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Neutrinoless double-β-decay (0νββ) nuclear matrix elements (NME) are the object of many theoretical
calculation methods, and are very important for analysis and guidance of a large number of experimental efforts.
However, there are large discrepancies between the NME values provided by different methods. In this paper we
propose a statistical analysis of the 48Ca 0νββ NME using the interacting shell model, emphasizing the range of
the NME probable values and their correlations with observables that can be obtained from the existing nuclear
data. Based on this statistical analysis with three independent effective Hamiltonians, we propose a common
probability distribution function for the 0νββ NME, which has a range of (0.45–0.95) at 90% confidence level,
and a mean value of 0.68.
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I. INTRODUCTION

The study of the double-β decay (DBD) is currently a
hot research topic since it is viewed as one of the most
promising approaches to clarify important, as yet unknown,
properties of neutrinos and to explore physics beyond the
standard model (SM) [1,2]. Two scenarios are possible for
this process to occur: (i) two-neutrino double-β (2νββ) tran-
sitions (with emission of two electrons/positrons and two
antineutrinos/neutrinos), which conserve the lepton number
and are allowed by the SM, and (ii) double-β-decay transi-
tions without emission of neutrinos (0νββ), which violate the
lepton number conservation and are only allowed by theories
beyond SM (BSM).

Neutrinoless DBD has not yet been experimentally de-
tected, but its measurement would provide us with important
information about lepton number violating (LNV) processes;
neutrino properties (neutrino absolute mass scale and mass
hierarchy, neutrino nature as Dirac or Majorana fermion, num-
ber of neutrino flavors); CP and Lorentz symmetries violation;
constraining of different BSM mechanisms that may con-
tribute to this decay mode, etc. The most common mechanism
investigated is the light left-handed (LH) Majorana neutrinos
exchange between two nucleons, but once a LNV operator
is introduced in the Lagrangian, several other mechanisms
are also allowed, such as the exchange of light and heavy
neutrinos in left-right symmetric models, the exchange of su-
persymmetric particles, DBD with the emission of majorons,
etc.

The DBD half-life equations can be expressed, in a good
approximation, as a product of some factors. The 2νββ half-
life is a product of a phase space factor (PSF), which depends
on the atomic charge and energy released in the decay, and a
nuclear matrix element (NME) related to the nuclear structure
of the parent and daughter nuclei. The 0νββ half-life, besides

the PSF and NME factors, also contains a LNV factor, related
to the particular BSM mechanism that may contribute to the
decay. If several mechanisms are considered, the inverse half-
life can be written as a sum of all the individual contributions
and their interference terms [2–8]. Using the experimental
limits of the 0νββ decay half-lives and the theoretical values
of PSF and NME, one can constrain the LNV parameters and
the associated BSM scenarios, usually under the assumption
that only one mechanism contributes at one time.

There is currently significant progress in the DBD experi-
ments (in terms of the amount of source material, decreasing
background, and improvement in the detection techniques),
leading to the expectation that the next generation of experi-
ments will be able to cover the entire region of the neutrino
inverted mass hierarchy [9]. Concurrently, the progress of the
theoretical methods now provides us with accurate PSF values
for all the double-β decay modes and transitions. [10–12].
Thus, at present, the uncertainty in the DBD calculations
remains mostly in the NME evaluation.

There are several nuclear structure methods for the NME
calculation, the most used being shell model methods [13–23],
proton-neutron quasiparticle random-phase approximation
(pnQRPA) methods [24–30], interacting boson approach
(IBA) methods [31,32], the energy density functional
(EDF) method [33], projected Hartree-Fock-Bogoliubov
(PHFB) [34], the coupled-cluster (CC) method [35], the
in-medium generator coordinate method (IM-GCM) [36],
and the valence-space in-medium similarity renormalization
group method (VS-IMSRG) [37]. Each of these methods has
its strengths and weakness, largely discussed over time in
the literature, and the current situation is that there are still
significant differences between NME values calculated with
different methods, and sometimes even between NME val-
ues calculated with the same methods (see for example the
review [9]). For the 2νββ decay the NME are products of
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two Gamow-Teller (GT) transition amplitudes, and most of
the nuclear methods overestimate them, in comparison with
experiment. This drawback is often treated by introducing a
quenching factor that multiplies the GT operator and reduces
its strength. This is equivalent to using a quenched axial vector
constant, instead of its bare value gA = 1.27.

For the 0νββ decay the NME calculation is more com-
plicated, since, besides the GT transitions, other transitions
may contribute as well. Also, the NME values calculated
by different methods may differ by factors of 3–4 for most
relevant isotopes, and up to 7–8 in the case if 48Ca (see, e.g.,
Fig. 5 of Ref. [9], and Refs. [35,36]). Uncertainties in the
NME values are further amplified when predicting half-lives,
since they enter at the power of two in the lifetime formulas. In
addition, there is no measured lifetime for this decay mode to
compare with, and these uncertainties in the NME computa-
tion reflect in the interpretation of the DBD data and planning
the performances of the DBD experiments.

