16O(+), and (e) 16O(−). For comparison, scaled values of the overlap function, g(2),±

GCM,k (D) = cG(2),±
GCM,k (D), are also

shown. Solid (dashed) lines indicate the amplitude and overlap functions of lower (±)1 [higher (±)2] states.

similar features to the positive-parity states. In other words,
the amplitudes for the (−)1 states concentrate around the en-
ergy minima and those for the (−)2 states exhibit the features
of the vibrational excitation constructed on the (−)1 states
along D.

These results support the possible interpretation of the
GCM amplitude g±

GCM,k as “collective wave functions” in the
collective coordinate D for the (±)1,2 states. It should be noted
that, although g±

GCM,k satisfies the orthonormal condition (11)
for the D integral, it does not satisfy the negative-parity
boundary condition g−

GCM(0) = 0 naively expected from the
transformation g−

GCM(D) = −g−
GCM(−D). It is indicated that

the boundary condition at D = 0 of the collective wave func-
tion is not trivial because of the strong microscopic effects in
the interior region close to D = 0.

Figure 2 also displays the overlap function G(2),±
GCM,k (D)

given in Eq. (9). To compare it with the amplitude function,
we plot scaled values g(2),±

GCM,k ≡ cG(2),±
GCM,k with a factor c =

( 2ν4(A−4)
Aπ

)1/4, as performed in Ref. [18] to evaluate intercluster
wave functions from the norm overlap. The D dependence of
the overlap function g(2),±

GCM,k is qualitatively consistent with
that of the amplitude function g±

GCM,k at least for the peak

and node positions. This result indicates that |g(2),±
GCM,k (D)|2

can be an alternative quantity for the probability at D as ex-
pected from the physical meaning of the overlap. However, it
should be kept in mind that neither g(2),±

GCM,k (D) nor G(2),±
GCM,k (D)

satisfies the orthonormal condition, which may be a signifi-
cant problem in associating them with a kind of “collective
wave function.”

V. COLLECTIVE MODEL

The aim of this section is to construct a potential model for
the collective motion along the parameter D in nα systems.
The key question is how to derive a collective Hamiltonian
that can approximately describe the microscopic results ob-
tained by the GCM. For this purpose, we first describe the
antisymmetrization effects on the coordinate space of D in the
microscopic wave function, and consider an extension of the
real parameter D to a complex variable to discuss the dynami-
cal effects on the cluster motion. Then we propose a collective
Hamiltonian for the cluster motion. Finally, we present the
results obtained by solving the collective Hamiltonian, and
compare them with the GCM results.

A. Antisymmetrization effect on collective
coordinate distance D

1. Physical meaning of D

In the asymptotic region, where the antisymmetrization
effect vanishes, the parameter D corresponds to the mean
distance between α positions. However, this is not the case
in the small D region in which D no longer has the phys-

054312-4



COLLECTIVE MODEL FOR CLUSTER MOTION IN … PHYSICAL REVIEW C 106, 054312 (2022)

FIG. 3. Physical coordinates R plotted as functions of D for the
nα wave functions.

ical meaning of the intercluster distance because of the
antisymmetrization effect between α clusters. To demonstrate
this antisymmetrization effect, we follow the prescription for
the transformation of coordinates proposed by Ono et al.
[19]. Ono et al. transformed a set of Gaussian centers {Zi}
of single-nucleon wave functions into a new set of coordi-
nates {W i} in the framework of antisymmetrized molecular
dynamics (AMD). They call the new coordinates {W i} “phys-
ical coordinates” and used them to avoid Pauli blocking in
time-dependent AMD to study heavy-ion collision. A detailed
derivation of the new coordinates {W i} is provided in the
Appendix. In the case of the present nα model at a given
value of D, W i is analytically given as W i = λnα (D)Zi with
the scaling factor λnα (D). According to this transformation,
the parameter D is transformed into a new coordinate R =
λnα (D)D, which can be regarded as a “physical coordinate”
for the α − α distance. Figure 3 shows R(D) for the 2α, 3α,
and 4α systems. The D dependence of R shows almost no sys-
tem dependence, indicating that the antisymmetrization effect
between two α′s is essential for R(D). In all cases, R takes
the minimum value of

√
2/ν in the D → 0 limit, signifying

that two α′s cannot come closer to each other due to the
Pauli blocking between identical nucleons in two α′s. As D
increases, R monotonically increases and approaches R → D
in the D � 5 fm region.

