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Refined nuclear magnetic dipole moment of rhenium: 185Re and 187Re
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The refined values of the magnetic dipole moments of 185Re and 187Re nuclei are obtained. For this, we perform
a combined relativistic coupled cluster and density-functional theory calculation of the shielding constant for the
ReO−

4 anion. In this calculation, we explicitly include the effect of the finite nuclear magnetization distribution
in the single-particle nuclear model using the Woods-Saxon potential for the valence nucleon. By combining the
obtained value of the shielding constant σ = 4069(389) ppm with the available experimental nuclear magnetic
resonance data we obtain the values: μ(185Re) = 3.1567(3)(12)μN , μ(187Re) = 3.1891(3)(12)μN , where the
first uncertainty is the experimental one and the second is due to theory. The refined values of magnetic moments
are in disagreement with the tabulated values, μ(185Re) = 3.1871(3)μN , μ(187Re) = 3.2197(3)μN , which were
obtained using the shielding constant value calculated for the atomic cation Re7+ rather than the molecular anion.
The updated values of the nuclear magnetic moments resolve the disagreement between theoretical predictions
of the hyperfine structure of H-like rhenium ions which were based on the tabulated magnetic moment values and
available experimental measurements. Using these experimental data we also extract the value of the parameter
of nuclear magnetization distribution introduced in [J. Chem. Phys. 153, 114114 (2020)], which is required to
predict hyperfine structure constants for rhenium compounds.
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I. INTRODUCTION

Nuclear magnetic dipole moments are of wide interest for
many physical problems. They can be used to test predictions
of the nuclear theory. They are required as external parameters
to predict the hyperfine structure (HFS) of neutral atoms and
molecules. Such data are required to probe the accuracy of
calculated electronic wave functions, which are used for cal-
culation of characteristics of symmetry-violation interactions
in atoms [1–6] and molecules [7–16]. Such characteristics
cannot be directly measured, but they are required to extract
the value of the T,P-violating nuclear Schiff and magnetic
quadrupole moments, the electron electric-dipole moment and
other similar effects from the experimental data [2,6,17–20].
magnetic dipole moments of stable isotopes can be combined
with the experimental and theoretical data on hyperfine struc-
ture for stable and short-lived isotopes to obtain magnetic
moments of short-lived isotopes [21–28]. Magnetic moments
are used to predict hyperfine splittings in highly charged ions,
which can be used to test predictions of the bound-state quan-
tum electrodynamics [29].

magnetic dipole moments of stable nuclei can be obtained
from nuclear magnetic resonance (NMR) experiments on
molecules, although there are suggestions to extract them
from precise g-factor experiments on highly charged ions
[30–32]. In molecular NMR experiments, one usually obtains
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so-called uncorrected values of the nuclear magnetic moment.
To obtain the intrinsic value of the nuclear magnetic moment,
one has to apply a correction on the shielding effect. It is
induced by electrons surrounding the nuclei of interest in a
given atom or a molecule. Accurate calculation of the shield-
ing constant in molecules containing heavy atoms is rather
complicated. Therefore, one often uses shielding corrections
calculated for the corresponding atomic ions. Such an ap-
proach can lead to serious errors [33–35].

In the present paper we study nuclear magnetic moments
for two stable isotopes of rhenium, 185Re and 187Re, both
having nuclear spin I = 2.5. Nuclear magnetic resonance ex-
periments with the aqueous solution of the NaReO4 molecule
were carried out in 1951 [36]. The tabulated values of the nu-
clear magnetic moments of 185Re and 187Re [37] are based on
those experimental data combined with the shielding constant
calculated for the Re7+ atomic ion [38–40]. In Ref. [41] it has
been noted that such interpretation is not free from possible
errors due to neglect of the chemical shift effect, i.e., con-
tribution of molecular environment. The authors of Ref. [34]
have used a combination of the nonrelativistic coupled cluster
theory and the relativistic density-functional theory to cal-
culate the molecular shielding constant. Here we perform a
precise study of the shielding effect within the relativistic
coupled cluster and relativistic density-functional theories and
show that the completely relativistic treatment allows one to
significantly reduce the uncertainty of the shielding constant.
In the present paper, we also explore the influence of the finite
nuclear magnetization distribution effect in the single-particle
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approximation on the shielding constant value. Using the re-
fined value of the shielding constant we obtain the updated
values of the nuclear magnetic moments of 185Re and 187Re.

The structure of the article is as follows: In Sec. II, we give
a brief overview of the theory for calculating the shielding
constant and the nuclear magnetization distribution effect.
In Sec. III A, we discuss the shielding constant calculation
scheme. Section III B provides an analysis of possible uncer-
tainties. These two sections contain some technical details.
In Sec. III C, we derive the nuclear magnetic moments from
experimental NMR data and the theoretical value of the
shielding constant obtained in Secs. III A and III B. Section IV
analyzes the available experimental data on hyperfine splitting
in H-like rhenium ions in various aspects.