The shell model-based methods have some advantages,
such as the inclusion of all correlations between nucleons
around the Fermi surface, preserving all symmetries of the
nuclear many-body problem, and the use of widely tested
nucleon-nucleon (NN) interactions. For different mass re-
gions of nuclei, one uses several different effective NN
effective Hamiltonians that are appropriate for the correspond-
ing model spaces. These effective Hamiltonians are usually
obtained by starting with a theoretical Bruekner G-matrix
Hamiltonian that is further fine tuned to describe the exper-
imental energy levels for a large number of nuclei that can
be investigated in the corresponding model spaces. These
effective Hamiltonians are described by a small number of
single-particle energies and a finite number of two-body ma-
trix elements. As a byproduct, the wave functions produced
by these Hamiltonian can be used to describe and predict ob-
servables, such as the electromagnetic transition probabilities,
Gamow-Teller transitions probabilities, nucleon occupation
probabilities, spectroscopic factors, etc., using relatively sim-
ple changes of the transition operators in terms of effective
charges and quenching factors. These effective charges and
quenching factors are calibrated to the existing data. For 0νββ

NME such calibrations are not yet possible due to the lack of
data. However, different existing effective Hamiltonians for
nuclei involved in a given 0νββ decay produce smaller ranges
of the NME. In addition, some recent ab initio methods, such
as IMSRG [36,37], build on the modern advances in the shell
model by providing ab initio derived effective Hamiltonians
and effective transition operators, and they can provide some
guidance for calibrating the shell model 0νββ NME.

It would be thus interesting to study the robustness of the
0νββ NME to small changes of the parameters of different
effective shell model Hamiltonians and to examine how the
NME changes are correlated with other observables. In this
work, we propose a statistical analysis of 0νββ NME of 48Ca
calculated with the interacting shell model using three in-
dependent effective Hamiltonians (FPD6, GXPF1A, KB3G),
emphasizing the range of the NME probable values and their
correlations with several observables that can be compared
to existing nuclear data. Based on this statistical analysis we
propose a common probability distribution function for the

0νββ NME. We apply our analysis to 48Ca, which is the
lightest DBD isotope and thus more accessible to ab initio
calculations. We only consider in this work the standard light
LH neutrino exchange mass mechanism, which is most likely
to contribute to the 0νββ decay process.

The paper is organized as follows. In Sec. II the calculation
methods of the observables and the statistical model are pre-
sented. Then, in Sec. III we present the results and discussions
on their relevance, and in Sec. IV we end with conclusions
and outlook. Finally we included an Appendix with a short
presentation of the Gram-Charlier A series that we used in
our statistical model.

II. THE STATISTICAL MODEL

We plan to investigate the effect of small, random variation
of the shell model effective Hamiltonian on the neutrinoless
double-β decay NME of 48Ca, and the NME correlations with
other calculated observables, such as 2+ energies, B(E2)↑
values, 2νββ matrix elements, Gamow-Teller transition prob-
abilities, neutron and proton occupation probabilities, etc.

To achieve that goal we selected a number of often used ef-
fective Hamiltonians describing nuclei around 48Ca in the f p
shell (0 f7/2, 0 f5/2, 1p3/2, and 1p1/2 orbitals for both protons
and neutrons), and added small random contributions to their
two-body matrix elements (TBME). For this project we only
considered the FPD6 Hamiltonian [42], the KB3G Hamilto-
nian [15], and the GXPF1A Hamiltonian [43,44] as starting
effective Hamiltonians. In order to maintain the magicity of
48Ca we decided to keep the single particle (s.p.) energies
in the perturbed effective Hamiltonians the same as in the
starting Hamiltonians. Certainly, this choice is limiting our
analysis to shell model techniques, the f p model space, and
only three effective Hamiltonians that, although widely used,
have their limitations. One could, in principle use a larger
model space, such as sd-p f , or consider ab initio derived
effective Hamiltonians, such as those proposed in [36,37,45].
However, this would be beyond the limited purpose of this
paper.