2. Norm overlap and metric

The norm kernel N (D, D′) of the 2α system is given as

N (D, D′) = 〈�2α (D)|�2α (D′)〉
= [

e−ν (D′−D)2

4 − e−ν (D′+D)2

4
]4

. (12)

In the asymptotic region of large D, the α − α relative motion
is not affected by antisymmetrization and is expressed by a
Gaussian function of the relative coordinate r as e−νD (r−D)2

,
where νD = 4 × 4ν/(4 + 4). Consequently, N (D, D′) for

ε ≡ D′ − D becomes a Gaussian function as

N (D, D + ε) → e− νD
2 ε2

, (13)

which satisfies the Gaussian overlap with constant width νD.
The parameter νD is the metric adopted in the GOA. It turns
out that the norm kernel can be used as a measure to evaluate
the number of states contained in the small interval ε of the
parameter space and the metric is expressed by the leading ε2

term of 1 − N (D, D + ε) according to the ε2 expansion:

1 − N (D, D + ε) → νD

2
ε2 + O(ε4). (14)

We naively extend the prescription of this asymptotic fea-
ture of the norm kernel and introduce a D-dependent metric
γN (D) as

γN (D) ≡ 1 − N (D, D + ε)

(νD/2)ε2
, (15)

where γN (D) is normalized to νD to approach γN (D) → 1 in
the asymptotic region.

In the present calculation, we consider the parity-projected
nα wave function at D denoted as |D〉 = |�±

nα (D)〉 and rede-
fine γN (D) for the nα systems in the general form with the
norm kernel N±(D, D′) = 〈D|D′〉 as

γN (D) ≡ 1 − N±(D, D + ε)

1 − N±(D∞, D∞ + ε)
, (16)

where the denominator is the asymptotic value in the D →
∞ limit. Figure 4 shows the calculated values of γN (D) for
8Be(+), 12C(±), and 16O(±). In the D > 5 fm region, γN ≈ 1,
indicating that the antisymmetrization effect almost vanishes
in this region.

In the D � 5 fm region, γN becomes smaller than 1 as
D decreases and finally approaches zero at the D → 0 limit
because of the antisymmetrization effect. In 12C and 16O, one
can see a significant parity dependence of γN . In particular,
γN in 16O(+) exhibits unnatural oscillating behavior due to
the parity-projection effect. The intrinsic wave function of 4α

before parity projection is a mixed-parity state for D �= 0,
but it is a pure positive-parity state in the D → 0 limit. In
the small-D region, the shift D → D + ε involves a drastic
change of the parity mixing ratio, which has a nontrivial effect
on γN via N±(D, D′) calculated using the parity-projected
wave function. In other words, the nontrivial parity depen-
dence of γN originates from the quantum effect associated
with the parity symmetry restoration.

Let us discuss the behavior of R′ ≡ dR/dD of the physical
coordinate R. Provided that the metric is constant in the coor-
dinate space of R, (R′)2 is naively expected to be an alternative
metric. In Fig. 4, the values of R′ and (R′)2 are compared with
γN . (R′)2 is strongly suppressed in the D � 5 fm region, and
inconsistent with γN . However, R′ is in a better agreement with
γN but does not describe the parity dependence of γN in 12C
and 16O.
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FIG. 4. γN derived from the norm kernel N (D, D′) for (a)
8Be(+), (b) 12C(±), and (c) 16O(±). For comparison, R′ = dR/dD
and (R′)2 obtained from the physical coordinate R are also shown.

B. nα systems with complex parameter

We extend the nα wave function by introducing the imag-
inary part of the coordinate D as D → D + iP/(2h̄ν). This
extension is achieved by using the complex parameter for the
Gaussian centers instead of the real parameter D. For instance,
in the case of 2α, the extended nα wave function is given by
replacing the real parameter S = (0, 0, D) for the Gaussian
centers S1 = −S2 = S/2 of two α′s as S = (0, 0, D + iP

2h̄ν
).

