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We present a mechanism to efficiently preselect the number of intrinsic many-body states that are used to
define the many-body wave functions within the discrete generator coordinate method (GCM). This procedure,
based on the proper definition of a natural basis of orthonormal states, does not require the evaluation of
the nondiagonal Hamiltonian kernels to do the selection and helps to reduce the numerical instabilities. The
performance of the method is analyzed in detail in the ground state and 0+ excited states of some selected nuclei
computed with the Gogny energy density functional.
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I. INTRODUCTION

The generator coordinate method (GCM) provides a gen-
eral framework to give variational solutions to the many-body
problem [1–3]. It is based on the definition of the variational
trial wave functions as the linear mixing of different intrinsic
configurations defined along the so-called generating coordi-
nates. This beyond-mean-field method can give ground and
excitation energies, decay probabilities, and interpretations
of the results in terms of collective and single-particle de-
grees of freedom. In nuclear physics, the most common (and
involved) realizations of the GCM formalism nowadays is
the mixing of symmetry-restored (particle-number, parity, and
angular-momentum projected) intrinsic quasiparticle states
obtained from self-consistent mean-field calculations. Such an
implementation has been used in different contexts. Hence,
with energy density functionals (EDFs) it is often referred
as multireference EDF (MR-EDF) or symmetry conserv-
ing configuration mixing (SCCM) [4–8]; with valence-space
Hamiltonians it is known as projected-GCM (PGCM) [9–13],
discretized nonorthogonal shell model (DNO-SM) [14], or
Monte Carlo shell model (MCSM) [15]. All of these methods
are very similar and they subtly differ by the definition of the
intrinsic states, the generating coordinates used, the nuclear
interaction, the selection of the states and/or a combination of
the aforementioned.

One of the properties of the GCM is that the variational
approximation can be straightforwardly improved by adding
more complexity to the trial wave functions, i.e., including
more generating coordinates and/or quasiparticle configura-
tions. Some methods incorporate a selection process to reduce
the number of configurations that are actually used [14–16].
For example, in the MCSM the set of intrinsic states is
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chosen with a stochastic method and a new wave function is
incorporated in the definition of the GCM state if the result-
ing diagonalization with such an augmented set produces an
energy gain and a reduction of the dispersion of the energy.
However, the computational burden can quickly become pro-
hibitive because they involve the evaluation of costly matrix
elements of the Hamiltonian.

Another problem that the GCM presents is the practical
solution of the Hill-Wheeler-Griffin (HWG) equation that is
deduced from the variational method [1–3]. While the GCM
was originally proposed as a continuous integral superposi-
tion, most modern applications use a discrete representation
where the integral is replaced by a discrete sum of nonorthog-
onal states [17]. Hence, the HWG equation is essentially a
generalized eigenvalue problem that must be transformed first
into a regular Schrödinger-like equation. This is normally per-
formed by extracting an orthonormal and linear independent
set of states, the so-called natural basis, from the original
set of intrinsic states [18–20]. However, this basis presents
numerical instabilities and the selection of the final results
is usually done by analyzing the GCM energy as a function
of the number of states included in the natural basis [8,21].
This selection and convergence of the results is sometimes
delicate and, again, requires the evaluation of diagonal and
nondiagonal Hamiltonian kernels. Additionally, the final num-
ber of states in the natural basis is smaller (or equal, at
most) than the number of intrinsic states in the initial set due
to exact and/or approximate linear dependencies in such a
set [18,19,22]. Then, one could ask whether there is a lim-
itation in the number of meaningful orthonormal states that
can be obtained from an original set of wave functions that
are built by exploring a given generating coordinate.

In this work we study the convergence of the GCM en-
ergies with the number of intrinsic states defined along a
generating coordinate within a pre-established interval. In par-
ticular, we perform calculations of three characteristic nuclei
(40Ca, 80Sr, and 186Pb) with the Gogny D1S energy density
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functional [8,23] and the axial quadrupole deformation as the
GCM degree of freedom. We analyze the properties of the
different natural bases that can be built with more or less
states included in such an original set and how these properties
can help us to choose an optimal number of intrinsic states
without computing costly Hamiltonian matrix elements at that
stage of the calculation. The paper is organized as follows:
First, we summarize the GCM method and propose a way
to reduce the number of intrinsic configurations included in
the calculations based on the orthonormality of the natural
basis (Sec. II). Then, we analyze the results obtained with
the Gogny EDF calculations in Sec. III for 0+ ground and
excited states. Finally, we summarize the main conclusions of
the present work (Sec. IV).

