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Clustering in nuclei at finite temperature
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We investigate the localization and clustering features in 20Ne (N = Z) and neutron-rich 32Ne nuclei at
zero and finite temperatures. The finite temperature Hartree-Bogoliubov theory is used with the relativistic
density-dependent meson-nucleon coupling functional DD-ME2. It is shown that clustering features gradually
weaken with increasing temperature and disappear when the shape phase transition occurs. Considering thermal
fluctuations in the density profiles, the clustering features vanish at lower temperatures, compared to the case
without thermal fluctuations. The effect of the pairing correlations on the nucleon localization and the formation
of cluster structures are also studied at finite temperatures. Due to the inclusion of pairing in the calculations,
cluster structures are preserved until the critical temperatures for the shape phase transition are reached. Above
the critical temperature of the shape phase transition, the clustering features suddenly disappear, which differs
from the results without pairing.
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I. INTRODUCTION

Among the vast diversity of possible nontrivial arrange-
ments for nucleons within nuclei, localization phenomena,
and in particular nuclear clustering—the formation of nucleon
bound structures within a nucleus—is one of the most intrigu-
ing structural organization. The ignition of nuclear clustering
in the low-density region of nuclear matter has been exten-
sively studied [1–4] and shown to play a decisive role in
the nuclear equation of state (EOS), hence, in the modeling
of astrophysical events [5–7]. How these features translate
into finite nuclei, i.e., how the clusterization phenomenon
manifests in nuclei and impacts their spectroscopic properties,
represents an active area of research.

One of the first predictions of molecular states and α

clustering of nuclei, dates back to 1930s [8,9]. Although
it is difficult to observe it directly from experiments, sev-
eral studies have been performed to detect α clustering
in nuclei [10–13]. From the theoretical point of view, a
variety of microscopic models have also been used to
detect cluster structures and analyze their formation in
nuclei. For instance, antisymmetrized [fermion] molecu-
lar dynamics (AMD) [FMD] [14–17], Brink and generator
coordinate method (Brink-GCM) [18,19], Tohsaki-Horiuchi-
Schuck-Röpke (THSR) wave function [20], and the nuclear
energy density functional (NEDF) approach [21–27] can be
considered as the most important theoretical tools to study the
clustering phenomenon. Among them, the NEDF approach
stands as the most suitable way to study clustering features
in finite nuclei throughout the nuclide chart [28,29]. Within
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this framework, the origin of the localization and clustering
in finite nuclei has been studied in Ref. [24] using the rela-
tivistic and nonrelativistic NEDFs, and it has been shown that
correlations responsible for deformation features play a major
role in the formation of cluster states. Using relativistic NEDF,
the conditions of the formation of cluster structures in N = Z
finite nuclei are also discussed in Refs. [25,26]. Although
cluster structures occur in light nuclei with N ≈ Z , the studies
also point out the formation of novel types of clusters in
neutron-rich nuclei with the emergence of molecular bonds
of α particles [14–16,21,23,30].

The clustering phenomenon is expected to appear in the
low density, low temperature region of nuclear matter. Up
to now, the temperature effects have been studied for the
clustering of nucleons only in nuclear matter [1,3,5,7,31–
34]. Concomitantly, comprehensive studies have also been
conducted using the relativistic and nonrelativistic NEDFs
to understand the properties and behavior of nuclei with in-
creasing temperature [35–43]. However, there is no study on
the temperature dependence of the localization and clustering
features in finite nuclei, which is the aim of the present work.

The present article is organized as follows. In Sec. II, a
brief description of the finite temperature relativistic Hartree-
Bogoliubov (FT-RHB) method is given. In Sec. III, we first
present the results for 20Ne, and then discuss the changes
in the densities and clustering features with increasing tem-
perature. Then, the effect of pairing correlations on the
disappearance of clusters is discussed in both 20Ne and 32Ne.
Finally, the conclusions are given in Sec. IV.