The real parameter P introduced here corresponds to an
imaginary shift of D, and the nα state |D, P〉 can be written as

|D, P〉 = n0(D, P)ei P
2h̄ν

∂
∂D |D〉, (17)

where n0 is the normalization factor determined so that
〈D, P|D, P〉 = 1. Note that the operator ei P

2h̄ν
∂

∂D is not a unitary
operator. Let us consider the 2α system. In the asymp-
totic region, where the antisymmetrization effect vanishes,
the mean positions and momenta of nucleons are given
as 〈ri〉 = (0, 0,±D/2) and 〈pi〉 = (0, 0,±P/2), respectively,
while those of the relative motion between two αs are given as
〈r〉 = (0, 0, D) and 〈p〉 = (0, 0,±(μnα/MN )P), respectively.
Here μnα is the reduced mass μ2α = MN/2 for the 2α systems.
Indeed, the operator ei P

2h̄ν
∂

∂D can be written using the boost

operators of nucleons with momenta ±P/2 in the opposite
direction with an D- and P-dependent overall factor. In a
similar way, the reduced mass for the nα systems is defined
as μnα = (D/d )2(MN/A) using the nucleon mass MN and
d = |Sm|.

We calculate the energy expectation value of the finite-
momentum state |D, P〉 as

EP = 〈D, P|Ĥ |D, P〉, (18)

and define the inverse mass 1/MP(D) from the following
relation,

�EP(D) = EP(D) − E (D) = h̄2

2MP(D)
P2, (19)

where E (D) = 〈D|Ĥ |D〉 is the energy at D and P = 0.
Figure 5 shows the P and D dependences of MP. As

shown in Fig. 5(a) for the P dependence, MP(D) is almost
constant in the P/h̄ � 0.3 fm−1 region, and therefore we
omit the P dependence of MP(D) in the following discus-
sion. The D dependence of MP at P/h̄ = 0.05 fm−1 for the
positive- and negative-parity states is presented in Figs. 5(b)
and 5(c), respectively. The values relative to the asymptotic
value μnα are plotted. In the D > 5 fm region, MP/μnα is
approximately equal to 1, indicating that the antisymmetriza-
tion effect almost vanishes in this region. As D decreases, MP

increases in the D � 5 fm region. This increasing behavior
of MP seems inconsistent with the naive expectation that the
antisymmetrization, i.e., the Pauli blocking effect, may give a
repulsive effect and contributes to reducing the inertial mass
of the kinetic term. As described above, MP is measured by the
inverse of the energy difference �EP between two states |D〉
and |D, P〉. Since the antisymmetrization effect suppresses
the state difference in the interior region, it contributes to
decreasing the energy difference and increasing MP. There-
fore, it may not be adequate to directly use the obtained MP

values as the inertial mass of the collective model, but some
modification may be necessary by taking into account the
antisymmetrization effect.

C. Small-amplitude description

In the case of P �= 0, the state |D, P〉 contains a com-
ponent orthogonal to |D〉. However, in the nα model, the
two-dimensional GCM using (D, P) obtains results consis-
tent with the results of one-dimensional GCM with D for
low-lying bound states, because the model space of (D, P)
contains redundant states. Nevertheless, one of the advantages
of introducing the complex parameter is that |D, P〉 provides
a semiclassical picture of oscillation around the coordinate D
in a simple expression of the single-basis wave function at
(D, P). In particular, the O(P) term of |D, P〉 involves the
time-odd components for the small-amplitude mode around
the static solution |D〉.

To discuss the vibration feature of the radial excitation in
the 12C and 16O systems, we take a small value of P/h̄ =
0.1 fm−1 at the optimized D0 for the energy minimum of
E (D), and diagonalize two bases of the time reversal partners,
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FIG. 5. Mass MP evaluated by |D, P〉 with the complex pa-
rameter D + iP/(2h̄ν ). (a) P dependence of MP at D = 1.5 and
3.0 fm, (b) D dependence of MP for positive-parity states, and
(c) D dependence of Mp for negative-parity states. The values
are divided by the asymptotic value μnα = (D/d )2(MN/A) of nα

systems.

|D0, P〉 and |D0,−P〉, to obtain a small-amplitude oscillation
in the ground and excited states, 
±

s-amp,k . The results obtained
by the two-basis diagonalization for the small-amplitude ap-
proximation are shown in the fourth column of Table I for
the energy and radii, and in Fig. 6 for the overlap function
G(2),±

s-amp,k (D) ≡ 〈�±
nα (D)|
±

s-amp,k〉. Compared with the GCM
calculation, the small-amplitude calculation tends to overesti-
mate the energies and underestimate the radii, indicating that
these states obtained by the GCM are not small-amplitude
vibrations but large-amplitude motion. In particular, signifi-
cant differences from the GCM results are obtained for the

FIG. 6. Overlap function G(2),±
s-amp,k obtained by two-basis diag-

onalization for the small-amplitude calculation of (a) 12C(+) and
(b) 16O(+). The GCM results of the overlap function, G(2),±

GCM,k , are
also shown for comparison. Solid (dashed) lines indicate the overlap
functions of lower (±)1 [higher (±)2] states.

excited states shown in Fig. 6. An exception is the 16O(+)1

state, which is well reproduced by the small-amplitude
approximation.

