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Macroscopic and microscopic description of phase transition in cerium isotopes
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The spherical-to-deformed phase transition in cerium isotopes recently suggested to occur between 146Ce and
148Ce has been examined in the framework of the macroscopic algebraic collective model and two microscopic
approaches, namely Skyrme-Hartree-Fock + Bardeen-Cooper-Schrieffer (BCS) calculations and the symmetry
conserving configuration mixing method with Gogny energy density functionals applied also to the neighboring
nuclei along the cerium isotopic chain. Possible spectral signatures of the phase transition are discussed in more
details. The microscopic calculations predict octupole softness manifested by rather flat potential energy curves
as a function of the octupole deformation parameter β3 for 146Ce and 148Ce and shape coexistence characterized
by axially symmetric 0+ states, triaxial 2+ bands, and octupole deformation for the lowest 1− states.
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I. INTRODUCTION

Investigations of the first order quantum shape phase tran-
sitions from spherical to prolate axially deformed nuclei
initiated by the seminal paper of Iachello [1] introducing the
concept of the X (5) critical-point symmetry have been the
subject of research for almost two decades [2–5]. Especially
in the region of even-even Ce, Nd, Sm, Dy, and Gd isotopes,
several candidates for X (5) nuclei have been proposed (cf.,
e.g., [6–11]). The Nd, Sm, and Gd with N = 90, which are
known to be good examples of X (5), have been considered
using relativistic energy-density functionals restricted to axi-
ally symmetric shapes in [12]. On the other hand, Xe and Ba
isotopes with A � 130, expected to be close to the E (5) crit-
ical point symmetry, have been considered using relativistic
energy-density functional allowing triaxial shapes in [13].
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Recently, the shape phase transition in cerium isotopes
around N = 88–90 has been studied both experimentally
and theoretically in Refs. [14,15]. The fast electronic tim-
ing method enabled to measure the lifetime of the 4+

1 state
for the first time and to extract the B4/2 = B(E2; 4+

1 →
2+

1 )/B(E2; 2+
1 → 0+

1 ) value of 1.52(12) close to the X (5)
prediction of 1.58. Based on a careful IBM-1 analysis of the
available experimental data they concluded that the spherical-
to-deformed phase transition in cerium isotopes happens
between 146Ce and 148Ce, and 148Ce can be better described
within the X (5) − β8 model. They also pointed out an increas-
ing role of the γ degree of freedom in these nuclei. These
conclusions were supported by the microscopic analysis in
the framework of the five-dimensional quadrupole collective
Hamiltonian (5DQCH) [16].

In this paper we extend the analysis of the phase transition
in cerium isotopes performed in Ref. [14]. First in Sec. II
we reexamine possible spectral signatures of the X (5) phase
transition in more details. In Sec. III we analyze the cerium
isotopes within the algebraic collective model (ACM) and
show that it is capable to remove the freedom in the γ band
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position in relation to the ground and β bands inherent in
pure X (5) model [2]. In Secs. IV and V we turn to mi-
croscopic description of the chain of cerium isotopes using
Skyrme-Hartree-Fock + Bardeen-Cooper-Schrieffer (BCS)
calculations further processed in the generator coordinate
method at the level of the Gaussian overlap approxima-
tion [17] and the symmetry conserving configuration mixing
method with Gogny energy density functionals [18].

II. SYSTEMATIC STUDY OF THE PHASE TRANSITION
REGION AROUND N = 90

In the literature one can find two types of experimen-
tal fingerprints of the phase transition between the spherical
vibrator U (5) and deformed axially symmetric rotor SU (3)
via the X(5) critical point: (a) energy ratios and (b) B(E2)
reduced-probability ratios.

In this section we focus only on the energy ratios. The fin-
gerprints based on B(E2) values are often difficult to measure
because of their substantial experimental uncertainties and
only a slight variation as a function of the nuclear structure.