One important decision to be made about the random
contributions to the starting Hamiltonians is the choice of
their maximum amplitude (range). In this work we were
guided by the analysis of the universal sd-shell effective
Hamiltonians USDA/USDB [46] where one starts with an
underlying G matrix and modifies linear combinations of two-
body matrix elements in a fine-tuning procedure [46] until the
root-mean-square (rms) deviation of the calculated energies
vs the experimental ones shows some signs of convergence.
In this fine-tuning process one would not want to change the
TBME too much from the original G-matrix values, because
the overfitted TBME could result in unitary changes of the
s.p. wave functions that may produce slightly better energies,
but incorrect observables. For USDA, for example, the rms
deviation of the TBME was about 300 keV, while a small
improvement in the overall energies given by USDB resulted
in an additional change of 100 keV if the rms deviation of
the TBME. This analysis suggests that an additional rms of
about 100 keV would not dramatically change the quality of
the TBME in the sd shell and we extended this choice to
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the f p shell. An analysis of the TBME for all three starting
Hamiltonians listed above indicates that a ±10% range for the
random contributions would suffice. Another interesting study
would be to consider selectively modifying only specific parts
of the effective Hamiltonian that would correspond to certain
properties, such as pairing, deformation, or the ones that affect
the rotational properties of the daughter nucleus. This would
imply a different analysis that could relate changes in the
values of the observables to changes of the matrix elements
of the effective Hamiltonian with specific spin and isospin,
and we plan to do such investigations in a future paper.

In the analysis we included as observables the 0νββ NME;
the 2νββ NME; the Gamow-Teller probability to reach the
first 1+ state in 48Sc from the ground states (g.s.) of the parent,
48Ca, and of the daughter, 48Ti; the energies of the 2+, 4+, and
6+ states of the parent and daughter; the B(E2)↑ transition
probabilities to the first 2+ state of parent and daughter; the
neutron occupation probabilities of the p f states of the parent;
and neutron and proton occupation probabilities of the p f
states of the daughter nucleus. The experimental occupation
probabilities for the nuclei relevant for the 48Ca 0νββ de-
cay are not available, but we include synthetic (calculated)
values in the analysis because the corresponding occupation
probabilities are available for other nuclei of interest for
0νββ decay [47–49], and it might be interesting to see if
they have any correlations with the 0νββ NME. All in all,
there are 24 observables included in our statistical analysis.
Some studies also look at other observables that could be of
relevance to the double-β decay analysis, such as the related
one-muon capture (OMC) rates [50]. Recent references for
the OMC data are [51] and [52]. However, one-muon capture
rate calculations are very complex, depending on interfering
contributions to the decay amplitude (see, e.g., Ref. [50]), and
are very sensitive to the effective Hamiltonian used (see, e.g.,
Ref. [53]). Given this complexity we decided to postpone the
inclusion of the OMC rates in our observables list.

The main goals are (i) for each starting effective Hamil-
tonian, find correlations between 0νββ NME and the other
observables that are accessible experimentally; (ii) find the-
oretical ranges for each observable; (iii) establish the shape
of different distributions for each observable and starting
Hamiltonian; (iv) use this information to find weights of
contributions from different starting Hamiltonians to the “op-
timal” distribution of the 0νββ NME; (v) find an “optimal”
value of the 0νββ NME and its predicted probable range (the-
oretical error). Note that similar studies for other observables
were recently proposed [54].

The 0νββ NME is related to the half-life of the respective
process [17] by

(
T 0ν

1/2

)−1 = G0ν (E0, Z )g4
A|M0ν |2 |〈ηl〉|2, (1)

where G0ν and M0ν are the PSF and nuclear matrix elements
for the 0ν decay, gA is the axial vector coupling constant,
and 〈ηl〉 ≡ 〈mββ〉/mec2 is a BSM parameter associated with
the light neutrino exchange mechanisms. Here we only con-
sider the contribution from the light left-handed (LH) neutrino
exchange mechanism, which is likely to contribute to the
0νββ decay. The methodology of calculating the 0νββ NME,

M0ν , within the shell model was extensively described else-
where [17,18,23] and it will not be repeated here. It suffices to
say that it includes a short-range correlation function that can
be viewed as an effective modification of the bare operator
(see below). Note that we do not include the recently pro-
posed contact term contribution to the 0νββ operator [55–57],
which we believe is more appropriate for a chiral effective
field theory approach to the short-range correlations in nuclei.
In addition, its associated weak coupling strength is somewhat
uncertain and needs to be obtained consistently from the data
(see, e.g., [45]). However, we “calibrate” our short-range cor-
relator to the ab initio results [37,45].