The relativistic units (m = h̄ = c = 1) and the charge units
α = e2/(4π ) are used in this paper.

II. THEORY

One can use the following definition of the shielding tensor
corresponding to the nucleus j in a given molecule:

σ
j

a,b = ∂2E

∂μ j,a∂Bb

∣∣∣∣
μ j=0,B=0

. (1)

Here E is the energy of the system, μ j,a is the ath component
of the nuclear magnetic moment vector μ j of the jth nucleus,
Bb is the bth component of the uniform external magnetic
field vector B. For the interpretation of the molecular NMR
experiments, performed in a solution, we need the isotropic
part σ of the shielding tensor, σ = 1/3

∑
a σa,a. From the

nuclear magnetic resonance experiment, it is possible to ob-
tain the uncorrected value μuncorr. of the nuclear magnetic
dipole moment value, i.e., the value which is not corrected for
the magnetic shielding. The intrinsic value of the magnetic
moment μ can be obtained as

μ = μuncorr./(1 − σ ). (2)

The interaction of electrons in a molecule with an external
uniform magnetic field B can be described by the following
term included in the Dirac-Coulomb Hamiltonian:

HB = B · |e|
2

(rG × α), (3)

where α are the Dirac matrices and rG = r − RG, RG is the
gauge origin [42], i.e., the origin for the coordinate system
that describes the electron radius-vector in this equation. In
principle, the choice of RG can influence the results obtained
in the modest basis sets (see below). In the point magnetic
dipole approximation, the hyperfine interaction of an electron
with the magnetic moment μ j of the jth nucleus can be
written in the following way:

Hhyp = |e|
4π

μ j · (r j × α)

r3
j

, (4)

where r j = r − R j , R j is the position of the nucleus j. Note
that the interaction (4) does not take into account the finite nu-
clear magnetization distribution effect. In the theory of atomic
hyperfine structure this effect is called the Bohr-Weisskopf

(BW) effect [43–45]. One can use the following substitution
to consider this effect [46–48]:

μ → μ(r) = μF (r). (5)

Function F (r) takes into account the nuclear magnetization
distribution inside the finite nucleus. In the point magnetic
dipole moment approximation F (r) = 1. In the finite distri-
bution case F (r) can significantly differ from 1 inside the
nucleus. Expressions for different models can be found in
Refs. [46,48–51]. In the simplest uniformly magnetized ball
model function F (r) = (r/rn)3 for r inside the sphere of ra-
dius rn = √

5/3rc (rc is the root-mean-square charge radius)
and is equal to 1 outside [49]. In studies of neutral atoms,
this model is most widely used to calculate the BW cor-
rection [25,52–55]. In the present paper, we mainly use the
model which implies that magnetization can be ascribed to the
single-particle structure of the nucleus. In this model function
F (r) is given by [46]

F (r′) = μN

μ

{∫ r′

0
r2|u(r)|2dr

[
1

2
gS

+
(

I − 1

2
+ 2I + 1

4(I + 1)
mpφSO(r)r2

)
gL

]

+
∫ ∞

r′
r2

(
r′

r

)3

|u(r)|2dr

[
− 2I − 1

8(I + 1)
gS

+
(

I − 1

2
+ 2I + 1

4(I + 1)
mpφSO(r)r2

)
gL

]}
(6)

for I = L + 1/2, and

F (r′) = μN

μ

{∫ r′

0
drr2|u(r)|2

[
− I

2(I + 1)
gS

+
(

I (2I + 3)

2(I + 1)
− 2I + 1

4(I + 1)
mpφSO(r)r2

)
gL

]

+
∫ ∞

r′
r2

(
r′

r

)3

|u(r)|2dr

[
2I + 3

8(I + 1)
gS

+
(

I (2I + 3)

2(I + 1)
− 2I + 1

4(I + 1)
mpφSO(r)r2

)
gL

]}
(7)

for I = L − 1/2. Here μN is the nuclear magneton, mp is the
proton mass, I is the nuclear spin, |u(r)|2 is the density of
the valence nucleon, φSO is the radial part of the spin-orbit
interaction VSO = φSO σ · l , l is the angular moment operator,
and σ is the vector of Pauli matrices. In the Woods-Saxon
(WS) model of the nucleus, the wave function of the va-
lence nucleon is determined as a solution of the Schrödinger
equation with the WS potential. A detailed description of the
implementation and parameters of the potential can be found
in Ref. [28] and references therein. For the valence proton we
set gL = 1, for the valence neutron gL = 0. Parameter gS is
obtained from the following equations:

μ

μN
= 1

2
gS +

[
I − 1

2
+ 2I + 1

4(I + 1)
mp〈φSOr2〉

]
gL (8)
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for I = L + 1/2, and

μ

μN
= − I

2(I + 1)
gS +

[
I (2I + 3)

2(I + 1)
− 2I + 1

4(I + 1)
mp〈φSOr2〉

]
gL

(9)

for I = L − 1/2. In the simple single-particle model with the
uniform distribution of the valence nucleon, the density of
the valence nucleon |u(r)|2 is a constant inside the nucleus
volume and there is no spin-orbit term in this model [56].