Besides the frequently used ratio R42 = E (4+
1 )/E (2+

1 ) that
equals 2.9 in the X (5) limit one can also investigate other
ratios, namely R022 = E (0+

2 )/E (2+
1 ) that equals 5.67 in the

X (5) limit, R422 = E (4+
2 )/E (2+

2 ) that equals 1.43 in the X (5)
limit, R222 = E (2+

2,β )/E (2+
1 ) that equals 7.48 in the X (5) limit

[E (2+
2,β ) represents the second excited 2+ state or the 2+

member of the β band], and R60 = E (6+
1 )/E (0+

2 ) that equals
0.96, i.e., approximately 1 in the X (5) limit [19]. In addition,
we will also investigate the ratio R232 = E (2+

3,γ )/E (2+
1 ) that

is not constrained in pure X (5) because the harmonic oscil-
lator parameters in γ direction are not fixed in this limit [2]
[E (2+

3,γ ) represents the third excited 2+ state or the 2+ band
head of the γ band].

The energy ratios for the region of interest for the chains of
Ce, Nd, Sm, Gd, and Dy isotopes are presented in Fig. 1. The
degree of collectivity in each isotopic chain increases with
increasing neutron number and undergoes the phase transition
around N = 90. One can see that for N = 90 the ratios R42,
R022, R222, and R60 are quite close for all chains and also close
to the X (5) value. The ratio R422 for all chains, on the other
hand, departs from the X (5) value [the anomalous value for
144Ce (N = 86) corresponds to a γ -like band and not to a
β-like band as the other values], and the ratio R232 equals ap-
proximately 8 for 150Nd, 152Sm, and 154Gd, whereas for 148Ce
and 156Dy it is around 6. One can also notice only a modest
increase of R232, R022 and R222 for the cerium isotopes when
approaching N = 90 compared to a rather steep change for
the other isotopes. This may indicate that the cerium isotopes
do not represent a pure example of the X (5) phase transition.

III. ALGEBRAIC COLLECTIVE MODEL

The ACM, introduced as a computationally tractable ver-
sion of the Bohr model (BM) [20] restricted to rotational and
quadrupole vibrational degrees of freedom, is characterized
by a well defined algebraic structure. Unlike the conventional
U (5) ⊃ SO(5) ⊃ SO(3) dynamical subgroup chain used, for
example, by the Frankfurt group [21,22], the ACM makes use

of the subgroup chain

SU (1, 1) × SO(5) ⊃ U (1) × SO(3) ⊃ SO(2) (1)

to define basis wave functions as products of β wave functions
and SO(5) spherical harmonics. Several advantages result
from this choice of dynamical subgroup chain: (i) matrix
elements of BM operators can be calculated analytically; (ii)
collective model calculations converge an order of magnitude
more rapidly for deformed nuclei than in the U (5) ⊃ SO(5)
bases. Thus, the ACM combines the advantages of the BM
and the IBM and makes collective model calculations a simple
routine procedure [23–26]. A detailed description of the ACM
can be found in Ref. [23].

The most general ACM Hamiltonian can be written in the
form [27]

Ĥ = −∇2

2M
+ a1 + a2β

2 + a3β
4 + a4

β2
+ a5β cos 3γ

+ a6β
3 cos 3γ + a7β

5 cos 3γ + a8

β
cos 3γ + a9 cos2 3γ

+ a10β
2 cos2 3γ + a11β

4 cos2 3γ + a12

β2
cos2 3γ

+ a13

h̄2 [π̂ ⊗ q̂ ⊗ π̂ ]0, (2)

where

∇2 = 1

β4

∂

∂β
β4 ∂

∂β
+ 1

β2
�̂ (3)

is the Laplacian in the five-dimensional collective model
space and �̂ is the SO(5) angular momentum operator [28].
Such a Hamiltonian, expressed in terms of the quadrupole
deformation parameters β and γ serves as a useful starting
point for a description of a wide range of nuclear collective
spectra.

While a simplified form

Ĥ (M, α, κ, χ ) = −∇2

2M
+ 1

2
M[(1 − 2α)β2 + αβ4]

−χβ cos 3γ + κ cos2 3γ , (4)

can be used to study the second order phase transition from
U (5) to O(6) via an E (5) critical point [29–31], an ap-
proximation of the X (5) limit can be obtained for the ACM
Hamiltonian

Ĥ (M, α, κ, χ ) = −∇2

2M
+ 1

2
M[(1 − 2α)β2 + αβ4]

−χβ3 cos 3γ + κ cos2 3γ . (5)

The last term in the Hamiltonian (4), proportional to
cos2 3γ , can induce a triaxial minimum of the potential. A
delicate competition between all the terms in the potential and
the last two terms in particular will determine whether the
potential energy minimum will remain axially symmetric (the
term proportional to cos 3γ dominates) or will be driven to a
triaxial minimum by the last term.