The 2νββ NME is related to the half-life of the respective
process [16] by

(
T 2ν

1/2

)−1 = G2ν (E0, Z )g4
A|mec2M2ν |2. (2)

Here, G2ν is the appropriate PSF, and M2ν can be calculated
with

M2ν =
∑

k

q2〈0+
f |στ−|1+

k 〉〈1+
k |στ−|0+

i 〉
Ek − E0

, (3)

where the summation is on the 1+
k states in 48Sc and E0 =

Qββ/2 + �M(48Sc − 48Ca)
Often, the shell model calculations of the 0νββ NME are

described as using the “bare” transition operator. This char-
acterization is unfortunate, since the transition operator (see,
e.g., Eqs. (7)– (12) of Ref. [17]) contains the bare operator
from the underlying theory of 0νββ decay, modified by a
phenomenological effective short-range correlation function,
1 + f (r), which is quenching the 0νββ NME. Therefore,
the short-range modification of the bare operator acts as an
effective operator. In practice the parameters of an effective
operator need to be calibrated to the data. Given that the
short-range correlator has radial dependence, its calibration
has been only done relative to some ab initio results. The
standard Miller-Spencer short-range correlator [17,58] pro-
duces the highest quenching of the NME, while the CD-Bonn
parametrization of the short-range correlator [59] produces
little to no quenching. A direct renormalization of the 0νββ

NME, by a similarity renormalization group (SRG) evolu-
tion of the NME of the bare operator from 200 to 10 major
harmonic oscillator shells using CD Bonn two body wave
functions, indicates that using a phenomenological CDBonn
parametrization of the short-range correlator is a reasonable
approach [60]. More recent ab initio calculations of the 0νββ

NME using the next-to-next-to-next-to-leading order (N3LO)
Hamiltonian provides more quenched values, more consis-
tent with the shell model results based on Miller-Spencer
parametrization of the short-range correlator. In an effort to
calibrate the effective operator used in shell model calcula-
tions to the latest ab initio, results we used the Miller-Spencer
correlator in this study.

The other observables used in this study, including the
excited state energies, the GT strengths to the first 1+ state
in 48Sc, the B(E2)↑ to the first 2+ state in the parent and
daughter, as well as the s.p. occupation probabilities, are cal-
culated in the standard way. Here we use in all cases the same
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TABLE I. Experimental data, experimental errors, and the calcu-
lated values using three effective Hamiltonians for the observables
analyzed. The data for occupation probabilities (∗) are not available
and were replaced with the GXPF1A results and errors (#) of 5% of
the highest nucleon species occupation.

Expt. Error FPD6 GXPF1A KB3G

0νββ NME N/A N/A 0.79 0.559 0.693
2νββ NME 0.035 [38] 0.003 0.062 0.050 0.045
48Ca B(E2)↑ 0.008[39] 0.001 0.007 0.006 0.05
48Ca 2+ 3.832 [40] 0.15 3.658 3.735 4.238
48Ca 4+ 4.503 [40] 0.15 4.134 4.264 4.231
48Ca 6+ 7.953 [40] 0.15 7.396 7.705 7.831
48Ca Occ(Nf5) 0.032∗ 0.395# 0.117 0.032 0.112
48Ca Occ(Nf7) 7.892∗ 0.395# 7.693 7.892 7.795
48Ca Occ(Np1) 0.009∗ 0.395# 0.029 0.009 0.024
48Ca Occ(Np3) 0.067∗ 0.395# 0.161 0.067 0.070
48Ca → 48Sc GT 1.09 [41] 0.28 1.01 1.226 0.510
48Ti B(E2)↑ 0.063[39] 0.003 0.064 0.052 0.052
48Ti 2+ 0.984 [40] 0.150 1.118 1.010 0.985
48Ti 4+ 2.296 [40] 0.150 2.492 2.168 2.214
48Ti 6+ 3.333 [40] 0.150 3.425 2.922 3.046
48Ti Occ(Nf5) 0.168∗ 0.277# 0.310 0.168 0.263
48Ti Occ(Nf7) 5.535∗ 0.277# 5.253 5.535 5.416
48Ti Occ(Np1) 0.048∗ 0.277# 0.068 0.048 0.061
48Ti Occ(Np3) 0.248∗ 0.277# 0.369 0.248 0.260
48Ti Occ(Pf5) 0.032∗ 0.092# 0.101 0.032 0.097
48Ti Occ(Pf7) 1.839∗ 0.092# 1.672 1.839 1.763
48Ti Occ(Pp1) 0.010∗ 0.092# 0.031 0.010 0.021
48Ti Occ(Pp3) 0.119∗ 0.092# 0.196 0.119 0.120
48Ti → 48Sc GT 0.014 [41] 0.005 0.050 0.032 0.056

effective charges (ep = 1.5 and en = 0.5) for B(E2)↑, and the
same quenching factor (q = 0.74) for the GT strengths and
M2ν .

III. RESULTS

The experimental data used in this study listed in Table I
and in the legends of the rightmost column in Figures 1–6
are taken from Ref. [40] (excitation energies of the 2+, 4+,
and 6+ states of 48Ca and 48Ti in MeV), Ref. [38] (2νββ

NME in MeV−1), Ref. [39] [B(E2)↑ in e2b2], and Ref. [41]
(GT transition probabilities to the first excited 1+ state in
48Sc). The experimental errors for the excitation energies are
very small, and for the calculation of the χ2 value we use
the typical theoretical rms value of 150 keV [43]. The ex-
perimental occupation probabilities are not available, and we
took as reference the GXPF1A results assuming a uniform
error that we choose to be 5% of the highest occupation for
a each nucleon species in the f p shell. In the figures Occ
(Nf7) designates the neutron occupation probability of the
f7/2 s.p. orbital, Occ (Pf3) designates the proton occupation
probability of the p3/2 s.p. orbital, etc.