II. THEORETICAL FORMALISM

Within the finite temperature framework, the nucleus is
considered as a grand canonical ensemble, and the equilibrium
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state is obtained by applying the variational principle to the
grand canonical potential of the system. The latter reads

� = E − T S − λN, (1)

where E is the total energy, S is the entropy, and N is the parti-
cle number. Also, T and λ represent temperature and chemical
potential, respectively. The finite temperature equations are
obtained by minimizing the grand canonical potential δ� = 0
(see Refs. [35,44] for details).

The FT-RHB equations have the same form as the zero-
temperature case. The FT-RHB matrix is given by [45](

hD − λ − m �

−�∗ −h∗
D + λ + m

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
, (2)

where hD, �, and m represent the single-nucleon Dirac Hamil-
tonian, pairing field, and nucleon mass, respectively. The
chemical potential λ is determined by the particle number
subsidiary condition 〈N̂〉 = Tr[ρ] = N . The quasiparticle en-
ergies are denoted by Ek , and Uk,Vk are the corresponding
RHB wave functions. For the ground-state solution of an
even-even nucleus, the Dirac Hamiltonian for the density-
dependent meson-exchange model is given by

hD = −iα∇ + V (r) + β(m + S(r)), (3)

where S and V represent the attractive scalar and repulsive
vector potentials, respectively. More specifically,

S(r) = gσ σ, (4a)

V (r) = gωω + gρτ3ρ + eA0 + �R
0 , (4b)

where gσ , gω, and gρ are the (density-dependent) vertex func-
tions of the Lorentz-scalar and isoscalar bilinear forms of
the nucleon operators, and A0 is the time component of the
electromagnetic field (see Ref. [45] for the explicit forms
of the equations). The rearrangement contribution due to the
density dependence of the vertex functions is given by

�R
0 = ∂gσ

∂ρv

ρsσ + ∂gω

∂ρv

ρvω + ∂gρ

∂ρv

ρtvρ. (5)

At finite temperatures, the scalar, vector, and isovector
densities read

ρs =
∑
Ek>0

V †
k γ 0(1 − fk )Vk + U T

k γ 0 fkU
∗
k , (6a)

ρv =
∑
Ek>0

V †
k (1 − fk )Vk + U T

k fkU
∗
k , (6b)

ρtv =
∑
Ek>0

V †
k τ3(1 − fk )Vk + U T

k τ3 fkU
∗
k , (6c)

where fk is the Fermi-Dirac function

fk = 1

1 + eβEk
, (7)

and β ≡ 1/kBT , with kB the Boltzmann constant.
The pairing field is

�ll ′ = 1

2

∑
kk′

V pp
ll ′kk′κkk′ , (8)

where V pp is the matrix element of the particle-particle (pp)
interaction [46,47]. The pairing tensor κ is defined as

κ =
∑
Ek>0

V ∗
k (1 − fk )U T

k + Uk fkV
†

k . (9)

For the particle-particle (pp) interaction V pp, we use the
separable interaction of the form [46,47]

V pp(r1, r2, r′
1, r′

2) = −Gδ(R − R′)P(r)P(r′) 1
2 (1 − Pσ ),

(10)
where R = 1

2 (r1 + r2) and r = r1 − r2 are the center-of-mass
and relative coordinates, respectively, and P(r) is defined as

P(r) = 1

(4πa2)3/2 e− r2

4a2 . (11)

Unless otherwise stated, the parameters of the pp interaction
are taken as Gp(n) = 728 MeV fm3 and a = 0.644 fm for DD-
ME2 [48] interaction. The mean pairing gap � is defined as

� = Epair

Trκ
=

∑
ll ′ �ll ′κll ′∑

l κll
. (12)

In this work, we solve the FT-RHB equations with an
additional constraint in the axial mass quadrupole moment
and minimize the grand canonical potential. The density-
dependent meson-exchange DD-ME2 functional [48] is used
in the calculations. The quadrupole deformation β2 spans
the [−0.6, 1.0] interval with steps of 0.05, to generate the
Free energy surfaces. The equations of motion are expanded
in an axial harmonic oscillator basis with 20 (48) harmonic
shells, for fermionic (bosonic) quantities. The free energy of a
nucleus is calculated with F (β2, T ) = E (β2, T ) − T S(β2, T ).
Here, E (β2, T ) < 0 is the total energy of the system and
S(β2, T ) is the entropy for a given deformation parameter β2

at finite temperature T . The entropy is calculated as [35]

S = −kB

∑
k

[ fk ln fk + (1 − fk ) ln(1 − fk )]. (13)

The internal excitation energy of the nucleus is given by
E∗(β2, T ) = E (β2, T > 0) − E (β2, T = 0).