In the case of the phase transition from a spherical vibrator
U (5) to the axially symmetric rotor SU (3) we can set κ = 0
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FIG. 1. Experimental energy ratios R42 (a), R022 (b), R422 (c), R222 (d), R60 (e), and R232 (f) for Ce, Nd, Sm, Gd, and Dy isotopes. For more
details see the text.

and cos 3γ = 1. The ACM potential then reads

V = 1
2 M[(1 − 2α)β2 + αβ4] − χβ3. (6)

To identify its shape the first and second derivatives of V have
to be calculated:

dV/dβ = M(1 − 2α)β + 2Mαβ3 − 3χβ2,

d2V/dβ2 = M(1 − 2α) + 6Mαβ2 − 6χβ. (7)

From the cubic equation dV/dβ = 0, i.e., β3 + (1/2α −
1)β − 3χβ2/2Mα = 0, we get extremes of the potential V .
There is always an extreme for β = 0 that corresponds to
a minimum for α < 0.5 and a maximum for α > 0.5. For
α slightly lower than 0.5 we get another prolate minimum
while for α > 0.5 we always get two minima, one for β > 0
(prolate) and one for β < 0 (oblate). They are symmetric for

χ/M → 0 and asymmetric for higher values of χ/M, where
we get a weaker oblate one and a deeper prolate one (see
Fig. 2), a similar picture to that obtained in Sec. V for the
potential energy curves (PEC) as a function of quadrupole
deformation β2 using the microscopic Skyrme-HF + BCS
approach. We can therefore conclude that a phase transi-
tion in this version of ACM occurs in the vicinity of α =
0.5. In the next section we will apply the ACM to 146Ce
and 148Ce.

IV. NUMERICAL RESULTS OBTAINED WITHIN THE ACM

In the ACM calculations, we fitted the model parameters,
M, α, and χ , to the experimentally known low-lying states in
146Ce and 148Ce. Both theoretical and model spectra are shown
in Fig. 3 and compared to that of the X (5) limit. We observe
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FIG. 2. ACM potential as a function of β for different values of α and a small value of χ/M = 0.01 (a) and for a higher value of
χ/M = 0.1 (b).

only a moderate change of the model parameters when mov-
ing from 146Ce to 148Ce (M = 45 → 50, α = 0.60 → 0.62,
χ = 5.8 → 6.1). It should be also noted that the position of
the lowest 2+ γ band not defined in the X (5) model is fixed in
the ACM by the chosen parameters M, α, and χ .

For 146Ce the ground state and the β-like bands are well
reproduced while the next experimental 0+ band head and
the lowest 2+ band head lie slightly lower that the prediction
of ACM. It is clear that in this nucleus the 0+

3 state lies
substantially lower than one would expect in the X (5) limit
and the moments of inertia of the ground state and the β-like
bands are higher than in the X (5) limit (Fig. 3).

ACM predicts B4/2 = 1.80 and different ratio B(E2, 2+
2 →

2+
1 )/B(E2, 0+

2 → 2+
1 ) = 0.40 compared to 0.13 in the X (5)

limit. Unfortunately, in this nucleus only the experimental
value of the B(E2, 2+

1 → 0+
1 ) transition is known. Therefore,

we cannot compare our ACM calculations with the experi-
mental data on E2 transitions.

For 148Ce the experimental spectrum (Fig. 3) contains a lot
of characteristics typical for the X (5) limit. The experimental
moment of inertia of the ground-state band is slightly lower
than the ACM value and higher than the X (5) prediction while
the experimental value for the 0+ β-like band is slightly higher
than those predicted by the ACM and the X (5) limit. The
ACM also predicts the lowest 2+ γ band head at a higher
energy than is experimentally observed.