Figures 1–6 show the main results of this study. The
leftmost columns indicates the 24 observables discussed in
Sec. II, including the 0νββ NME. The middle column shows
the scatter plots of the correlation of each variable with the

0νββ NME, and the last column shows the distribution of
each observable when the random term is added to the re-
spective effective Hamiltonian. The legends in columns with
correlations show the standard Pearson correlator R, and in
the last columns the legends include the mean, standard de-
viation, and the skewness (normalized third moment) values
of the distributions, as well as the result for the starting inter-
actions (FPD6, GXPF1A, and KB3G) and the experimental
values when available. Figures 1 and 2 present the results
for the FPD6 effective Hamiltonian, Figs. 3 and 4 show the
results for the GXPF1A effective Hamiltonian, and Figs. 5
and 6 present the results for the KB3G effective Hamilto-
nian. For each starting effective Hamiltonian we use 20 000
random Hamiltonians produced by the procedure described
in Sec. II.

The results in Figs. 1–6 indicate strong correlations be-
tween the 0νββ NME and the 2νββ NME. This behavior
is expected due to the GT transition operator that dominates
the results for both NME. Alternative approaches of obtaining
these NME, e.g., QRPA calculations, calibrate parts of their
nuclear Hamiltonian, such as the isoscalar particle-particle
interaction gpp, to describe the experimental value of the 2νββ

NME and to approximately restore the isospin symmetry, thus
inducing correlation with the 2νββ NME. In the shell model
approach, the Hamiltonian remains unchanged, and all sym-
metries are enforced. Therefore, we conclude that the strong
correlations between the 0νββ NME and the 2νββ NME are
genuine.

Interestingly, the correlations between the 0νββ NME and
the Gamow-Teller (GT) transition probabilities to the first
1+ state in 48Sc are much reduced. One explanation of this
phenomenom is based on the fact the distributions of the
GT strength from the parent and daughter (see last column
in Figures 1–6) are asymmetric in opposite direction, thus
diminishing the correlation effects. A quick look at the full
correlation matrix in Table III shows that the GT strengths to
the first 1+ state in 48Sc from 48Ca and 48Ti are anti-correlated
with a correlation coefficient of about −0.5.

Other observables that have relatively high
(anti)correlations with the 0νββ NME are the energies of
the 2+, 4+, and 6+ states in 48Ti and the neutron occupation
probabilities in 48Ca. Overall, the correlators R with the 2νββ

NME are around 0.9, the ones with the energies of the 2+,
4+, and 6+ states in 48Ti are about 0.77, and the correlators
with the 0 f5/2 occupation probability are about 0.6, while the
occupation probability of the 0 f7/2 is anticorrelated with the
0νββ NME, R ≈ −0.6.

The correlations between 0νββ NME and the energies of
the 2+, 4+, and 6+ states in the daughter could be related to
the mismatch of the pairing effects between the parent and
daughter, given that the correlations with the B(E2) values are
weak. This conclusion could be strengthened when studying
the effects of selectively changing the pairing two body matrix
elements of the effective Hamiltonian.

Additional interesting information can be extracted from
the full correlation matrix for all 24 observables. Tables II
and III show the full correlation matrix evaluated for the
FPD6 starting Hamiltonian. It is interesting to analyze which
other observables are correlated with those that are directly

054302-4



STATISTICAL ANALYSIS FOR THE NEUTRINOLESS … PHYSICAL REVIEW C 106, 054302 (2022)

FIG. 1. Correlations scattered plots and PDFs for the FPD6 starting Hamiltonian.

correlated with the 0νββ NME. We already discussed the
correlations between the GT strengths and the 2νββ NME.
In addition, one can observe that the 2+, 4+, and 6+ states in
48Ti are correlated with the neutron f and p state occupancies

in 48Ca, which in turn are correlated with some of the neutron
states occupancies in 48Ti. Also, some of the neutron occupa-
tion probabilities in 48Ti are correlated to the B(E2)↑ values.
It is also observed that three of the neutron occupancies in
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FIG. 2. Continuation of Fig. 1.

48Ca correlate with the 0νββ and 2νββ NME, while the
fourth anticorrelates. One can understand the (anti)correlation
occupancies of the four orbitals because three of them con-
strain the fourth, as the number of particles is fixed. These

observations highlight the importance of a reliable experi-
mental investigation of the occupation probabilities for these
nuclei. In some cases, most noticeably the B(E2)↑ PDF plots
shown in Figs. 1–6, there appears to be some significant
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FIG. 3. Correlations scattered plots and PDFs for the GXPF1A starting Hamiltonian.

fluctuations in the density and height of the bars. This is sim-
ply a plotting artifact due to rounding errors when displaying a
very narrow range of small values that are mapped on a small
number of bins.