D. Collective Hamiltonian

In general, it is difficult for nonmicroscopic potential mod-
els to obtain results equivalent to microscopic calculations.
Nevertheless, semimicroscopic or phenomenological poten-
tial models are useful to obtain reasonable results and are
widely applied to study the dynamics of cluster motion. The
aim of this section is to construct a collective Hamiltonian
that can approximately describe the fundamental proper-
ties of the cluster motion in the ground and excited states
obtained by the microscopic calculation of the GCM. At
small D, the microscopic state |D〉 is a highly nonlocalized
state and contains strong quantum effects such as antisym-
metrization and parity projection, and therefore the GOA is
not applicable. We consider an alternative approach as fol-
lows.

The basic idea is that we assume local collective variables
in the collective Hamiltonian by utilizing diagonal elements,
i.e., expectation values of microscopic operators Ô obtained
by a single basis of the microscopic nα model wave function.
This signifies that nontrivial microscopic effects, such as the
antisymmetrization and parity projection, are taken into ac-
count as local inputs as much as possible. In the asymptotic
region, D, MP(D), and g±

GCM,k (D) can be regarded as the
collective coordinate, mass, and collective wave function of
the radial motion of the nα systems. Indeed, D and MP(D)
satisfy the asymptotic conditions 〈r〉 → D and MP → μnα ,
respectively. Moreover, |g±

GCM,k (D)| represents the probabil-
ity, and g±

GCM,k (D) satisfies the orthonormal condition in the
coordinate D space as given in Eq. (10). We start from the
collective Hamiltonian with the collective coordinate D space
and the mass MP by taking into account the metric in the D
space, and consider several options. Then we solve the eigen-
value problem of the collective model and evaluate whether it
provides results in reasonable agreement with the microscopic
results of the GCM.
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We assume that the collective Hamiltonian consists of the
kinetic and potential terms as

Hcoll = Tcoll + Vcoll(D), (20)

and suppose that it can approximately describe energies
E±

GCM,k and collective wave functions g±
GCM,k (D). For the po-

tential term, we adopt a parity-dependent local potential of
Vcoll(D) = E±(D) − T0, where T0 is a constant value of T0 =
h̄ω/4(ω = 2h̄2ν/MN ) for the zero-point energy contained in
the microscopic nα wave function at a large D.

In general, the coordinate D space has a metric γ (D), and
observables for local operators Ocoll in the D space are given
by the expectation values using the collective wave function
�coll(D) and the weight factor

√
γ as

〈Ocoll〉 =
∫

�∗
coll(D)Ocoll(D)�coll(D)

√
γ dD. (21)

Following a prescription for quantization in one dimension
with the metric γ , we introduce the kinetic term of Hcoll as

Tcoll = − h̄2

2

1√
γ

d

dD

√
γ

1

γμ

d

dD
, (22)

The microscopic effects are taken into account in the D depen-
dence of γ and μ, but in the asymptotic region they should be
constant as γ → 1 and μ → μnα so that the kinetic term takes
the standard form,

Tcoll → − h̄2

2μnα

d2

dD2
(D → ∞). (23)

For the metric γ and mass μ in the collective model,
we consider five cases as follows. In the first case (1), we
adopt the D-dependent metric and mass as γ = γN (D) and
μ = MP(D), which are obtained by utilizing the norm kernel
N (D, D′) and the finite-momentum state |D, P〉. Note that
γN (D) and MP(D) are parity dependent as they are obtained
with the parity-projected nα wave function as mentioned pre-
viously. In the second case (2), γ = 1 is kept constant, and we
use the mass μ = γN (D)MP(D). In the third case (3), we use
the mass μ = MP(D) and take an alternative metric derived
from the physical coordinate R(D) as γ = dR/dD ≡ γR. In
this case, μ is parity dependent, but γ is not. The fourth case
(4) is a reference case; we use the naive ansatz of the constant
values γ = 1 and μ = μnα . We also perform a test calculation
in the fifth case (5) using γ = 1 and μ = MP(D). It should be
noted that all cases satisfy the asymptotic conditions.