In the one-electron case, the tensor (1) can be calcu-
lated using the sum-over-states method corresponding to the
second-order perturbation theory with perturbations (3) and
(4):

σa,b =
∑
n �=0

〈0| |e|
4π

( (r j×α)
r3

j

)
a|n〉〈n|( |e|

2 (rG × α)
)

b|0〉
E0 − En

+ H.c.,

where |0〉 is the unperturbed one-particle state of interest, |n〉
is the unoccupied nth unperturbed state (orbital) and H.c. is
the Hermitian conjugate. For the case of the four-component
Dirac theory, the summation should include both positive-
energy and negative-energy states |n〉 [57]. The part of the
sum associated with the positive energy states is called “para-
magnetic” term. The part associated with the negative-energy
states is called “diamagnetic term” [57]. For the cases of
the Dirac-Hartree-Fock (DHF) and density-functional theory
(DFT) many-electron methods, one can use the response
technique to calculate both terms [57–60]. The result of
the application of this technique is equivalent to (and de-
rived from) the analytical calculation of the DHF or DFT
energy derivative (1). In the present paper we have used
the implementation of the method within the DIRAC [60,61]
code.

In calculations of the shielding constant, we have used
the following Gaussian-type basis sets to describe elec-
tronic wave functions: The first one corresponds to the
uncontracted Dyall’s AE4Z [62,63] basis set for all atoms
and will be called QZQZ below. This basis set con-
tains [34s 30p 19d 14 f 10g5h 1i] primitive Gaussian func-
tions for Re and [18s 10p 5d 3 f 1g] functions for each
oxygen. The second one, TZTZ, corresponds to the un-
contracted AE3Z [62,63] basis set on rhenium and con-
tracted aug-cc-pVTZ [64,65] on oxygen. This basis set
contains [30s 24p 15d 11 f 5g1h] functions for Re and
[5s 4p 3d 2 f ]/([11s 6p 3d 2 f ) for each oxygen, where in the
[. . .] brackets the numbers of contracted functions are given
and in the (. . .) brackets the corresponding numbers of prim-
itive functions are given (e.g., each of five contracted s-type
functions of oxygen is a linear combination of 11 primitive
functions). We have also used the DZDZ basis set which
corresponds to the uncontracted Dyall’s AE2Z [62,63] basis
set on rhenium and aug-cc-pVDZ [64,65] on oxygen. This
basis set contains [24s 19p 12d 9 f 1g] functions for Re and
[4s 3p 2d]/([10s 5p 2d ) for oxygen. The quality of basis sets
increases in the series: DZDZ, TZTZ, QZQZ.

Formally, the interaction of a molecule with an external
uniform magnetic field should not depend on the choice of
the origin RG in Eq. (3). But for finite-size basis sets there

may be some dependence [42,58,59] which can affect the
shielding constant value. To minimize such a dependence one
can use the London atomic orbitals (LAOs) method, devel-
oped at the four-component DFT level in Refs. [58,59]. In
this approach, basis functions are replaced by the so-called
London atomic orbitals which are obtained from the original
basis functions by applying a magnetic-field-dependent fac-
tor [42,58,59]. This corresponds to the transformation of the
wave function due to the gauge transformation of the vector
potential in Eq. (3). The use of London orbitals guarantees
the gauge-origin invariance of results in a finite-basis approx-
imation [42,58,59]. Even for usual basis set, the gauge-origin
problem should decrease as the basis set size increases. In the
present case, we are interested in the shielding constant for the
rhenium nucleus. Therefore, it is natural to place the origin
at this nucleus. According to our DFT estimates, the values
of the shielding constant calculated for the QZQZ basis set
(i) with such choice of the origin and employing usual basis
functions or (ii) within the LAOs technique coincide within
7 ppm. This value is negligible in comparison with the total
uncertainty of the present calculation (see below).

Geometry structure parameters of the ReO−
4 anion have

been optimized using the four-component density-functional
theory with the Perdew-Burke-Ernzerhof, PBE0, functional
[66] and using the TZTZ basis set. No solvent effects were
considered at this stage. The optimized value of the Re–O
bond length in the ReO−

4 anion with the regular tetrahedral
symmetry was found to be 1.723 Å. This value is in good
agreement (within 0.003 Å) with the study [34].