It would be interesting to extract some information about
possible range and mean value of the 0νββ NME based on
this statistical analysis. First, it is clear that the value of all
observables are quite stable to reasonably small changes of
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FIG. 4. Continuation of Fig. 3.

the effective Hamiltonian. No hints of any wild departure from
the main values that would indicate some phase transitions are
found. This seems to be a consequence of the preservation
of nuclear many-body symmetries in the shell model. One

can further try using the distributions of all available effective
Hamiltonians to draw conclusions on some optimal values for
the 0νββ NME and its range (error). One direct approach
would be to superpose the distributions of the NME produced
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FIG. 5. Correlations scattered plots and PDFs for the KB3G starting Hamiltonian.

in Figs. 1–6 withe some weighting factors WH ,

P(x) = WFPD6PFPD6(x) + WGXPF1APGXPF1A(x)

+ WKB3GPKB3G(x), (4)

where x is the value of the 0νββ NME. The normalized
weights WH can be inferred using, for example, the likelihood
probability ∝ exp(−χ2/2) for independent observables, and
Bayesian model averaging for the correlated observables that
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TABLE II. Correlation matrix for the 24 observables described in the text using the FPD6 starting Hamiltonian (continues in Table III).

0νββ 2νββ 48Ca 48Ca 48Ca 48Ca 48Ca Occ 48Ca Occ 48Ca Occ 48Ca Occ 48Ca → 48Ti
NME NME B(E2)↑ 2+ 4+ 6+ (Nf5) (Nf7) (Np1) (Np3) 48Sc GT B(E2)↑

0νββ NME 1.00 0.90 0.43 0.22 0.24 0.18 0.62 −0.58 0.30 0.41 0.12 −0.06
2νββ NME 0.90 1.00 0.38 0.28 0.30 0.17 0.44 −0.47 0.25 0.37 0.10 −0.18
48Ca B(E2)↑ 0.43 0.38 1.00 −0.35 −0.27 −0.31 0.55 −0.91 0.53 0.92 −0.17 0.32
48Ca 2+ 0.23 0.28 −0.35 1.00 0.96 0.49 −0.06 0.32 −0.23 −0.42 0.51 −0.38
48Ca 4+ 0.24 0.30 −0.27 0.96 1.00 0.44 −0.01 0.26 −0.17 −0.36 0.54 −0.33
48Ca 6+ 0.18 0.17 −0.31 0.49 0.44 1.00 −0.22 0.25 −0.19 −0.20 0.26 −0.22
48Ca Occ(Nf5) 0.62 0.44 0.55 −0.06 −0.01 −0.22 1.00 −0.77 0.38 0.42 −0.04 0.12
48Ca Occ(Nf7) −0.58 −0.47 −0.91 0.32 0.26 0.25 −0.77 1.00 −0.58 −0.90 0.17 −0.30
48Ca Occ(Np1) 0.30 0.25 0.53 −0.23 −0.17 −0.19 0.38 −0.58 1.00 0.48 −0.11 0.19
48Ca Occ(Np3) 0.41 0.37 0.92 −0.42 −0.36 −0.20 0.42 −0.90 0.48 1.00 −0.22 0.34
48Ca → 48Sc GT 0.12 0.10 −0.17 0.51 0.54 0.26 −0.04 0.17 −0.11 −0.22 1.00 −0.27
48Ti B(E2)↑ −0.06 −0.18 0.32 −0.38 −0.34 −0.22 0.12 −0.30 0.19 0.34 −0.27 1.00
48Ti 2+ 0.80 0.89 0.37 0.32 0.32 0.20 0.47 −0.47 0.24 0.35 0.23 −0.24
48Ti 4+ 0.78 0.85 0.35 0.35 0.35 0.25 0.45 −0.45 0.23 0.34 0.22 −0.19
48Ti 6+ 0.75 0.80 0.42 0.28 0.28 0.24 0.48 −0.52 0.26 0.42 0.03 0.13
48Ti Occ(Nf5) 0.14 −0.03 0.39 −0.16 −0.11 −0.36 0.75 −0.53 0.25 0.24 −0.00 0.27
48Ti Occ(Nf7) 0.12 0.32 −0.51 0.47 0.42 0.37 −0.37 0.53 −0.33 −0.49 0.20 −0.82
48Ti Occ(Np1) −0.13 −0.29 0.27 −0.34 −0.29 −0.24 0.10 −0.26 0.56 0.25 −0.02 0.65
48Ti Occ(Np3) −0.25 −0.38 0.43 −0.51 −0.47 −0.26 0.03 −0.37 0.21 0.50 −0.28 0.88
48Ti Occ(Pf5) 0.22 0.01 0.20 0.00 0.03 −0.08 0.56 −0.35 0.15 0.12 0.21 0.27
48Ti Occ(Pf7) 0.21 0.41 −0.16 0.24 0.20 0.16 −0.10 0.16 −0.11 −0.16 −0.01 −0.85
48Ti Occ(Pp1) −0.11 −0.29 0.13 −0.19 −0.16 −0.14 0.06 −0.13 0.30 0.12 0.16 0.60
48Ti Occ(Pp3) −0.33 −0.49 0.11 −0.28 −0.25 −0.16 −0.09 −0.06 0.05 0.14 −0.09 0.89
48Ti → 48Sc GT 0.15 0.40 0.23 −0.03 −0.02 −0.24 0.15 −0.20 0.13 0.19 −0.55 0.03