The ACM gives B4/2 = 1.50 in agreement with the experi-
mental value of 1.52(12) and slightly lower that the X (5) value
of 1.58. It predicts considerably different ratio B(E2, 2+

2 →
2+

1 )/B(E2, 0+
2 → 2+

1 ) = 0.66 compared to 0.13 in the X (5)
limit. Unfortunately, this prediction cannot be verified by the
experimental data.

It is necessary to turn to microscopic studies of the struc-
ture of these nuclei to ascertain the degree of collectivity
on more fundamental grounds along the chain of the in-
vestigated cerium isotopes. First we investigate ground-state
deformations in the framework of the constrained Skyrme-
Hartree-Fock model, then we focus on the structure of the
ground state and low-lying states within the framework of
the symmetry conserving configuration mixing method with
Gogny energy density functionals.

V. SKYRME HARTREE-FOCK CALCULATIONS

Among self-consistent mean-field methods the Skyrme-
Hartree-Fock model (SHF) is the most widely used [33] and
represents another possibility to investigate nuclear ground
state (g.s.) properties. There are plenty of SHF functional
parametrizations available in the literature. We refer here to
a recent family of parametrizations which was derived from
least-square fitting of its free parameters to a large pool of
selected g.s. observables and, optionally, other nuclear prop-
erties [34]. This family includes an optimization to ground

FIG. 3. Experimental spectrum of 146Ce [32] and its ACM counterpart (a). The same for 148Ce (b). Both spectra are compared to the
expected spectrum at the X (5) limit. The energy difference of the 2+

1 and 0+
1 X (5) states is fitted to the experimental value in 146Ce and 148Ce,

respectively.
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FIG. 4. PEC as a function of β2 for the cerium isotopes for two SHF parametrizations, SV-bas (a) and SV-tls (b).

state properties only, denoted SV-min, and a couple of related
parameterizations with dedicated variation of nuclear mat-
ter properties (incompressibility, symmetry energy, effective
isoscalar and isovector mass) [34]. We have checked for the
present test cases all of them and in addition three older
choices, namely Sk-M∗, SLy6, and SkI3. For presentation
we confine here to SV-tls best fitting the binding energies
of the studied cerium isotopes [35], and to SV-bas as base
point for dedicated variation of nuclear matter properties. In
calculations using the axial SHF code SKYAX with a density-
dependent δ-force interaction in the pairing channel [36]
single-particle levels up to 75 MeV were taken into account
(eight oscillator shells). We also checked the possible triaxial-
ity using the code SKY3D [37]. Triaxiality was observed only
for N < 82 that justifies our approach that the investigated
nuclei can be analyzed using the axial SHF code SKYAX.

In the X (5) limit one would expect to observe a typical
bump structure in the potential energy curve (PEC) calcula-
tions as a function of the quadrupole deformation parameter
β2 [38].

Phase transitions along the chain of cerium isotopes are
illustrated in Figs. 4–6 for the two chosen parametrizations
and quadrupole β2, octupole β3, and hexadecapole β4 defor-
mations. It is clearly seen that for both parametrizations we
observe two asymmetric minima in the β2 PEC, a weaker
oblate one and a deeper prolate one. Both minima become
deeper along the investigated chain of cerium isotopes and

the absolute values |β2| for oblate and prolate minima in-
crease. The resulting PECs for octupole deformation β3 are
Skyrme-parametrization dependent: For SV-bas the highest
octupole deformation is observed for 146Ce and for 144Ce and
148Ce the PECs are quite flat in β3, thus resembling a phase
transition critical point that can be approximated by an infinite
square well in β3 whereas for SV-tls no well-pronounced
octupole minima are observed. To see the evolution of
both quadrupole and octupole deformations along the cerium
isotopic chain more clearly, the potential energy surfaces
(PES) along the β2-β3 plane are shown for the parametriza-
tion SV-bas in Fig. 7. For other Skyrme parametrizations
one gets a qualitatively similar picture demonstrating that
PES are dominated by shell structure and this is a topo-
logical property, not so sensitive to details of the force.
Hexadecapole deformation β4 practically does not depend
on the parametrization and is positive and increasing with
increasing A.