Relativistic four-component calculations were performed
within the locally modified DIRAC15 [60,61] code. High-order
correlation effects have been calculated using the MRCC code
[67]. The code for calculating the BW matrix elements in the
WS model has been developed in Ref. [28] for atoms and
generalized to the molecular case in the present paper. Taking
into account that the action of the corresponding operator is
localized inside the nucleus we have neglected the contri-
bution of basis functions centered on oxygen atoms in the
present implementation. In the molecular electronic structure
calculations, the Gaussian nuclear charge distribution model
[68] has been used.

III. RESULTS AND DISCUSSION

A. Shielding constant calculation

We have used the following scheme to calculate the shield-
ing constant for ReO−

4 and its contributions (see Table I). The
diamagnetic part has been calculated at the four-component
PBE0 method [66]. As in previous studies [33,69] we have
found that this contribution is almost independent of the
choice of the functional or method used. For example, the
values calculated within the Dirac-Hartree-Fock (7630.8 ppm)
and PBE0 (7633.3 ppm) response theories coincide within a
few ppm. Moreover, the same value within a few ppm can
be obtained even using the uncoupled Dirac-Hartree-Fock ap-
proach (7633.2 ppm), i.e., simple orbital perturbation theory.
The latter corresponds to calculation using Eq. (10) with an
additional summation over all occupied molecular orbitals,
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TABLE I. Calculated values of rhenium shielding constant σ

contributions for ReO−
4 in ppm.

Contribution Value

Diamagnetic:
QZQZ-LAO/PBE0 7633

Paramagnetic:
TZTZ/108e-CCSD −3741
TZTZ/108e-CCSD(T) – 108e-CCSD 350
DZDZ/24e-CCSDT – 24e-CCSD(T) −81
Basis set correction −10

Gaunt 15
Solvent effect, from Ref. [34] −25
Finite magn. distribution (WS) −73

Total 4069

|0〉, which are included in the Slater determinant, and the sum
over n in Eq. (10) is limited to the negative-energy orbitals.

The most challenging part of the problem is the cal-
culation of the paramagnetic contribution to the shielding
constant which is strongly affected by both correlation and
relativistic effects. The authors of Ref. [34] have used the
nonrelativistic coupled cluster theory combined with the rel-
ativistic correction calculated within the DFT approach to
calculate the shielding constant for ReO−

4 . As it has been
analyzed in Ref. [34] the dominant source of the uncertainty
of such an approach is “the systematic error of correlation
and relativistic effects nonadditivity.” To avoid such an er-
ror, we avoided the use of nonrelativistic theory at all and
used the four-component relativistic coupled clusters the-
ory as the main approach for calculating the paramagnetic
contribution to the shielding constant. We have directly cal-
culated the mixed derivative (1) within the standard numerical
finite-difference technique. For this we needed the (numeri-
cal) dependence of the energy E on the magnetic moment
and external magnetic-field values. To calculate this depen-
dence we have added perturbations (3) and (4) with required
(small) values of the nuclear magnetic moment and the ex-
ternal uniform magnetic field amplitude to the molecular
relativistic Hamiltonian and solved coupled cluster equa-
tions with these perturbed Hamiltonian to obtain perturbed
values of the energy E . This electronic correlation calcula-
tion has been performed within the TZTZ basis set using
the relativistic coupled cluster with single, double, and per-
turbative triple cluster amplitudes method, CCSD(T) [70].
All 108 electrons of ReO−

4 were included in the correlation
calculation and no virtual energy cutoff has been applied. In
Table I we separate the CCSD(T) value into the CCSD value
(line “TZTZ/108e-CCSD”) and a contribution of perturbative
triple cluster amplitudes [line “TZTZ/108e-CCSD(T) – 108e-
CCSD”]. Thus the “TZTZ/108e-CCSD(T) – 108e-CCSD”
line gives the difference of the shielding constants calculated
within the CCSD(T) and CCSD methods (in both cases all
electrons were correlated and the TZTZ basis set has been
used).

To explore even-higher-order correlation effects, we have
performed correlation calculations within the relativistic cou-

pled cluster with single, double, and iterative triple cluster
amplitudes method, CCSDT, and compared it with the
CCSD(T) one. Due to extremely high complexity of the
CCSDT approach (e.g., in the present calculation our cluster
operator included 2.3 billion cluster amplitudes), we have
included 24 valence electrons of ReO−

4 in these two cal-
culations and employed the DZDZ basis set. One should
note that the contribution of perturbative triple cluster am-
plitudes in the DZDZ/24e-CCSD(T) calculation reproduces
such contribution obtained in the main calculation [350 ppm,
see line “TZTZ/108e-CCSD(T) – 108e-CCSD” in Table I]
within 80%. As one can see, the difference between CCSDT
and CCSD(T) results (−81 ppm) is rather small [see the
“DZDZ/24e-CCSDT – 24e-CCSD(T)” line in Table I].