II. THEORETICAL FRAMEWORK

We start with the definition of the discretized GCM
ansatz [17]. The nuclear many-body states are obtained as

|�σ 〉 =
Nint∑

i=1

f σ
qi
|�qi〉, (1)

where σ = 1, 2, . . . is used to label the order of the
states in the energy spectrum and {|�qi〉}i=1,...,Nint is a
set of nonorthogonal—and possibly linearly dependent—
intrinsic many-body states that have different values of
the so-called generating coordinates {qi} that are chosen
on physical grounds. For example, in the PGCM, the set
of intrinsic states is formed by particle number, parity,
and angular-momentum projected Bogoliubov quasiparticle
states, |�qi〉 = PN PZ PπPJ

MK |φqi〉. Here PN (Z ), Pπ , PJ
MK are

the projectors onto good number of neutrons (protons), parity,
and angular momentum and its projection onto the laboratory
and body-fixed z axis, respectively [24,25]. The states |φqi〉
are obtained by solving constrained Hartree-Fock-Bogoliubov
(HFB) equations [3] (or other versions like the variation
after particle number projection, VAPNP [26]) with {qi} be-
ing multipole deformations, pairing content, cranking angular
momentum, etcetera. For example, in this work we use the
axial quadrupole deformation β2 as the generating coordi-
nate, which is defined through the quadrupole moment Q20 =
r2Y20(θ, ϕ) as

β2 = 4πQ20

3r2
0 A5/3

, (2)

where r0 = 1.2 fm, A is the total mass number, and r and
Y20(θ, ϕ) are the radial coordinate and the spherical harmonics
of degree two and order zero, respectively.

The application of the variational method to the coeffi-
cients of the linear combination in Eq. (1) gives the HWG
equation:

Nint∑

j=1

(Hqi,q j − EσNqi,q j ) f σ
q j

= 0, (3)

where the norm and Hamiltonian overlap matrices are defined
as

Nqi,q j = 〈�qi |�q j 〉, (4)

Hqi,q j = 〈�qi |Ĥ |�q j 〉. (5)

The solution of Eq. (3) provides a variational approximation
to the exact energies and wave functions of the nuclear Hamil-
tonian Ĥ . In fact, other observables and transition properties
associated with a generic operator Ô can be evaluated through

Oσ1,σ2 = 〈�σ1 |Ô|�σ2〉 =
Nint∑

i, j=1

f σ1∗
qi

〈�qi |Ô|�q j 〉 f σ2
q j

. (6)

We emphasize that the nonorthogonal condition of the intrin-
sic wave functions and, more specifically, of the Bogoliubov
quasiparticle states is actually necessary to be able to use
the generalized Wick theorem to compute nondiagonal matrix
elements for the various operators [27].

A. Solution of the Hill-Wheeler-Griffin equation

The discrete HWG equation requires some processing to
solve it. Hence, we have to define a proper orthonormal ba-
sis since the intrinsic states are not orthogonal and might
be linearly dependent. The usual way of finding such an
orthonormal basis is through the canonical orthonormaliza-
tion [19] where the eigenvalues (λk ) and eigenvectors (uλk ,qi )
of the norm overlap matrix are used to define the so-called
natural basis, {|�k〉}k=1,...,Nnat with

Nint∑

j=1

Nqi,q j uλk ,q j = λkuλk ,qi , (7)

|�k〉 =
Nint∑

i=1

uλk ,qi√
λk

|�qi〉. (8)