In Table II, we summarize the five sets of γ and μ in the
collective model, which are labeled cal(1) to cal(5). In the
table, the notations γ ±

N and M±
P are used to explicitly denote

the parity dependence of γN and MP. It should be noted that
the D-dependent γ incorporates the microscopic effects on the
coordinate D space from the microscopic wave function, but
not the dynamical effect from the microscopic Hamiltonian.
However, MP in the kinetic term and the potential term Vcoll

incorporate the dynamical effects in addition to the micro-
scopic effects from the microscopic wave function.

TABLE II. Values of γ and μ used in the kinetic term Eq. (22)
of the collective Hamiltonian Hcoll. The boundary condition of �−

coll
at D = 0 for negative-parity states is also listed; the default con-
dition �−′

coll(0) = 0 in cal(1) to cal(5) and the optional condition
�−

coll(0) = 0 in cal(1b) and cal(2b) cases, which are denoted as �′

and �, respectively.

Default sets cal(1) cal(2) cal(3) cal(4) cal(5)

μ M±
P γ ±

N M±
P M±

P μnα M±
P

γ γ ±
N 1 γR 1 1

�−
coll(D = 0) �′ �′ �′ �′ �′

Optional sets cal(1b) cal(2b)
�−

coll(D = 0) � �

E. Collective wave function

The collective wave function �coll(D) is obtained by solv-
ing the eigenvalue problem of the collective Hamiltonian Hcoll

in the coordinate space D under the orthonormal condition

〈�coll(D)|�coll(D)〉

=
∫

�∗
coll(D)�coll(D)

√
γ dD = 1. (24)

The obtained eigenvalue of the collective Hamiltonian is the
energy of the collective state as follows:

〈�coll(D)|Hcoll|�coll(D)〉

=
∫

�∗
coll(D)Hcoll�coll(D)

√
γ dD. (25)

The root-mean-square radii are calculated with Eq. (21) by
assuming that the collective operator Ocoll(D) is given by the
diagonal element (expectation value) of the microscopic wave
function at D as

Ocoll(D) = 〈�±
nα (D)|

∑
i

(r̂i − r̂G)2|�±
nα (D)〉, (26)

where rG is the total center of mass coordinate.
We define φcoll(D) ≡ γ 1/4�coll(D), which satisfies∫

φ∗
coll(D)φcoll(D)dD = 1 to compare the collective wave

functions with the GCM solution g±
GCM(D).

The boundary condition of the collective wave function at
D = 0 is not trivial because of the antisymmetrization effect.
For positive-parity states, we set d�+

coll(D)/dD = �+′
coll(D) =

0 at D = 0. For negative-parity states, the GCM amplitude
function g−

GCM(D) is inconsistent with the standard condi-
tion �−

coll(D) = 0 of negative-parity states; that is, the parity
transformation does not correspond to the transformation
g±

GCM(D) → g±
GCM(−D) in the collective coordinate D space.

Instead, we choose the condition �−′
coll(D) = 0 at D = 0, with

which we can obtain a better result than with the standard
choice, as shown later. This condition corresponds to a calcu-
lation with the same condition as the positive-parity states but
with the parity-dependent Hamiltonian. In other words, the
parity-projection effects are incorporated in the Hamiltonian
but not in the D = 0 boundary condition. In the asymptotic
region, we adopt the same bound-state approximation used in
the GCM calculation. Namely, the collective wave function
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FIG. 7. Energies and radii (rmsr) of 12C calculated by the collec-
tive models in comparison with the GCM results. This figure presents
the results of cal(1), cal(2), and cal(1b) for the (a) energies and
(b) radii, and the results of cal(3), cal(4), and cal(5) for the (c) en-
ergies and (d) radii.

is expressed by a sum of localized Gaussians with center
positions from 0.5 to 8.0 fm with intervals of 0.5 fm, and the
eigenvalue problem is solved by diagonalization.

F. Results of the collective Hamiltonian model

We show the results of the lowest and first excited states
obtained by the collective model of the five cases and compare
them with the microscopic results of the GCM. The results for
the energies and radii of the (+)1,2 and (−)1,2 states of 12C are
shown in Fig. 7, while those of 16O are shown in Fig. 8. As
shown in Figs. 7(a), 7(b), 8(a), and 8(b), the collective model
cal(1) using γ = γN and μ = MP reasonably reproduces the
GCM result of the energies and radii of the lowest and ex-
cited states 12C(±)1,2 and 16O(±)1,2. The second model cal(2)
using γ = 1 and μ = γN MP produces results similar to the
cal(1) results for 12C and somewhat better results for 16O.