TABLE III. Correlation matrix: continuation of Table II.

48Ti 48Ti 48Ti 48Ti Occ 48Ti Occ 48Ti Occ 48Ti Occ 48Ti Occ 48Ti Occ 48Ti Occ 48Ti Occ 48Ti →
2+ 4+ 6+ (Nf5) (Nf7) (Np1) (Np3) (Pf5) (Pf7) (Pp1) (Pp3) 48Sc GT

0νββ NME 0.80 0.78 0.75 0.14 0.12 −0.13 −0.25 0.22 0.21 −0.11 −0.33 0.15
2νββ NME 0.89 0.85 0.80 −0.03 0.32 −0.29 −0.38 0.01 0.41 −0.28 −0.48 0.39
48Ca B(E2)↑ 0.37 0.35 0.42 0.39 −0.51 0.27 0.43 0.19 −0.16 0.13 0.11 0.23
48Ca 2+ 0.32 0.35 0.27 −0.16 0.47 −0.34 −0.51 0.00 0.24 −0.19 −0.28 −0.03
48Ca 4+ 0.32 0.35 0.28 −0.11 0.42 −0.29 −0.47 0.03 0.20 −0.16 −0.25 −0.02
48Ca 6+ 0.20 0.25 0.24 −0.36 0.37 −0.24 −0.26 −0.07 0.16 −0.14 −0.16 −0.24
48Ca Occ(Nf5) 0.47 0.45 0.48 0.75 −0.37 0.10 0.03 0.56 −0.10 0.06 −0.09 0.15
48Ca Occ(Nf7) −0.47 −0.45 −0.52 −0.53 0.53 −0.26 −0.37 −0.35 0.16 −0.13 −0.06 −0.20
48Ca Occ(Np1) 0.24 0.23 0.26 0.25 −0.33 0.56 0.21 0.15 −0.11 0.30 0.05 0.13
48Ca Occ(Np3) 0.35 0.34 0.42 0.24 −0.49 0.25 0.50 0.12 −0.16 0.12 0.14 0.19
48Ca → 48Sc GT 0.23 0.22 0.03 0.00 0.20 −0.02 −0.28 0.21 −0.01 0.16 −0.09 −0.55
48Ti B(E2)↑ −0.24 −0.19 0.13 0.27 −0.82 0.65 0.88 0.27 −0.85 0.60 0.89 0.03
48Ti 2+ 1.00 0.96 0.85 0.16 0.25 −0.24 −0.42 0.20 0.36 −0.19 −0.51 0.28
48Ti 4+ 0.96 1.00 0.89 0.16 0.21 −0.21 −0.36 0.22 0.29 −0.15 −0.44 0.24
48Ti 6+ 0.85 0.89 1.00 0.20 −0.01 −0.09 −0.09 0.22 0.08 −0.07 −0.18 0.35
48Ti Occ(Nf5) 0.16 0.16 0.20 1.00 −0.64 0.34 0.22 0.81 −0.42 0.35 0.18 −0.05
48Ti Occ(Nf7) 0.25 0.21 −0.01 −0.64 1.00 −0.74 −0.88 −0.55 0.86 −0.66 −0.80 0.12
48Ti Occ(Np1) −0.24 −0.21 −0.09 0.34 −0.74 1.00 0.66 0.41 −0.75 0.88 0.67 −0.22
48Ti Occ(Np3) −0.42 −0.36 −0.09 0.22 −0.88 0.66 1.00 0.19 −0.82 0.56 0.90 −0.10
48Ti Occ(Pf5) 0.20 0.22 0.22 0.81 −0.55 0.41 0.19 1.00 −0.57 0.56 0.26 −0.30
48Ti Occ(Pf7) 0.36 0.29 0.08 −0.42 0.86 −0.75 −0.82 −0.57 1.00 −0.81 −0.94 0.31
48Ti Occ(Pp1) −0.19 −0.15 −0.07 0.35 −0.66 0.88 0.56 0.56 −0.81 1.00 0.67 −0.35
48Ti Occ(Pp3) −0.51 −0.44 −0.18 0.18 −0.80 0.67 0.90 0.26 −0.94 0.67 1.00 −0.23
48Ti → 48Sc GT 0.28 0.24 0.35 −0.05 0.12 −0.22 −0.10 −0.30 0.31 −0.35 −0.23 1.00
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FIG. 6. Continuation of Fig. 5.