For a realistic modeling of nuclei at finite temperatures,
both statistical (thermal) and quantum fluctuations need to be
considered. Quantum fluctuations are known to be important
for light nuclei and at low temperatures (T < 1 MeV), and
play a minor role for nuclei with a sharp minimum in their
free energy surface [44,49]. Up to now, several studies have
been performed to take into account quantum fluctuations
[49–54]. In addition, in mesoscopic systems such as finite
nuclei, statistical fluctuations around the minimum of the free
energy are expected to yield a significant contribution at finite
temperatures. In this work, we only consider the statistical
fluctuations in the calculations.

In a first step, relevant finite-temperature properties, e.g.,
pairing gaps, quadrupole deformations, excitation energies,
etc., can be computed from the lowest state in the free energy
surface, characterized by a quadrupole deformation β�

2 at a
given temperature. To account for such effects, an observable
O is not computed from the state minimizing the free energy
surface, i.e., as O = O(β�

2 , T ), but after mixing expectation
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FIG. 1. The variation of the most probable values of the de-
formation (a), pairing gap (b), excitation energy (c), and entropy
(d) as a function of temperature. The calculations are performed
using the FT-RHB and DD-ME2 functional. The average values of
the observables are calculated using the constrained FT-RHB results
at finite temperatures [see Eq. (14)].

values O(β2, T ) at various deformations β2 under the form of
the ensemble average O = O [55–57], with

O =
∫

dβ2O(β2, T ) exp(−�F (β2, T )/T )∫
dβ2 exp(−�F (β2, T )/T )

. (14)

The exponential weight in Eq. (14) represents the prob-
ability P(β2, T ) to obtain a deformed configuration with a
quadrupole parameter β2 at temperature T [55–57],

P(β2, T ) ∝ exp(−�F (β2, T )/T ), (15)

where �F (β2, T ) is the Free energy relative to the lowest
state in the free energy surface, for a given deformation and
temperature:

�F (β2, T ) = F (β2, T ) − F (β�
2 , T ). (16)

According to Eq. (15), there are no thermal fluctuations at
zero temperature, and the impact of the fluctuations increases
with temperature.

III. RESULTS

A. 20Ne nucleus
20Ne is a well-known nucleus that displays a strong intrin-

sic quadrupole deformation, accompanied by a pronounced
localization in intrinsic densities [10,24–26]. To illustrate the
effect of the temperature on the properties of 20Ne, we per-
form the FT-RHB calculations using the DD-ME2 functional.
In Fig. 1, the FT-RHB results are presented for the defor-
mation, pairing gap, excitation energy, and entropy. At zero
temperature, the ground state of 20Ne is predicted to have a
highly deformed prolate shape with β2 = 0.55 and the total
binding energy is obtained as 157.64 MeV. The results are in
agreement with the experimental data, where the β2 deforma-
tion and the total binding energy are obtained as 0.720(20) and

160.64 MeV [58], respectively. Considering only the FT-RHB
minimum of the Free energy at finite temperatures, it is seen
that the deformation decreases with increasing temperature
and a shape phase transition from prolate to spherical is ob-
tained just above T = 1.5 MeV [see Fig. 1(a)]. The decrease
in the deformation is mainly caused by the depopulation of
the deformation-driven states and the disappearance of shell
effects at high temperatures [35,40].

To analyze the effect of thermal shape fluctuations at finite
temperature, we perform constrained FT-RHB calculations
for fixed β2 values from −0.6 to +1.0 with steps of 0.05.
Then, the deformation-dependent Free energy surfaces are
obtained and thermal averages of the observables are cal-
culated according to Eq. (14) and displayed in Fig. 1. As
expected, taking into account the thermal shape fluctuations in
the calculations, the sharp shape phase transition is removed
and the decrease in the β2 value becomes smoother with
increasing temperature. Although its value remains low (β2 	
0.1), deformation does not disappear even at T = 3.0 MeV.
The authors in Ref. [50] also performed calculations for
20Ne by taking into account the quantum fluctuations, albeit
using a different Hamiltonian. In contrast to our results, it
has been shown that the deformation remains almost con-
stant at all temperatures with the inclusion of the quantum
correlations.