The eigenvalues {λk � 0} for all k since the norm overlap
matrix is positive semidefinite. The most critical point of the
stability of the method comes from the exact and/or approx-
imate linear dependence (LD) of the intrinsic set of states. If
there are Lexa intrinsic states such that

|�qm〉 =
Nint−Lexa∑

i=1

ai|�qi〉, (9)

then there will be Lexa eigenvalues with λm exactly zero
and the natural basis states coming from these eigenvalues
and eigenvectors must not be taken into account (m = Nint −
Lexa + 1, . . . , Nint). These kinds of states are found, e.g., in the
K mixing when angular-momentum projection of signature
symmetry conserving states is performed (see, e.g., Ref. [25]).
However, there could be also Lapp very small norm overlap
matrix eigenvalues that do not correspond to intrinsic states
fulfilling Eq. (9). On the contrary, increasingly small and
different from zero eigenvalues may naturally appear in large
positive-definite matrices (λ = 0 is an accumulation point for
the eigenvalues [19]). This approximate LD may cause a nu-
merically meaningless definition of several natural basis states
as was already pointed out by Lathouwers in the seventies
of the past century [22]. Therefore, even if the number of
elements of the natural basis should be equal to Nint − Lexa,
we have to remove additionally Lapp states that correspond
to λk < ελ. It was also proven in Ref. [22] that the most
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faithful truncated natural basis to the original one corresponds
to {|�k〉}k=1,...,Nnat with Nnat = Nint − Lexa − Lapp and using
the Nnat-largest eigenvalues of the norm overlap matrix to
build and sort out such a basis, where k = 1 corresponds to
the largest eigenvalue, k = 2 the second largest, and so on.
The parameter ελ must be a small number to be determined
heuristically (see below).

Instead of using ελ, we propose in the present work to use
the deviation of the natural basis from its orthonormality as
a more restricted and numerically stable method to determine
the number of elements of the natural basis:

〈�k|�k′ 〉 − δkk′ < εnat ∀ k, k′. (10)

That means that the states that do not fulfill Eq. (10) are
removed from the natural basis.

Once the natural basis is properly defined, the GCM many-
body states can be now spanned in such a basis as

|�σ 〉 =
Nnat∑

k=1

gσ
k |�k〉, (11)

and the HWG equation can be read as a normal eigenvalue
problem:

Nnat∑

k′=1

〈�k|Ĥ |�k′ 〉gσ
k′ = Eσ gσ

k . (12)

The usual procedure to check the convergence of the GCM
results is the study of the GCM energy Eσ (Nnat ) obtained by
solving Eq. (12) with an increasing number of states in the nat-
ural basis [8,21]. If the contribution to the GCM wave function
of the last natural basis states—with smaller norm overlap ma-
trix eigenvalues—is increasingly less significant, then a nearly
constant Eσ (Nnat ) within a range Nnat,min � Nnat � Nnat,max is
found. This is the so-called plateau condition. In fact, if we
take Nnat > Nnat,max , or, equivalently, ελ very small, then the
exact and/or approximate linear dependencies should become
numerically evident in the form of a sudden jump in the
energy. This is the best case scenario to identify the optimal
Nnat and the converged GCM energy Eσ . However, a more
or less continuous decrease and/or small jumps before the
LD breakdown is found in many practical calculations and
sometimes is difficult to assess unambiguously the final value
of the GCM energy and the wave function.

Another interesting aspect also found in the study of the
plateaus is the similar convergence of the energy with dense
and sparse initial sets of intrinsic wave functions provided that
these sets are defined along a given collective coordinate with
the same boundaries, e.g., the axial quadrupole deformation
β2 ∈ [β2,min, β2,max]. This behavior could indicate a “satura-
tion” in the number of relevant natural states that can be built
by exploring a collective degree of freedom and we could use
this information to limit a priori the number of intrinsic states,
i.e., before computing costly Hamiltonian overlaps and solv-
ing the HWG equation. This preselection can be performed by
applying the following steps:

(A) Find a sparse set of intrinsic wave functions in the
interval qi ∈ [qmin, qmax], S = {|�qi〉}i=1,...,Nint .

(B) Solve Eq. (7) and build the natural basis states
[Eq. (8)], {|�k〉}k=1,...,Nint .

(C) Build the Nint × Nint natural basis norm overlap matrix
and keep only the Nnat states that fulfill the orthonor-
malization condition for a chosen εnat [Eq. (10)].