To find the energies of the lowest states in 148Ce the results
of the quadrupole-constrained calculations for the SV-bas
SHF parametrization were further processed in the genera-
tor coordinate method (GCM) at the level of the Gaussian
overlap approximation [17] neglecting octupole deformation.
The nucleus was found to be still considerably soft having a
large collective correlation energy of 3 MeV. The lowest col-
lective state 2+

1 is predicted at 0.135 MeV which is close to the
experimental value of 0.158 MeV. The other positive parity
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FIG. 5. PEC as a function of β3 for the cerium isotopes for two SHF parametrizations, SV-bas (a) and SV-tls (b).
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FIG. 6. PEC as a function of β4 for the cerium isotopes for two SHF parametrizations, SV-bas (a) and SV-tls (b).

low-spin excited states predicted are (experimental values in
parentheses): 4+

1 at 0.563 MeV (0.453 MeV), 0+
2 at 0.90 MeV

(0.77 MeV), 2+
2 at 1.14 MeV (0.94 MeV), and 2+

3 at 1.22 MeV
(0.99 MeV).

Unfortunately, we cannot investigate negative parity states
in our approach, because our GCM code is restricted to a
reflection-symmetric mean field. Therefore, we turn to the
most microscopic approach in our study, the symmetry con-
serving configuration mixing calculations that enable us to in-
vestigate also octupole deformation and negative parity states.

VI. SYMMETRY CONSERVING CONFIGURATION
MIXING CALCULATIONS

The last method used to study the structure of Ce iso-
topes around N = 90 is based on two Gogny D1S energy
density functionals (EDF) that include beyond-mean-field ef-
fects within the symmetry conserving configuration mixing
(SCCM) framework. Here, the nuclear wave functions are
obtained by mixing symmetry-restored intrinsic HFB states
defined along collective degrees of freedom. The coefficients
of the linear combination of such symmetry-restored states
are obtained within the generator coordinate method (GCM).
The two implementations used in this work differ in a) the
collective coordinates explored, b) the symmetries that are re-
stored, and c) the way the intrinsic HFB states are found. In the
first approach, dubbed as SCCM(β2,β3 ), axial quadrupole (β2)
and octupole (β3) degrees of freedom are taken into account
by building a set of intrinsic wave functions, {|φ(β2, β3)〉},
that are obtained by the minimization of the HFB energy
with constraints in such collective coordinates. Then, these
HFB states are subsequently projected onto good parity (pos-
itive and negative), number of particles and (axial) angular
momentum, and, finally, mixed following the GCM method
(see Ref. [39]). The second approach, SCCM(β2,γ ), consid-
ers quadrupole deformations (axial and nonaxial) without
breaking the parity symmetry. In this case, a more involved
variation after particle number projection method (VAPNP),
where the particle number projected energy with constraints
is minimized, is used to build the set intrinsic HFB wave
functions. Then, the symmetry restoration involves particle
number and triaxial angular momentum projection. These

projected states are finally mixed to build the nuclear states
(see Ref. [18]). The main differences between the two Gogny
EDFs are 1) the superiority of VAPNP to HFB to take into
account pairing correlations; 2) triaxial quadrupole shapes
allow the study of positive parity states with an odd value of
the angular momentum (e.g., triaxial bands, γ bands, etc.);
and, 3) axial octupole shapes allow the study of negative
parity bands with an odd value of the angular momentum.
Unfortunately, the inclusion of triaxial and octupole shapes
on the same footing within Gogny-SCCM methods is still out
of the present computational capabilities.

As shown in the previous section, the first step in the
description of the collectivity of a given nucleus is the analysis
of the PECs. In the top panel of Fig. 8 we represent the
HFB energy in the (β2, β3) plane for the 146–150Ce isotopes.
First, we observe that the energy is symmetric about β3 = 0
because the nuclear interaction is parity symmetric. Addi-
tionally, the HFB ground state energy is found at quadrupole
prolate deformations around β2 ≈ 0.3 and a secondary min-
imum at quadrupole oblate deformations β2 ≈ −0.2. More
interestingly, the absolute minimum of the surface is obtained
at a nonzero value of β3 ≈ 0.1 in the isotope 146Ce, while
the surface is rather flat around the minimum along β3 for
148Ce and, finally, more rigid in the nucleus 150Ce. These
results anticipate the relevance of octupole configurations in
this region, especially in the isotope 146Ce, and are consistent
with the Skyrme calculations shown above.