To take into account the effect of the extended basis set
with respect to the main TZTZ one, we have calculated ba-
sis set correction within the relativistic PBE0 approach. In
this calculation, we have increased the basis set up to the
QZQZ one, i.e., we have calculated the difference of the
paramagnetic contributions to shielding constants calculated
within the QZQZ and TZTZ basis set using the PBE0 ap-
proach. One can see from Table I that this correction is small
(−10 ppm). Note that there is no guarantee that DFT can
reasonably take into account basis set correction accurately.
Therefore, we have estimated the influence of the basis set
size increase from the DZDZ basis set to the TZTZ one
on the paramagnetic part of the shielding constant. Here we
studied how DFT (PBE0) can reproduce this effect, calculated
within the wave-function-based relativistic CCSD(T) method.
Obtained corrections are −30 ppm within DFT vs −71 ppm
within CCSD(T). As expected, DFT underestimated the effect
of the basis set size increase (by a factor of 2.4). Thus, the
mentioned correction (−10 ppm) in Table I can be under-
estimated. We take this fact into account in the uncertainty
estimation below.

The effect of solvent has been extensively analyzed in
Ref. [34]. It seems that the “δ4” scheme used in Ref. [34] is
the most elaborate study of this effect at present. It explicitly
takes into account the effect of the first solvation shell and
approximately takes into account the influence of the solution
on the shielding constant under consideration (within the po-
larizable continuum model) at the DFT level [34]. Therefore,
we include this contribution in our final value.

The Gaunt interaction contribution has been calculated
at the relativistic DFT (PBE0) level using the TZTZ basis
set, i.e., it has been calculated as a difference between the
shielding constant values obtained within the relativistic DFT
method with inclusion and without inclusion of the Gaunt
interaction into the electronic Hamiltonian.

In the present paper, we have studied the influence of
the finite nuclear magnetization distribution on the shielding
constant. For this, we have used the substitution given by
Eq. (5) in the hyperfine interaction operator (4) and have
used the single-particle WS model, described above. Calcu-
lation of the paramagnetic part has been performed at the
relativistic CCSD(T) level using the DZDZ basis set, while
the diamagnetic part has been calculated at the uncoupled
Dirac-Hartree-Fock level (this method is described above).
The latter contribution, 8 ppm, to the considered correction
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was found to be much smaller than the paramagnetic part,
−81 ppm, of this correction. As one can see from Table I
the finite nuclear magnetization distribution effect (−73 ppm
or 1.8% of the total σ ) is more important than the solvent
effect for the system under consideration. For both isotopes
considered, nuclear magnetization distribution effects were
found to be almost identical and they are not distinguished in
Table I. We did not find previous attempts to take into account
the influence of the finite nuclear magnetization distribution
effect on the shielding constants in many-electron molecules,
although such studies have been performed for H-like ions
[71,72].

B. Shielding constant uncertainty estimation

The total uncertainty (δ) of the present calculation of
shielding constant can be estimated as a square root of the sum
of squares of electronic correlation calculation uncertainty
(δel. corr.), basis set uncertainty (δBS), Gaunt interaction effects
inclusion uncertainty (δG), finite nuclear magnetization distri-
bution uncertainty (δFMD), quantum electrodynamics (δQED),
uncertainty due to geometry structure uncertainty (δgeom) and
solvent-effect uncertainty (δsol):

δ =
√

δ2
el. corr. + δ2

FMD + δ2
G + δ2

BS + δ2
sol + δ2

QED + δ2
geom.

(10)

Uncertainty of the calculated electronic correlation effect
δel. corr. can be estimated as the contribution of the per-
turbative triple cluster amplitudes given in Table I in the
line “TZTZ/108e-CCSD(T) – 108e-CCSD,” i.e., δel. corr. =
350 ppm. For a more detailed analysis of this contribution, we
also calculated it within the smaller DZDZ basis set, i.e., cal-
culated the difference between shielding constants calculated
using the DZDZ/108e-CCSD(T) and DZDZ/108e-CCSD ap-
proaches. The calculated value, 355 ppm, reproduces with
high accuracy the contribution of perturbative triple clusters
amplitudes within the TZTZ basis set given above, 350 ppm.
This suggests a small contribution from the interference effect
between the high-order correlation effects defined by per-
turbative triple amplitudes and the size of the basis set (the
uncertainty associated with the size of the basis set itself is
discussed below). Note that the indicated uncertainty δel. corr.

seems to be quite conservative, given that the estimate of
the contribution of higher-order correlation effects [outside
the considered CCSD(T) approximation] calculated within
the framework of the CCSDT approach [see “DZDZ/24e-
CCSDT – 24e-CCSD(T)” line in Table I and description in
Sec. I] is several times smaller than δel. corr..