(D) If Nnat 	 Nint , repeat the process but increasing the
density of states in the set S in order to reach the
saturation point. Otherwise, solve the HWG equa-
tion [Eq. (12)] by diagonalizing (without truncations
related with ελ) the corresponding Nnat × Nnat Hamil-
tonian matrix.

Two a priori advantages of this protocol with respect to
the plateau condition can be stressed. On the one hand, com-
puting only norm overlap matrices and diagonal Hamiltonian
overlaps is much less time-consuming than evaluating the
full Hamiltonian overlap matrix. These are only calculated
once the optimal number of elements in the natural basis is
found. On the other hand, the method ensures the numerical
orthonormality of the natural basis. Therefore, all the Nnat

eigenvalues and eigenvectors obtained from the solution of the
HWG equation should be meaningful in this space—not only
those with the lowest energies—and the plateau condition
should not be needed.

III. RESULTS

Let us now analyze the above protocol with actual PGCM
calculations performed with the Gogny D1S energy den-
sity functional. Similar studies have been carried out with
valence-space Hamiltonian PGCM methods using the recently
developed code TAURUS [10,11,28] and the results are equiv-
alent and not shown for the sake of simplicity. Because of
the versatility of the method, we can choose three nuclei
as examples of double-magic (40Ca), open-shell (80Sr), and
semimagic (186Pb) nuclei, all of them in different regions of
the nuclear chart with different structural properties (see be-
low and Refs. [29–31] and references therein). As mentioned
above, the intrinsic wave functions that are mixed within the
GCM ansatz are particle number and angular-momentum pro-
jected (PNAMP) HFB quasiparticle vacua. These HFB states
have different axial quadrupole deformations parametrized by
β2 and they are obtained using the VAPNP method, i.e., by
minimizing the particle number projected energy with the
constraint in the quadrupole moment operator Q̂20. Addi-
tionally, we impose axial, parity, and simplex self-consistent
symmetries to the underlying HFB transformation, and we
use a spherical harmonic-oscillator basis including thirteen
major shells as the working basis to expand the HFB states
(see Refs. [7,8] for more details). Due to the self-consistent
symmetries, the norm overlap matrix elements are calcu-
lated without ambiguities in their phases with the Onishi
formula [27].

We focus our analysis first on the ground state of the many-
body system. Five different sets of intrinsic wave functions
within the interval β2 ∈ [−0.65, 0.95] have been defined,
namely, S j=1,...,5 with Nint, j = 20, 40, 80, 160, 320 elements
in each set such that S1 ⊂ S2 ⊂ · · · ⊂ S5. In fact, we introduce
one state between two consecutive states in the set Sj to build
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FIG. 1. (a)–(c) VAPNP (black dashed-dotted line) and PNAMP (symbols) total energies, normalized to their respective PNAMP minima,
as a function of the axial quadrupole deformation calculated with the Gogny D1S interaction for different sets of initial states, Nint , for the
nuclei 40Ca (left panel), 80Sr (center panel), and 186Pb (right panel). (d)–(f) Eigenvalues of the norm overlap matrix sorted from the largest
to the smallest values. (g)–(i) Lowest eigenvalues (shifted by 346.6, 686.4, and 1432.3 MeV) obtained by solving the HWG equations as a
function of the number of the states included in the natural basis, Nnat . The red dashed line corresponds to the minimum of the PNAMP energy
obtained in panels (a)–(c) and the insets zoom out the same data represented in panels (d)–(f) and (g)–(i), respectively

the set S j+1. The total-energy curves (TECs) for the VAPNP
and the subsequent PNAMP (J = 0) approximations along the
axial quadrupole deformation are represented in Figs. 1(a)–
1(c). The sets S j correspond to equally distributed points in
such curves including always the points at the boundaries
of the interval in β2. It is important to stress that the choice of
the interval in β2 (and the points within it) is made to include
the absolute minima of the different TECs and intrinsic states
with VAPNP energies up to ≈20 MeV above such minima.
The ability of the GCM to approach the exact solutions of
the many-body system will obviously depend on this selec-
tion, that is dictated by the diagonal norm and Hamiltonian

overlaps. However, we will not focus in this work on the study
of the GCM energies with respect to the limits of the interval
and take the above prescription as a reasonable and widely
used choice.