To better understand the effect of thermal fluctuations, in
Fig. 2, we display the Free energy surfaces and the probability
factors as a function of the deformation at finite temperatures.
The free energy surfaces are obtained using Eq. (16) and the
probability factors are calculated using Eq. (15). According
to Eq. (15), the probability factor depends on the free energy
and temperature with exp(−�F (β2, T )/T ). At T = 0.1 MeV,
the free energy surface has a well-formed minimum around
β2 = 0.55. Hence, the probability factor is found to be 1 for
this state and zero for others. As temperature increases from
0.1 to 1 MeV, the contribution of other states to the thermal
average of an observable increases because of the changes
in the free energy surfaces. At higher temperatures, the free
energy surface becomes flat, and the contribution of other
states to the thermal average of observables increases, as seen
from the changes in the probability factors. Because of the
increasing contribution of other states to the thermal average
of the observables with increasing temperature, we obtain a
smooth decrease in the deformation.

We also analyze the changes in the pairing gap, excitation
energy, and entropy with increasing temperature. The proton
and neutron pairing gap values are predicted to be zero using
the FT-RHB, whereas we obtain a very small pairing gap
value since we take the average of pairing over the ensemble
of possible quadrupole shapes. This gap starts to develop
at low temperatures and vanishes before T = 1.0 MeV [see
Fig. 1(b)].

The internal excitation energy increases with increasing
temperature, and a visible kink around the shape phase tran-
sition temperature within FT-RHB is predicted. Using the
thermal averages method, the internal excitation energy also
increases with temperature, but the kink disappears and the
change in the energy becomes smoother. Similar results are
also obtained for the entropy [see Figs. 1(c) and 1(d)].
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FIG. 2. Relative free energies �F (β2, T ) (blue line with a square symbol) as a function of deformation at finite temperatures. The
calculations are performed using the constrained FT-RHB with the DD-ME2 functional for 20Ne, and the relative free energies are calculated
using Eq. (16) (see the text for the details). The probability factors exp(−�F (β2, T )/T ) are also shown on the right side of the y axis using
red lines with a circle symbol.

We now study the changes in the localization properties
and behavior of α clusters in 20Ne with increasing tempera-
ture. In the left panels of Fig. 3, we display the total intrinsic
nucleon densities in the x-z plane at finite temperatures as-
sociated with the FT-RHB minimum of the free energy. It is
seen that the DD-ME2 functional predicts a localized density
profile and α clusters are visible at T = 0.1 MeV, as expected
[24]. At low temperatures, the density profile remains almost
the same, with presence of α clusters. Increasing temperature
further and reaching T = 1 MeV, the density profile starts to
change and localization becomes weaker. After T = 1 MeV,
α clusters start to disappear and vanish completely before
the shape phase transition. After T = 1.5 MeV, the nucleons
display the characteristics of a Fermi liquid.

At finite temperatures, the changes in the density profile
and clustering features of finite nuclei are mainly related to
the changes in the deformation properties of nuclei. By in-
creasing temperature, the nucleons scatter to the high energy
states, which in turn leads to an increase (decrease) in the
occupation probabilities of the states above (below) the Fermi
level [37,40,42]. Therefore, the Fermi surface smears, shell
effects weaken, and deformation decreases with increasing
temperatures [40,59,60]. Also, the wave functions are more
spread, and the density profile is broadened through the sur-
face region, which in turn, destroys the localization of the
wave functions and clustering features of finite nuclei.