The uncertainty δFMD of the calculated value of the finite
nuclear magnetization distribution contribution (−73 ppm)
can be estimated as about 30% of the value of this contri-
bution (see also the analysis of the HFS data for H-like Re
below): δFMD = 23 ppm. This value is obtained by comparing
contributions of the finite nuclear magnetization distribution
to the shielding constant calculated in the WS model, −73
ppm, and in the uniformly magnetized ball model, −96 ppm.
The latter value has been calculated using the same approach
as that employed for the first one (described in the previous

section) with only replacement of the nuclear magnetization
distribution function F (r).

As a measure of the uncertainties of the Gaunt interac-
tion and solvent effects calculated within one method (DFT),
we have used corresponding values of these effects given in
Table I, i.e., δG = 15 ppm, δsol = 25 ppm. This means that the
(conservative) uncertainties of these corrections are suggested
to be 100%. A more accurate calculation of these effects
and their uncertainties will be required when the remaining
uncertainties are made smaller (e.g., the uncertainty δel. corr.

considered above is more than an order of magnitude bigger
than the effects under consideration).

Let us estimate the uncertainty due to the basis set incom-
pleteness δBS. For this we can compare shielding constant
calculated within the best employed QZQZ basis set and a
smaller one, TZTZ basis set. These differences for the dia-
magnetic contributions, paramagnetic contribution and the
total shielding constant values calculated within the QZQZ
and TZTZ basis sets using the DFT (PBE0) method are
+38 ppm, −10 ppm, and +28 ppm, respectively. Thus, we
can suggest that δBS is about 28 ppm. However, as we have
mentioned above, the DFT approach can underestimate the
effect of the basis set size increase for the paramagnetic
contribution by a factor of 2.4. This will lead to the estima-
tion for the uncertainty of the basis set incompleteness as
38 − 10 × 2.4 = 14 ppm. For the conservative estimate we
choose the largest of these two possible values, i.e., we set
δBS = 28 ppm.

The geometry parameters, i.e., the Re–O distances in the
ReO−

4 anion have been optimized at the relativistic PBE0
level (see above). To check the uncertainty of the optimized
geometry we have also performed geometry optimization
within another popular functional—B3LYP [73]. Within this
approach the optimized Re–O distance was found to be
1.736 Å, i.e., the estimation for the geometry parameters
uncertainty of ReO−

4 is about 0.013 Å. According to our DFT-
based estimation, this uncertainty in the geometry structure
parameters leads to contribution to the uncertainty of the
shielding constant of about δgeom = 158 ppm. This is about
six times bigger than the solvent effect contribution (and is
about an order of magnitude bigger than the Gaunt interaction
effect).

In a recent paper [74] it was estimated that contribution of
quantum electrodynamics effects to the shielding constant is
about 0.5% for such many-electron atoms as astatine (atomic
number 85). For H-like ions, ab initio calculations are avail-
able [71,72]. According to these Refs., the QED contribution
to the shielding constant of H-like Bi (atomic number 83)
is 0.7% and generally increases with atomic number. In the
present work, we do not take into account QED effects but
according to the notes above suggest that their contribution
can be about 1% of the total value of the shielding constant
and include this value in the uncertainty, i.e., δQED = 41 ppm.

The final value of the uncertainty of the shielding con-
stant is dominated by the correlation contribution uncertainty
δel. corr.. Substituting all estimated values of the uncertain-
ties in Eq. (10) we obtain the total uncertainty value: δ =
389 ppm, i.e., the final value of the shielding constant is
σ = 4069(389) ppm. It is in reasonable agreement with the
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previous calculation 3698(927) ppm [34] but has reduced
uncertainty due to the use of the relativistic coupled cluster
approach for the most challenging part of the calculation. Note
also, that in the present paper we consider more sources of the
uncertainties.

C. New values of magnetic dipole moments of 185Re and 187Re

To obtain the nuclear magnetic dipole moments of 185Re
and 187Re we need corresponding uncorrected values of these
moments, i.e., magnetic dipole moments which are not cor-
rected for the magnetic shielding, see Eq. (2). The nuclear
magnetic resonance experiment on the ReO−

4 anion has been
performed in the aqueous solution of NaReO4 with the mag-
netic dipole moment of 23Na as the reference in Ref. [36].
In the experiment the two resonances of 185Re and 187Re were
located near a frequency of 6.4 Mc in an external field of 6700
gauss. The following results for the resonance frequencies ν

were obtained in the experiment [36]:

ν(185Re)|/ν(23Na) = 0.85114(9), (11)

ν(187Re)|/ν(23Na) = 0.85987(9). (12)

As in Ref. [75] we use the uncorrected NMR value
μuncorr.(23Na) from Ref. [76] to obtain the uncorrected
values of the nuclear magnetic moments of 185Re and
187Re [75] according to the relation [75] μuncorr.(Re) =
μuncorr.(Na)[ν(Re)/ν(Na)](IRe/INa ) (where the 23Na nuclear
spin I23Na = 1.5):

μuncorr.(185Re) = 3.1439(3)μN , (13)

μuncorr.(187Re) = 3.1761(3)μN . (14)

Using these uncorrected values and our theoretical shielding
constant value σ we obtain the final values of the nuclear
magnetic moments according to Eq. (2):

μ(185Re) = 3.1567(3)(12) μN , (15)

μ(187Re) = 3.1891(3)(12) μN . (16)

Here the first uncertainty is due to the experiment and the
second is due to the present theory.