Concerning the triaxial degree of freedom, we plot in the
bottom panel of Fig. 8 the VAPNP energy in the (β2, γ )
plane for the 146–150Ce isotopes. Here, we observe that the
absolute minimum in the three isotopes are found in prolate
axial symmetric states (γ = 0◦) at slightly smaller values of
β2 than those obtained with mean-field (HFB) calculations.
This small difference could be attributed to the larger pair-
ing correlations obtained with the VAPNP method that make
the system less deformed. Nevertheless, the energy surfaces
around the prolate minimum are rather stiff and we do not ex-
pect a large effect of the triaxiality in the ground state bands of
these nuclei. Moreover, the oblate minimum found in the axial
calculation is a saddle-point in the triaxial calculation. Finally,
it is important to note that none of these energy surfaces show
clear signatures of the X (5) symmetry.
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FIG. 7. SHF + BCS potential energy surfaces along the axial β2-β3 plane for (a) 142Ce, (b) 144Ce, (c) 146Ce, (d) 148Ce, (e) 150Ce, and
(f) 152Ce.

The final results are obtained within the SCCM formalism
after solving the GCM equations with symmetry-projected
wave functions that provides the ground-state and excitation
energies, and the collective wave functions (c.w.f.) [40]. The
latter represent the weights of the different intrinsic deforma-
tions in each nuclear wave function.

Concerning the SCCM(β2,β3 ) results, we obtain a positive
parity ground state band (0+

1 , 2+
1 , 4+

1 , etc.) and a negative par-
ity band associated to it (1−

1 , 3−
1 , 5−

1 , etc.) in the three 146–150Ce
isotopes. The c.w.f.’s of the band heads are shown in Fig. 9
where we clearly see that the three isotopes are quadrupole
deformed and, for 146–148Ce isotopes, an octupole deformation
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FIG. 8. (a)–(c) HFB energy surfaces along the axial β2-β3 plane and (d)–(f) VAPNP energy surfaces along the triaxial β2-γ plane computed
for the 146–150Ce isotopes with the Gogny D1S interaction.

is also present in the positive-parity states. The negative-parity
band is built on top of the same quadrupole deformation as the
positive-parity one and peaks at a non-zero value of β3. The
SCCM(β2,γ ) results can only predict positive parity states. In

this case, apart from the axial prolate ground-state bands (0+
1 ,

2+
1 , 4+

1 , etc.), other bands built on top of prolate 0+
2 , triaxial

2+, and triaxial 4+ states are found that can be associated to β

bands, (mostly) K = 2 (γ bands) and (mostly) K = 4 bands,
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FIG. 10. (a)–(k) Collective wave functions in the β2-γ plane for the band heads obtained with the SCCM(β2,γ ) method for the 146–150Ce
isotopes.

respectively. In Fig. 10 the c.w.f.’s for those band heads are
plotted.

We finally discuss the ability of the above SCCM methods
to reproduce the experimental data. In Table I we show the
predicted 2+

1 , 4+
1 , 1−

1 , and 3−
1 excitation energies, the reduced

transition probabilities B(E2, 2+
1 → 0+

1 ) and B(E2, 4+
1 →

2+
1 ), and the corresponding available experimental results. We

see that both SCCM approaches reproduce nicely the experi-
mental trends although the excitation energies, especially for
the positive parity states, are systematically overestimated.
This is a well-known effect of this kind of calculations and
is related to the lack of time-reversal symmetry breaking

(cranking) states in the set of HFB-like wave functions that are
mixed within the GCM method. The SCCM is a variational
method and, in the present implementations, the ground state
energy is privileged with respect to the excited state energies.
As a consequence, the spectrum is stretched. This stretching
is state-dependent, i.e., it could affect differently to the 2+

1 and
2+ γ states, for example. This deficiency can be corrected
by adding the cranking states [41,42], but it is very time
consuming [43] and we expect that the qualitative description
of the nuclei under study will not change significantly. We
also observe in the B(E2) values that the deformation of the
nucleus 146Ce (148Ce) is overestimated (underestimated) in
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TABLE I. Experimental and SCCM excitation energies (in MeV)
and B(E2) reduced transition probabilities (in W.u.) for the lowest
states in 146–150Ce isotopes.