We also performed the constrained FT-RHB calculations
at finite temperatures and calculated thermal averages of total
intrinsic nucleon densities over the ensemble of quadrupole
shapes at finite temperatures using Eq. (14) (right panels of
Fig. 3). In the FT-RHB approach, the diagonal elements of the
density matrix, or the density operator, give the probability

density of finding a particle at a specific point [61], and one
can calculate density as a function of deformation to calculate
the thermal average of the density at finite temperatures. By
doing so, the thermal average for the density is associated
with finding the average probability densities at each point in
the x-z plane over the ensemble of quadrupole shapes at finite
temperatures. Using the thermal average densities to pinpoint
α clusters, the calculations predict the disappearance of local-
ized patterns earlier and at lower temperatures, compared to
the unconstrained FT-RHB results. Although the changes in
the density profiles are the same at low temperatures, cluster
states disappear completely at T = 1 MeV using the thermal
average densities in the analysis. This feature is due to the
thermal mixing of various shapes (see Fig. 3), leading to a
smoother density profile.

Besides using the nucleon densities to detect the cluster
structures in nuclei, the nucleon localization function also
provides an alternative way to study them. Using the nucleon
densities to study the clustering only contains information
from mass density, whereas the nucleon localization func-
tion takes contributions from the kinetic energy, density,
and density gradients, and provides a better measure for the
localization of nuclei. Therefore, to illustrate the nucleon lo-
calization and the cluster structures in light nuclei, we also use
the nucleon localization function (NLF) (see Refs. [23,62]).
The nucleon localization is expressed by

Cqσ (r) =
[

1 +
(

τqσ ρqσ − 1
4 [∇ρqσ ]2

ρqσ τTF
qσ

)2]−1

, (17)

where τqσ , ρqσ , and ∇ρqσ are kinetic energy density, particle
density, and density gradient, respectively. The Thomas-Fermi
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FIG. 3. Left panels: The total intrinsic density (ρn + ρp) (in units
of fm−3) for 20Ne using DD-ME2 functional at finite temperatures.
Right panels: The thermal average of the total density using Eq. (14).
The quadrupole deformation values, β2 and βav.

2 , are displayed in the
bottom corners of the panels.

kinetic energy density in the denominator is given by τ T F =
3
5 (6π2)2/3ρ5/3

qσ . The Cqσ (r) function provides a dimension-
less and normalized measure of nucleon localization. The

FIG. 4. The nuclear localization function for 20Ne using DD-
ME2 functional at finite temperatures. The quadrupole deformation
β2 values are displayed in the bottom corners of the panels.

likelihood of finding two nucleons with the same spin and
isospin at the same spatial position is low when C is close to
one. Because of the weak Coulomb interaction for light N =
Z nuclei, proton and neutron localization functions are similar,
whereas they need to be studied separately for neutron-rich

FIG. 5. The change of the pairing gap values for 20Ne (a) and
32Ne (c) as a function of temperature. The change of deformation for
20Ne (b) and 32Ne (d) as a function of temperature. The averages of
the observables are calculated using Eq. (14).
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FIG. 6. The same as in Fig. 3, but using larger pairing strength,
Gp(n) = 910 MeV fm3, in the FT-RHB calculations for 20Ne.

nuclei, as we discuss below. In this work, the α localization
function is calculated with Cσ = √CpσCnσ .

The localization function results for 20Ne are displayed in
Fig. 4 at finite temperatures. As we mentioned above, when C
is close to one, α-like clusters (a pure overlap of four nucleon
wave functions) are expected because of the spin and isospin
degeneracy. Compared to the density profiles, the localization
function typically displays a larger spatial extension because
of the kinetic term included in the calculations. At low tem-
peratures, the localization function predicts highly localized
regions at the outer ends and the α clusters are clearly visible

FIG. 7. The same as in Fig. 4, but using larger pairing strength,
Gp(n) = 910 MeV fm3 in the FT-RHB calculations.

for 20Ne. The localization feature is also obtained around the
center, which is associated with 12C. Therefore, this pattern is
interpreted as α- 12C -α quasimolecular configuration [23,26].
Similar to the findings above, the cluster structures almost do
not change up to T = 1 MeV. Increasing temperature further,
the clustering effects start to weaken and completely disappear
before the shape phase transition of the nucleus, in agreement
with the findings using the total intrinsic densities above.