Let us compare the results obtained by the optional case of
the negative-parity boundary condition cal(1b) for �−

coll(0) =
0 with the cal(1) results for �−′

coll(0) = 0. The former calcu-
lation (1b) overestimates the energies and radii of the GCM

FIG. 8. Energies and radii (rmsr) of 16O calculated by the collec-
tive models in comparison with the GCM results. This figure presents
the results of cal(1), cal(2), and cal(1b) for the (a) energies and
(b) radii, and the results of cal(3), cal(4), and cal(5) for the (c) en-
ergies and (d) radii.

results, indicating that the condition �−
coll(0) = 0 is not ap-

propriate for the collective wave functions in the D space.
Other model calculations of cal(3), cal(4), and cal(5) are

not satisfactory in systematically reproducing the GCM re-
sults [see Figs. 7(c), 7(d), 8(c), and 8(d)]. In particular, these
calculations failed to reproduce the properties of the 12C(+)2

state, and the calculations of cal(3) and cal(5) cannot describe
the 16O(+)2 state. The model cal(3) tends to overestimate the
radii of the 12C(+)2 and 16O(+)2 states, because the metric γR

used in cal(3) is slightly smaller than γN for the positive-parity
states and provides a stronger repulsive effect in the kinetic
term than that in the case of cal(1). Compared with cal(3)
and cal(5), improved results are obtained by cal(4) for some
states. However, the results of cal(4) do not show global re-
productions but the agreement is state and system dependent.
Therefore, the sets of γ and μ used in these models do not
work for describing the collective motion along D in the nα

systems.
We compare the results obtained by cal(4) and cal(5) with

those of cal(2). These three calculations use the constant
metric γ = 1 but different values of the collective mass in
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FIG. 9. D dependences of the inertial mass μ = MP and γN MP

used in cal(5) and cal(2) for (a) 8Be(+), (b) 12C(±), and (c) 16O(±).
The values relative to the constant mass μ = μnα corresponding to
cal(4) are plotted.

the kinetic term: μ = γN MP, μnα , and MP are used in cal(2),
cal(4), and cal(5), respectively. Figure 9 shows the D depen-
dence of μ of cal(2) and cal(5) relative to the constant mass
μnα for cal(4). In the interior region, μ = γN MP for cal(2) is
suppressed because of the antisymmetrization effect, whereas
μ = MP for cal(5) is enhanced.

Here, cal(4) underestimates the radius of the 12C(+)2 state
because the constant γ and μ values of cal(4) provide no
repulsive effect in the kinetic term compared with the case
of cal(2). The model cal(5) significantly underestimates the
radii of all states of 16O as well as the 12C(±)2 states because
μ = MP, which is largely enhanced in the interior region, pro-
vides more attractive effects compared with the cases cal(2)
and cal(4).

To examine the behavior of the collective motion in greater
detail, Fig. 10 exhibits the collective wave functions φcoll ob-
tained by the collective models of cal(1) and cal(2) compared

FIG. 10. Collective wave functions φcoll(D) calculated by the
collective models of cal(1) and cal(2) compared with the GCM
amplitude function g±

GCM(D). The results are displayed for (a)
8Be(+), (b) 12C(+), (c) 12C(−), (d) 16O(+), and (e) 16O(−). Solid
(dashed) lines indicate the functions of lower (±)1 [higher (±)2]
states.

with the GCM amplitude function g±
GCM. Although the same

boundary condition at D = 0 is adopted for �coll(D) in cal(1)
and cal(2), φcoll(D) = γ 1/4�coll(D) has different behavior at
D = 0. In the case of cal(1), an additional node appears in
φcoll at D = 0, because γN (D) → 0 in the D → 0 limit, but
not in the case of cal(2). Because of this additional node,
φcoll of cal(1) slightly shifts outward compared with the cal(2)
result. In particular, in the 16O(+) states, the result of cal(1)
fails to describe the concentration around D ≈ 0 of the GCM
amplitude in the deep potential, because the D = 0 node pre-
vents φcoll from penetrating in the short distance region [see
Fig. 10(d)].