We observe that, at the VAPNP level, the three nuclei
show spherical minima with narrower wells for the magic
ones (40Ca and 186Pb) and some other local valleys at de-
formed configurations. Hence, an oblate normal-deformed
and a prolate superdeformed minima are clearly seen in
40Ca, secondary prolate deformed minima are obtained in
80Sr, and prolate and oblate minima are also found in 186Pb.
The simultaneous particle number and angular-momentum

054301-4



OPTIMIZATION OF THE NUMBER OF INTRINSIC … PHYSICAL REVIEW C 106, 054301 (2022)

restoration of the intrinsic HFB states (J = 0) produces an
energy gain in all the points of the VAPNP-TECs except
the spherical one that becomes a maximum that separates
two almost symmetric minima around this point. For 40Ca
the PNAMP-TEC is rather flat within an interval of β2 ∈
[−0.2,+0.2] and the normal- and superdeformed minima
gain a significant amount of correlation energy. The latter is
also observed in 80Sr, where the PNAMP prolate deformed
minimum is almost degenerate with the minima around the
spherical point, and in the deformed VAPNP minima in
186Pb. Here, the two symmetric minima around β2 = 0 are
not as flat as in the 40Ca case. We note that the shape
of the PNAMP-TECs are well reproduced independently of
the density of points in the mesh, except in the nucleus
186Pb with the S1 subset where the fine structure around
the spherical and oblate minima could not be very well de-
fined.

A. Convergence of the generator coordinate method
with the plateau condition

Now we solve the HWG equations defined after mixing the
J = 0 intrinsic states for the different Sj sets. The eigenvalues
of the Nint, j × Nint, j norm overlap matrices, sorted from the
largest to the smallest in the x axis, are plotted in Figs. 1(d)–
1(f). These eigenvalues are normalized to the largest one.
Insets represent the full range of eigenvalues obtained while
a zoom-in to the most relevant regions are shown in the main
body of the figures. We observe that the overall trends of
the eigenvalues are independent of the nucleus under con-
sideration. We also see common features in the behavior
of the eigenvalues for all sets of intrinsic wave functions.
First, the largest eigenvalue is separated from the rest of the
eigenvalues. Moreover, the larger the dimension of the norm
overlap matrix, the larger is the largest eigenvalue and smaller
the smallest eigenvalue obtained (not shown because of the
normalization). Second, the rest of the eigenvalues decrease
smoothly to very small values with nearly the same slope for
all the sets in a rather wide range of eigenvalues. In fact, the
curves of the normalized eigenvalues for the different sets
are on top of each other until they deviate at the smaller
eigenvalues obtained for each set. The differences between the
sets are found in the change to a smaller slope for the S5, S4,
and, to lesser extent, S3 sets, which allows the accumulation
of many eigenvalues in the range 10−7–10−12 (see insets).
This behavior indicates that, even though the eigenvalue zero
is an accumulation point, exact linear dependencies are not
actually observed. In addition, potential problems associated
with approximate linear dependencies will be more evident in
the sets with more intrinsic HFB states.

To check such potential numerical instabilities that could
appear when solving the HWG equations we represent
in Figs. 1(g)–1(i) the lowest (J = 0) eigenvalue of the
〈�k|Ĥ |�k′ 〉 matrix [see Eq. (12)] as a function of the number
of states included in the natural basis, Nnat, for the different
sets, S j . Again, the insets represent the same values at a
lower-resolution scale. Most of the GCM points lie below the
minimum of the PNAMP J = 0 TEC shown in the top panel
and marked as a dotted line in the insets at the bottom panel of

the corresponding figures. This is an indication of the amount
of correlations attained with the GCM mixing.