B. Pairing, deformation, and clustering in nuclei

In this section, we study the role of the pairing correla-
tions in the disappearance of the localization properties and
cluster states of finite nuclei with increasing temperature.
For this purpose, we first perform calculations for 20Ne with
increased pairing strength, Gp(n) = 910 MeV fm3 (25% in-
crease), to induce a finite amount of pairing in this nucleus
while maintaining the cluster structures. It should be noted
that further increasing the pairing strength makes the defor-
mation properties decrease considerably, and the localization
features disappear. The α clustering can also be present in
neutron-rich nuclei (see Refs. [11,30]). Therefore, we also
choose another neutron-rich nucleus, 32Ne, which has both
pairing and clustering features, and use the standard value
Gp(n) = 728 MeV fm3 as the pairing strength. Although the
clustering features shall be weak in 32Ne compared to 20Ne,
it allows studying the interplay between the pairing, deforma-
tion and clustering.
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FIG. 8. The proton ρp, neutron ρn, isovector ρn − ρp, and isoscalar ρn + ρp densities (in units of fm−3) for 32Ne. The calculations are
performed using the FT-RHB and DD-ME2 functional at finite temperatures. In the bottom corners of the rightmost panels, the quadrupole
deformation β2 values are displayed at a given temperature.

Let us first discuss the properties of 20Ne with increased
pairing strength. In panels (a) and (b) of Fig. 5, we display the
pairing gap values and deformation for 20Ne as a function of
the temperature. At zero temperature, the FT-RHB minimum
for the free energy yields a highly deformed configuration
at β = 0.45 for 20Ne, despite the artificially increased pair-
ing strength. As expected, the FT-RHB calculations predict
a decrease in the pairing gap values and deformation with
temperature. Although the pairing effects are small for 20Ne,
they persist even after T >1 MeV, and superfluid-to-normal
phase transition occurs after the shape phase transition [see
Figs. 5(a) and 5(b)]. A slight decrease and then a sudden in-
crease in the pairing gap values at T = 1.1 MeV is predicted.
Increasing temperature further, pairing effects continue to de-
crease and completely vanish at T = 1.6 MeV. The sudden

increase in the pairing gap values is related to the change
in the deformation of the nucleus after T = 1.1 MeV, due
to the shape phase transition. It is known that the single
(quasi)particle states are not sensitive to the changes in the
temperature for the considered temperature range, whereas the
changes in the deformation considerably affect these levels
[40,59,60]. The deformation removes the degeneracy of the
single-particle levels and also plays an important role in the
formation of clusters in nuclei [24]. With increasing temper-
ature, the shape phase transition of the nucleus occurs after
T > 1.1 MeV, and single-particle levels around the Fermi lev-
els become degenerate because of the sudden disappearance
of the deformation. As a result, the distribution of the nucleons
in the single-particle levels changes, and we obtain an in-
crease in the pairing gap values [see Fig. 5(a)]. The reentrance
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FIG. 9. The thermal average of the proton ρp, neutron ρn, isovector ρn − ρp, and isoscalar ρn + ρp densities (in units of fm−3) for 32Ne. The
calculations are performed using the FT-RHB and DD-ME2 functional at finite temperatures. In the bottom corners of the rightmost panels,
the average of the quadrupole deformation βav.

2 value is displayed at a given temperature.

of pairing at finite temperatures has also been discussed in
Ref. [63]. Looking at the thermal averages of the observables
over the ensemble of quadrupole shapes, both the pairing gap
and deformation decrease with increasing temperature. While
the pairing gaps vanish at around T = 1.6 MeV, there is still
a small amount of deformation at high temperatures.