The obtained value of the shielding constant for ReO−
4

molecular anion is about three times smaller than the shield-
ing constant for the Re7+ atomic cation [38–40] which was
used in some of the previous interpretations of the molecular
NMR data [37,75,77]. It means that in previous studies the
uncertainty of the shielding correction used for interpretation
of the molecular NMR experiment has been substantially un-
derestimated [75].

IV. HYDROGEN-LIKE RHENIUM IONS

A. Nuclear magnetic moments from hyperfine-structure
data for H-like Re

Rhenium is one of several elements for which measure-
ments of hyperfine splitting for H-like (Re74+) ion was carried
out [41]. In principle, it is possible to extract the magnetic-
moment value from these HFS data if the values of BW and

TABLE II. Calculated values of the relative BW correction ε to
hyperfine structure constants of H-like rhenium in different nuclear
models in percent. Both rhenium isotopes 185Re and 187Re have
nuclear spin I = 2.5.

185Re 187Re

Ball 1.69 1.69
UD 1.35 1.36
WS without SO 1.30 1.30
WS with SO 1.32 1.32

QED contributions are known [78]. For this one can use the
following expression for the hyperfine structure constant A
[79]:

A = A(0) − ABW + AQED = A(0)(1 − ε) + AQED, (17)

where A(0) is the HFS constant calculated in the point
magnetic dipole approximation, ABW is the Bohr-Weisskopf
contribution to the HFS constant, ε is the relative Bohr-
Weisskopf correction, and AQED is the QED contribution.
Constants A(0), ABW, and AQED are proportional to the nuclear
magnetic moment μ = gI IμN , where gI is the g factor of
nucleus with spin I . A(0) and AQED can be accurately calcu-
lated [47,80] and ABW can be estimated within some nuclear
magnetization distribution model. In Ref. [28] we have cal-
culated the relative BW correction ε for H-like 185Re. Here
we have also estimated BW effect for the 187Re isotope using
four different nuclear magnetization distribution models (see
Table II): uniformly magnetized ball model (Ball), single-
particle model with the uniform distribution of the valence
nucleon (UD), WS model with and without the spin-orbit
interaction in the Schrödinger equation for valence nucle-
ons (see the Theory section). The obtained values for both
considered isotopes are almost identical, since these nuclei
have similar single-particle structures and charge radii. Using
the experimental values of A [41], the values of BW cor-
rections ε calculated within different nuclear magnetization
distribution models and given in Table II, the values of the
ratio A(0)/gI I = 0.2926(3) eV calculated in Refs. [47,56,81]
and the QED effect calculated in Refs. [47,80] AQED/gI I =
−0.00158(3) eV we have determined the corresponding val-
ues of magnetic moments according to the equation μ =
A/[A(0)(1 − ε)/gI I + AQED/gI I]. The values of μ deduced in
such a way using different models of nuclear magnetization
distribution are given in Table III. In such approach the main
uncertainty is due to the BW effect, as it is hard to reli-
ably treat many-body nuclear structure effects. We suppose
that this uncertainty can be estimated by comparing different
nuclear magnetization distribution models given in Table II.
Using this approach, the relative Bohr-Weisskopf correction
can be estimated as ε = 1.32(37)% for both isotopes [82]. It
corresponds to the following value of the magnetic moments
derived from the experimental HFS data [41] for H-like ions:

μ(HFS)(185Re) = 3.156(2)(3)(12) μN , (18)

μ(HFS)(187Re) = 3.187(2)(3)(12) μN . (19)
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TABLE III. Values of the nuclear magnetic moments (in units
of μN ) extracted from the experimental data on hyperfine struc-
ture constants of H-like rhenium [41] using QED corrections from
Refs. [47,80] and calculated BW corrections within different nuclear
magnetization distribution models. For an uncertainty estimation, see
the main text.

185Re 187Re

Ball 3.168 3.199
UD 3.157 3.188
WS without SO 3.155 3.186
WS with SO 3.156 3.187

Here the first uncertainty is due to the experimental determi-
nation of A [41], the second one is due to uncertainties of A(0)

(the uncertainty of AQED is negligible), and the third one cor-
responds to the uncertainty of the calculated BW effect. These
values are in agreement with Ref. [78] and in agreement with
the values (15) and (16) derived from the NMR data above but
have an order of magnitude larger uncertainty. It is mainly due
to the BW-effect uncertainty. The influence of the BW effect
on the shielding constant (1.8%) in the considered molecular
anion and on the hyperfine structure of H-like rhenium ion
(1.3%) are similar (see also Tables I and II). However, the
influence of the BW effect on the final value of the magnetic
moment, extracted from the NMR data is much smaller than
in the case of H-like HFS data. In the first case, the finite
nuclear magnetization distribution effect is a correction to the
shielding effect, which is 4069 ppm, i.e., only 0.4% itself (see
above). The uncertainty of the molecular electronic structure
shielding constant calculation can be controlled, see Sec. III B.
In the second case, the BW effect directly contributes to the
magnetic moment, and an estimation of its uncertainty is com-
plicated due to the absence of direct many-body calculations
of this effect for the rhenium nucleus.