In principle, φcoll(D) of cal(1) and cal(2) are similar to
each other except for the D = 0 node in cal(1), which does
not satisfy our requirement of reproducing the GCM am-
plitude function. The set of γ = 1 and μ = γN MP in cal(2)
is a simple prescription to effectively take into account the
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FIG. 11. Collective wave functions φcoll(D) calculated by the
collective models cal(1b) and cal(2b) for the optional case of the
negative-parity boundary condition �−

coll(0) = 0, in comparison with
the GCM amplitude function g±

GCM(D). The results for (a) 12C(−)
and (b) 16O(−). Solid (dashed) lines indicate the functions of lower
(−)1 [higher (−)2] states.

antisymmetrization effect in the collective mass of the kinetic
term by avoiding this unfavorable condition of the D = 0
node.

The collective wave functions of cal(1b) and (2b) for the
optional choice of the negative-parity condition are shown
in Fig. 11. The condition �−

coll(0) = 0 strongly suppresses
φcoll(D) in the interior region and is not suitable for repro-
ducing the GCM amplitude functions.

The collective wave functions of other calculations, cal(3),
cal(4), and cal(5), are shown in Fig. 12. The differences in

FIG. 12. Collective wave functions φcoll(D) calculated by the
collective models cal(3), cal(4), and cal(5) for (a) 12C(+), (b)
12C(−), (c) 16O(+), and (d) 16O(−), in comparison with the GCM
amplitude function g±

GCM(D). Solid (dashed) lines indicate the func-
tions of lower (±)1 [higher (±)2] states.

φcoll of cal(3), cal(4), and cal(5) from the cal(1) and cal(2)
results can be easily understood by the differences in the D
dependences of γ and μ in the interior region. For example,
the repulsive effect of antisymmetrization is too strong in
cal(3) because γR is smaller than γN , as shown in Fig. 4,
whereas it is too weak in cal(5) as expected from the enhanced
μ = MP as shown in Fig. 9.

From those analyses of the collective model calculations, it
is concluded that the set γ = 1 and μ = γN MP of cal(2) seems
to be the best and simple choice among the five choices of
the collective model for the global reproduction of the cluster
motion obtained by the GCM. This collective model corre-
sponds to a prescription for the derivation of the collective
Hamiltonian from the energy expectation value measured by
the |D, P〉 state,

EP(D) = P
h̄2

2M±
P (D)

P + E±(D), (27)

as

Hcoll =
(

i
d

dD

)
1

γ ±
N

h̄2

2M±
P (D)

(
i

d

dD

)
− T0 + E±(D), (28)

and the matrix element of a collective operator Ocoll as

〈Ocoll〉 =
∫

�∗
coll(D)Ocoll(D)�coll(D)dD. (29)

This model can properly describe the collective motion of nα

systems and approximately reproduce the GCM results for
the energies, radii, and amplitude functions. μ = γN MP in
the kinetic term is regarded as the effective collective mass,
in which microscopic effects such as antisymmetrization and
parity projection on the model space |D〉 are incorporated
in the local variables γ ±

N (D) and M±
P (D) and the dynamical

effects from the Hamiltonian and finite momentum are con-
sidered in M±

P (D).

VI. SUMMARY

A microscopic nα model was applied to 8Be, 12C, and 16O
systems to describe the radial cluster motion in the ground and
excited states. The positive- and negative-parity states were
calculated with the GCM using the generator coordinate D for
the α − α distance. The cluster motion in the coordinate D
space was analyzed, and the 12C(+)2 and 16O(+)2 states were
found to be large-amplitude modes of radial excitation built
on the ground states.

To describe the cluster motion of the nα systems, we pro-
posed a collective model in the one-dimensional coordinate D
by utilizing inputs from the parity-projected microscopic nα

wave functions. The potential term in the collective Hamilto-
nian was given by the energy expectation values of the nα

wave function at D. For the kinetic term in the collective
Hamiltonian, a couple of prescriptions were tested. To take
into account the antisymmetrization effects on the coordinate
space D, the metric γN derived from the norm kernel was
considered. To consider the dynamical effect, we introduced
an imaginary shift D → D + iP/(2h̄ν) of the real parameter D
and defined |D, P〉, in which D and P represent the coordinate
and momentum of the intercluster motion in the asymp-
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totic region. The mass MP was evaluated from the energy
expectation value of |D, P〉, and was utilized to incorporate
the dynamical effect on the collective mass of the kinetic term
in the collective Hamiltonian.