dominate the contributions to the weights (see, e.g., Sec. 4
of [61]). Based on the data we show in Table I, we get
the following χ2 values for each starting effective Hamilto-
nian: 7.9 for FPD6, 4.8 for GXPF1A, and 7.3 for KB3G.

Unfortunately, there are no experimental data for the occupa-
tion probabilities that seem to correlate directly and indirectly
with the 0νββ NME. Therefore, here we present the results of
a “democratic” approach in which all WH are 0.33. Figure 7
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FIG. 7. PDF of the 0νββ NME distributions for the FPD6,
GXPF1A, and KB3G Hamiltonians and their weighted sum (see text
for details).

shows the probability distribution functions (PDFs) for the
three starting effective Hamiltonians and their weighted sum.
To calculate each PDF we use the Gram-Charlier A series
expansion [62] (see the Appendix for detaisl), based on the
first four normalized moments of the distributions presented
in Figs. 1–6. Based on the results of our statistical analysis
summarized in Fig. 7 (see “weighted sum” curve) one can
infer that with 90% confidence the 0νββ NME lies in the
range between 0.45 and 0.95, with a mean value of about 0.68.

IV. CONCLUSION AND OUTLOOK

In conclusion, we developed a statistical model for ana-
lyzing the distribution of the 0νββ NME of 48Ca using the
interactive shell model in the f p-shell model space. In the
analysis we started from three widely used effective Hamil-
tonians for the low part of the f p shell, FPD6, GXPF1A,
and KB3G, to which we added a random contributions to the
TBME of ±10%. Using sample sizes of 20 000 points we
analyzed for each starting effective Hamiltonian (i) the corre-
lations between 0νββ NME and the other observables that are
accessible experimentally; (ii) the theoretical ranges for each
observables (iii) the shapes of different distributions for each
observable and starting Hamiltonian; (iv) the weighted contri-
butions from different starting Hamiltonians to the “optimal”
distribution of the 0νββ NME; (v) an “optimal” value of
the 0νββ NME and its predicted probable range (theoretical
error).

We found that the 0νββ NME correlates strongly with the
2νββ NME, but much less with the Gamow-Teller strengths
to the first 1+ state in 48Sc. We also found that the 0νββ NME
exhibits reasonably strong correlations with the energies of the

2+, 4+, and 6+ states in 48Ti, and with the neutron occupation
probabilities in 48Ca. We also found that there are additional
correlations between observables, such as the energies of the
2+, 4+, and 6+ states in 48Ti and the neutron occupation
probabilities, as well as between B(E2)↑ values in 48Ti and
proton and neutron occupation probabilities, which can indi-
rectly influence the 0νββ NME. Therefore, we conclude that
reliable experimental values of the occupation probabilities in
48Ti and 48Ca would be useful for this analysis, potentially
helping to reduce the uncertainties of the 0νββ NME.

Based on this statistical analysis with three independent
effective Hamiltonians we propose a common probability dis-
tribution function for the 0νββ NME, which has a range
(theoretical error) of (0.45–0.95) at 90% confidence level, and
a mean value of 0.68. We also hope that the present analysis
will help ab initio studies, such as [35–37] to better identify
correlations and further reduce the uncertainties of the 0νββ

NME
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APPENDIX: GRAM-CHARLIER A SERIES

In order to have a good representation for the PDF of
the 0νββ NME, we consider small deviation from normal
distribution via the Gram-Charlier A series [62]. This is
given by

P(x) ≈ 1√
2πσ

exp

[
− (x − μ)2

2σ 2

]

×
[

1+ μ3

3!
He3((x−μ)/σ )+ μ4−3

4!
He4((x−μ)/σ )

]
,

(A1)

awhere Hek (y) are the Chebyshev-Hermite polynomials,
He3(y) = y3 − 3y and He3(y) = y4 − 6y2 + 3, μ and σ are
the mean and variance of a probability density function (PDF),
and μk with k = 3, 4 are normalized moments of the same
PDF, P(x):

μk =
∫ (x − μ

σ

)k

P(x)dx, (A2)

In practice, we use the sample moments μ3 (skewness) and
μ4 − 3 (kurtosis), which in the limit of very large sample sizes
become very close to the underlying moments.
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