In Fig. 6, we display the total intrinsic nucleon densities
(left panels) and the thermal averages of the densities over
the ensemble of quadrupole states (right panels) for 20Ne at
finite temperatures. At T = 0.1 MeV, clustering features can
be seen, albeit they are faint compared to the findings in left
panels of Fig. 3. Starting with the total nucleon densities,
the localization of nucleons and cluster structures remains
almost the same up to the critical temperatures for the shape
phase transitions, namely, up to T = 1.1 MeV. However, a

sudden change in the clustering features is obtained after
T = 1.1 MeV, i.e., the signals of cluster states disappear. This
behavior differs from the findings in Fig. 3, in which the clus-
ter structures weaken gradually with increasing temperature
rather than disappearing suddenly. Using the thermal averages
of the densities, clustering features are not distinctively visi-
ble at T = 0.1 MeV compared to the total intrinsic nucleon
densities. They vanish with a slight increase in temperature.
The nuclear localization function results are also displayed
in Fig. 7, providing a clear picture of the α clusters. Similar
to the findings using the total nucleon densities, the cluster
structures remain almost the same until the critical temper-
atures for the shape phase transitions, and then disappear
suddenly. This behavior differs from the results in Fig. 4, in
which we do not have pairing effects and localization features
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disappear gradually with increasing temperature. Compared
to the findings in Sec. III A, inclusion of the pairing effects at
finite temperature keeps the deformation almost constant until
the critical temperatures and delays the disappearance of the
cluster structures up to the critical temperatures for the shape
phase transition of nuclei.

Now, we investigate the ground-state and localization prop-
erties of neutron-rich 32Ne using the DD-ME2 functional. In
panels (c) and (d) of Fig. 5, the changes in the the pairing
gap and the quadrupole deformation values are presented
as a function of temperature. At zero temperature, the FT-
RHB minimum of the free energy yields a configuration
with β = 0.35. Also, the total binding energy is obtained as
214.84 MeV and is in good agreement with the experimental
data (213.47 MeV) [58]. While pairing decreases slightly,
deformation stays almost constant up to T = 0.6 MeV. Just
after T = 0.6 MeV, the shape phase transition occurs, and the
nucleus becomes spherical. Concomitantly, the proton pairing
is slightly increased. It should be noted that in 32Ne, the order
of appearance of critical temperatures for pairing and defor-
mation is reversed, compared to the case of 20Ne. The critical
temperatures for the pairing and shape phase transitions are
also lower, compared to 20Ne, due to the excess of neutrons.
Taking into account thermal fluctuation with Eq. (14), the
deformation smoothly decreases with increasing temperature.
We discuss below the consequences of these changes on the
localization properties of nuclei.

For neutron-rich nuclei, the cluster states can usually be
described by molecular bonding of α-particles by the excess
neutrons [16,30,64,65]. In this picture, the valence neutrons
can form π -like or σ -like molecular bonding with the α

cluster core. Since the proton and neutron numbers are not
equal in 32Ne, the wave functions are also different, and the
interpretation of the cluster states requires the analysis of
the nucleon densities separately. To this aim, the proton ρp,
neutron ρn, isovector ρn − ρp, and isoscalar ρn + ρp densities
are displayed separately in Fig. 8 at equilibrium deformation.
As seen from Fig. 8, the proton and neutron density distri-
butions are quite different at T = 0.1 MeV: while the proton
density distributions display more localized structures in the
outer edges of the nucleus, the neutron density displays the
characteristics of the Fermi liquid due to the excess neutrons.
The localization of nucleons can also be seen by looking at
the isovector ρn − ρp density distributions in the third col-
umn of Fig. 8. The low density regions at the edges of the
nucleus show the cluster structures for this nucleus. Looking
at the total density distribution in the last column of Fig. 8,
the observation of the cluster states is strongly hindered by
the excess neutrons. With increasing temperature, the defor-
mation decreases slightly and the density profiles almost do
not change up to T = 0.6 MeV. At higher temperatures, the
nucleus goes through a sharp phase transition from deformed
to spherical shape, and the localization features disappear in
the density profiles.

In Fig. 9, we also display the thermal averages of the
densities over the ensemble of the different quadrupole shapes
at finite temperatures. The calculations are performed using
the constrained FT-RHB and DD-ME2 functional. Similar to
the findings above, the localization features can be seen in the

FIG. 10. The proton, neutron and α localization (Cσ =√CpσCnσ ) functions for 32Ne. The calculations are performed using
the FT-RHB and DD-ME2 functional at finite temperatures. In the
bottom corners of the rightmost panels, the quadrupole deformation
β2 values are displayed for each temperature.

proton and isovector density distributions, whereas we cannot
observe any pronounced localization in the neutron and total
density distributions. By taking the thermal averages of the
densities, the localization features disappear earlier compared
to the findings above. Already at T = 0.3 MeV, the localiza-
tion features disappear completely.