It is possible to employ the obtained results also as fol-
lows: if one uses the tabulated values [37] of the nuclear
magnetic moments of 185Re and 187Re, the following theo-
retical values of the HFS constant Atheor for H-like rhenium
can be obtained according to the equation A = μ[A(0)(1 −
ε)/gI I + AQED/gI I]: Atheor (185Re) = 0.9152(34) eV, and
Atheor (187Re) = 0.9245(34) eV. For the new values of mag-
netic moments (15), (16), extracted from the NMR data
above, one obtains: Atheor (185Re) = 0.9065(34) eV and
Atheor (187Re) = 0.9157(34) eV. The experimental values Aexpt

are [41] Aexpt (185Re) = 0.9063(6) eV and Aexpt (187Re) =
0.9150(6) eV. Thus, the updated values of the nuclear mag-
netic moments resolve the disagreement between theoretical
predictions of HFS constants (or HFS splittings) of H-like
rhenium ions (based on the old values of magnetic moments)
[47,83,84] and experimental values [41].

B. Bohr-Weisskopf effect from hyperfine-structure data for
H-like ions and magnetic moments from molecular NMR data

As mentioned in the Introduction, accurate theoretical pre-
diction of the hyperfine structure of atoms and molecules can
be used to probe the accuracy of the electronic wave function.

However, such predictions depend on the nuclear magnetic
dipole moment value and the function of the nuclear magneti-
zation distribution F (r) in Eq. (5). If both of these components
are accurately known, then one can predict the hyperfine struc-
ture of the compound or ion under consideration. It was shown
in Ref. [15] that for many-electron heavy-atom molecules and
heavy atoms to a good approximation it is possible to factorize
the Bohr-Weisskopf contribution to the hyperfine structure
constant into a pure electronic part and just one universal
numerical parameter, which depends on the nuclear magneti-
zation distribution, see Eq. (29) in Ref. [15] (recently a related
approach has been considered for atoms in s and p1/2 states in
Ref. [85]). The latter parameter Bs [15] is proportional to the
BW contribution ABW to the hyperfine structure constant in
Eq. (17) for the H-like ion in the ground electronic state and
can be calculated as Bs = ABW/2gI in this case; actually, the
constant of interest is the product BSgI = ABW/2 [15]. Using
the experimental values of the H-like rhenium HFS constants
[41], QED corrections from Refs. [47,80] and the values of
the nuclear magnetic moments (15) and (16) refined in the
present paper above, we obtain the following values of the
BW contribution to the HFS constants, ABW(“expt”), according
to Eq. (17):

ABW(“expt”)(185Re) = 0.0124(6)(8)(4) eV, (20)

ABW(“expt”)(187Re) = 0.0130(6)(9)(4) eV. (21)

Here the first uncertainty is due to the experimental HFS
data for H-like ions [41], the second one is due to
uncertainty of A(0), and the third one corresponds to nu-
clear magnetic moment uncertainties in (15) and (16).
From these values one can obtain for the product BSgI =
ABW/2: BSgI (185Re) = 0.0062(3)(4)(2) eV, BSgI (187Re) =
0.0065(3)(5)(2) eV. Here the uncertainties correspond to the
uncertainties in Eqs. (20) and (21) above.

V. CONCLUSION

In the present paper, we have obtained refined values of
the magnetic moments of 185Re and 187Re nuclei. For this,
we have calculated the shielding constant for the ReO−

4 an-
ion using a combination of the relativistic coupled cluster
and relativistic density-functional theories. We have studied
the influence of the finite nuclear magnetization distribution
effect on the shielding constant value. Such effect is usually
omitted in molecular calculations. However, according to our
study, this effect can be more important than the solvent effect
which is often estimated. Updated values of the nuclear mag-
netic moments resolve the disagreement between theoretical
predictions [47,83,84] and experimental values [41] for the
hyperfine splittings of H-like rhenium ions. In addition to the
nuclear magnetic moment values, we have also used H-like
data for rhenium HFS constants to extract the universal pa-
rameter [15] of the nuclear magnetization distribution. The
values of the nuclear magnetic moment and this parameter
are necessary ingredients for the theoretical prediction of HFS
constants in different rhenium ions and compounds.
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