The collective wave functions of nα systems were obtained
by solving the collective model. The results of five sets of
metric γ and mass μ in the collective model were compared
with the GCM results. Among the five cases, the set γ = 1 and
μ = γN MP of cal(2) was found to best reproduce the GCM
results of the energy spectra, radii, and amplitude functions.
This corresponds to the prescription of the collective model
described in Eq. (28), in which the microscopic effects such
as antisymmetrization and parity projection are incorporated
in the parity- and D-dependent potential term and collective
mass of the kinetic term.

One of the aims of the present work was to propose a col-
lective model that can approximately obtain results equivalent
to those derived by microscopic calculations. In the present
paper, we performed the GCM calculations in restricted model
space of nα systems within highly symmetric configurations
and demonstrated that the collective models of cal(2) can
approximately reproduce the GCM results. Because of the
restriction of nα configurations, the theoretically obtained
states can not necessarily be assigned to the experimental
excited states. For instance, the calculated excitation energy
of the 12C(+)2 state was 14.8 MeV in the GCM result, which
was much higher than that of the experimental 12C(0+

2 ) state
at E exp

x = 7.65 MeV, because the 12C(0+
2 ) state has a more

complicated 3α structure beyond the regular triangle config-
uration. The collective model of cal(2) also provided much
higher excitation energy Ex = 13.4 MeV of the 12C(+)2 state
consistently with the GCM calculation, which indicates the
same conclusion. However, the collective model of cal(5)
obtained the excitation energy Ex = 6.8 MeV of the 12C(+)2

state, which eventually coincides with E exp
x = 7.65 MeV of

the experimental 12C(0+
2 ) state. It indicates a risk that an

inadequate collective model could lead to an incorrect assign-
ment of the experimental spectra, provided that the model was
applied without checking its validity.

It is practically difficult to perform microscopic calcula-
tions with full model space of nα systems for heavier systems
because of the computational cost. Therefore, it is important
to extend the present collective model beyond the simple nα

configurations and apply it to heavy systems. For further ex-
tensions to multidimensional calculations, the prescription of
cal(2) proposed in the present paper may be a useful approach
to incorporating microscopic and dynamical effects to the col-
lective mass and potential energy based on the diagonal matrix
elements of microscopic calculations. It is also a challenging
issue to construct collective models that can be applied to
various cluster dynamics in heavy systems such as cluster
decay and fusion phenomena.
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APPENDIX: PHYSICAL COORDINATES

In the AMD framework [19], the wave function of an A-
nucleon system is written by a Slater determinant �AMD =
det[ψi( j)], where the single-nucleon wave function ψi( j) =
ϕZi (r j )Xi(χ j ) is a product of the spatial wave function and the
spin-isospin function Xi = {p↑, p↓, n↑, n↓}. ϕZ is given by a
coherent state of a harmonic oscillator,

ϕZ(r) =
(

2ν

π

)4/3

exp

[
− ν(r − Z/

√
ν)2 + 1

2
Z2

]
. (A1)

For the single-nucleon wave function, the mean position 〈r〉
and momentum 〈p〉 are given by the real and imaginary parts
of Z as

〈r〉 = d, 〈p〉 = k, (A2)

Z = √
νd + i

2h̄
√

ν
k. (A3)

However, in the A-nucleon wave function, d i and ki indicate
positions and momenta of nucleons no longer because of the
antisymmetrization. Ono et al. [19] introduced the physical
coordinates W i instead of Zi as

W i ≡
A∑

j=1

(
√

Q)i jZ j, (A4)

where

Qi j = Bi jB
−1
ji = ∂

∂ (Z∗
i · Z j )

ln〈�AMD|�AMD〉,

(A5)

Bi j ≡ 〈ψi|ψ j〉 = eZ∗
i ·Z j 〈Xi|X j〉, (A6)

〈�AMD|�AMD〉 = det B. (A7)

This is an extension of the physical coordinates in the 2α

system proposed by Saraceno et al. in Ref. [20].
For the present model space of the 2α, 3α, and 4α systems,

Zi is taken to be Zi = Sm/
√

ν (i ∈ αm) with the real parameter
Sm. Because of the symmetry of spatial configurations of Sm,
the physical coordinates are simply given as W i = λnα (D)Zi

with the scaling factors

λ2α (D) =
√

1 + e−νD2

1 − e−νD2 , (A8)

λ3α (D) =
√

1 + e−νD2/2 + e−νD2

1 + e−νD2/2 − 2e−νD2 , (A9)

λ4α (D) =
√

1 + 2e−νD2/2 − 3e−νD2

1 + e−νD2/2 − 2e−νD2 . (A10)
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