2+
1 Exp SCCM(β2,β3 ) SCCM(β2,γ )

146 0.258 0.304 0.352
148 0.158 0.216 0.291
150 0.097 0.118 0.258
4+

1 Exp SCCM(β2,β3 ) SCCM(β2,γ )

146 0.668 0.742 1.038
148 0.453 0.640 0.890
150 0.305 0.389 0.767
2+

1 → 0+
1 Exp SCCM(β2,β3 ) SCCM(β2,γ )

146 43 55 53
148 85 74 59
4+

1 → 2+
1 Exp SCCM(β2,β3 ) SCCM(β2,γ )

146 – 92 80
148 130 112 89

1−
1 (exp) 1−

1 SCCM(β2,β3 ) 3−
1 (exp) 3−

1 SCCM(β2,β3 )

146 0.925 0.670 0.961 0.911
148 (0.453) 0.506 (0.841) 0.761
150 – 0.863 – 1.074

both SCCM approaches, although the method that includes
both quadrupole and octupole degrees of freedom provides
better results.

Anyhow, the qualitative structure of the nucleus should be
reasonably well-described within the present SCCM, i.e., for
148Ce we find a prolate rotational ground state band with a
triaxial K = 2 γ band, a triaxial K = 4 band related to it, and a
second prolate 0+ excited state band (slightly more deformed
than the g.s. band). Unfortunately, in the present status without
cranking, we cannot say much about the X (5) nature of this
nucleus.

VII. CONCLUSIONS

We analyzed five experimental fingerprints of the
X (5) phase transition point based on different energy
ratios, namely R42 = E (4+

1 )/E (2+
1 ), R022 = E (0+

2 )/E (2+
1 ),

R222 = E (2+
2,β )/E (2+

1 ), R60 = E (6+
1 )/E (0+

2 ), and R422 =
E (4+

2 )/E (2+
2 ). We found that the first four ratios are close

to the X (5) limit values for N = 90 (148Ce), but the modest
increase of the fingerprints for cerium isotopes around N = 90
indicates that the X (5) limit is less pronounced than for other
X (5) nuclei, 150Nd, 152Sm, and 154Gd.

In spite of the fact that we cannot reproduce a first order
phase transition such as X (5) within the ACM, we can fit
the model parameters to experimental energies of transitional
nuclei, such as 146Ce and 148Ce. Moreover, contrary to the
X (5) limit, the position of the lowest 2+ γ band is well defined
by the model parameters of the ACM. The ACM calculations
of 146Ce and 148Ce confirm 148Ce as a better candidate for
an X (5) nucleus based on its ground-state band properties,
but, simultaneously, one observes a lot of characteristics that
depart from the X (5) limit for excited bands in this nucleus.

Both microscopic approaches based on the Skyrme and
Gogny forces predict prolate ground-state deformation and
shallow octupole deformation for 146Ce and 148Ce that tends
to disappear for 150Ce. Moreover, the SCCM calculations in-
dicate triaxiality in excited positive-parity bands for nonzero
spins. There are no clear signatures of an X (5) limit in the
microscopic calculations. Instead, quite flat potential energy
surfaces in β3 around the prolate β2 minimum are observed,
thus resembling a phase transition critical point that could be
approximated by an infinite square well in β3. Therefore, from
the theoretical point of view it would be interesting to focus
in future investigations on a possible extension of the X (5)
model to take into account also octupole degrees of freedom
with an infinite square well in both β2 and β3 to find possible
spectral signatures of an axial phase transition from U (5) to
SU (3) via a quadrupole-octupole soft system.

From the experimental point of view, future investigations
should focus on measurements of inter- and intraband tran-
sitions in excited bands, in particular on B(E1) and B(E3)
transition probabilities between negative-parity band(s) and
the ground-state band to check the predicted octupole
deformation or softness.
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