The nuclear localization functions can provide a com-
plementary picture for the clustering in neutron-rich nuclei.
Therefore, in Fig. 10 we display the nuclear localization
function as proton (Cpσ ), neutron (Cnσ ) and α localization
functions (Cσ = √CpσCnσ ). At T = 0.1 MeV, proton local-
ization functions display highly localized regions at the end
of the outer edges and around the center of 32Ne, and the
results look very similar to the 20Ne. As expected, the neutron
localization function differs from the proton due to the neu-
tron excess: it displays localization features only at the outer
edges of 32Ne, which are also faint compared to the proton
localization. Looking at α localization function, clustering
structures are only apparent at the outer edges of the nucleus
and are weaker compared to the proton localization due to the
excess neutrons. Although we do not obtain any localization
features using the total density (see the rightmost panels of
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Fig. 8), the localization function results indicate clustering
features, albeit weak. Similar to the findings in Fig. 8, the
localization functions almost do not change up to the critical
temperature for the shape phase transitions. As soon as the
nucleus becomes spherical, the cluster states disappear.

IV. CONCLUSIONS

In this work, the FT-RHB calculations are performed to
study the localization and clustering phenomenon in 20Ne
(N = Z) and neutron-rich 32Ne nuclei at zero and finite tem-
peratures. The relativistic density-dependent meson-nucleon
coupling functional DD-ME2 is used in the calculations since
it predicts much more localized density distributions and
allows us to study the changes in nuclei with increasing
temperature.

The constrained FT-RHB calculations predict a highly
deformed ground state and no pairing for 20Ne at zero tem-
perature. The 20Ne nucleus displays a localized density profile
and clustering features can be seen easily, both using the
total intrinsic densities and nuclear localization functions. Per-
forming unconstrained FT-RHB calculations, the localization
and clustering features fade away gradually with increasing
temperature and disappear completely with the shape phase
transition of nuclei. Deformation removes the degeneracy of
the single-particle states and plays a significant role in the
formation of the cluster structures. Temperature weakens the
deformation and spreads the density through the surface re-
gion, which in turn destroy the localization features in nuclei.

We also performed quadrupole constrained FT-RHB cal-
culations at finite temperatures, and the thermal averages of
some observables (deformation, pairing, entropy, excitation
energy) and densities are also calculated over the ensemble of

the different quadrupole shapes. Taking thermal averages of
the observables, it is seen that the changes become smoother
and a finite amount of deformation remains even at high
temperatures. Analyzing thermal averages of the densities, we
found that the clustering features disappear at lower tempera-
ture, compared to the unconstrained FT-RHB calculations.

We also study the effect of the pairing correlations on
the disappearance of the clustering features at finite tem-
peratures. By inducing a small amount of pairing for 20Ne,
deformation and clustering features stay almost the same un-
til the critical temperatures for the shape phase transitions.
At higher temperatures and above T = 1.1 MeV, the nu-
cleus becomes spherical and clustering features disappear.
An increase in the pairing, i.e., the re-entrance of the pair-
ing correlations, is predicted with the shape phase transition
of the nucleus. The neutron-rich 32Ne nucleus also displays
localization and clustering features at zero temperature. We
analyzed the localization of nucleons by decomposing the
density profiles as well as localization function. Although
the excess neutrons blur the observation of the cluster states,
intrinsic proton densities and localization functions display
rather pronounced cluster structures. Similar to the findings
for 20Ne with pairing, the localization features keep the same
shape until the critical temperatures for the phase transitions.
For both 20Ne and 32Ne, the clustering features disappear
at lower energy in the case of the thermal averages of the
densities.

We should also mention that triaxiality can play an impor-
tant role in the description of the ground-state properties and
clustering features of some nuclei. Although the results may
not change qualitatively, we also plan to extend our study in
the future by including additional degrees of freedom in the
calculations.
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