We observe in 80Sr and 186Pb a strong reduction of the
GCM energy from considering only one state in the natural
basis (the one built with the largest eigenvalue of the norm) to
adding more states. We also see that, after this reduction, the
GCM energy is slowly decreasing with the number of states in
the natural basis and sudden drops are obtained with the sets
S3, S4, and S5 after considering a certain number of states, i.e.,
we have a sort of plateau condition. For 40Ca we also see a
similar result, but the initial jump is not found and the final
abrupt drop is reached by all the sets.

We point out that the plateaus obtained with the differ-
ent sets lie almost on top of each other for the three nuclei
considered, with the exception of the set S1 in 80Sr that
is slightly above. The main difference between the differ-
ent sets is the larger size of the plateau observed for the
sets with more intrinsic states. However, the size for S3, S4,
and S5 is significantly smaller than the number of intrinsic
wave functions contained in the sets, meaning that the ap-
proximate linear dependence is occurring (see insets). If we
take the point where the first big jump in energy occurs to
establish the maximum number of states in the natural basis
allowed within the present intervals of deformation, β2, then
we obtain around 20 and 40 for 40Ca and 80Sr, respectively,
independently of the initial set considered. For 186Pb, this
value is Nnat = 70, 91, and 98 for the sets S3, S4, and S5, and
equal to the number of intrinsic states for the other two sets
S1 and S2. In fact, the last point before the first big jump in
energy occurs in these nuclei for λk/λ1 ≈ 10−7 [Figs. 1(d)–
1(f) and 1(g)–1(i)]. The usual choice of the final GCM energy
(for a given set S j) is to take such a last point before the
approximate linear dependence is visible. From this point of
view, the best PGCM energy is obtained with the S5 set but
the energy differences are all smaller than 50 keV except for
80Sr with the S1 set, which is ≈200 keV. Nevertheless, the
relative error is less than 1 per mil in the worst scenario.
The above analysis suggests several conclusions: (a) we find
a convergence of the PGCM ground-state energy with the
number of points included in a given interval of the collective
coordinate; (b) the normalized norm overlap matrix eigenval-
ues for the different sets lie on practically the same curve and
the solutions of the HWG equations have a similar behavior;
and (c) the number of numerically meaningful states in the
natural basis seems to saturate because of the appearance of
approximate linear dependencies. The latter is very significant
because the construction of the natural basis does not require
the evaluation of costly nondiagonal Hamiltonian overlaps.

B. Convergence of the generator coordinate method
with the orthonormality of the natural basis

Let us now consider the condition of orthonormality of the
states in the natural basis, Eq. (10), as a criterium to select
numerically stable natural bases instead of the choice of a
cutoff in the lowest eigenvalue of the norm overlap matrix.
In Figs. 2(a)–2(c) we represent for each set S j the number of
elements in the natural basis that fulfill such an orthonormality
requirement defined by the parameter εnat. We also vary such
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FIG. 2. (a)–(c) Number of states in the natural basis that fulfill Eq. (10) for different values of εnat as a function of the number of intrinsic
(nonorthonormal) states for the isotopes 40Ca (left panel), 80Sr (center panel), and 186Pb (right panel). (d)–(f) PGCM ground-state energies
computed with the natural bases represented in panels (a)–(c), shifted by 346.6, 686.4, and 1432.3 MeV, respectively. The dashed-red line
corresponds to the lowest energy obtained before the big jump observed in Fig. 1(c).

a value from no restriction at all to a precision of εnat = 10−15.
The overall behavior of the number of elements in the natural
basis when increasing the number of intrinsic states is similar
for the three isotopes. First of all, if no restriction in εnat

is made, the natural basis coincides with the orthonormal-
ization of the original set of intrinsic states. However, this
large natural basis contains normally numerical instabilities
that are manifested when the value of εnat decreases. Hence,
for smaller εnat values, a reduction of the number of states in
the natural basis is obtained. Such a reduction is more drastic
for the denser S4 and S5 sets and for smaller values of εnat.
Moreover, for fixed εnat we obtain a saturation of Nnat, i.e.,
including more intrinsic states in the original set does not
produce larger natural bases. This is a key result of the present
work because, based on this saturation property, one could de-
termine, without evaluating costly nondiagonal Hamiltonian
matrix elements, the minimum number of intrinsic states that
maximizes the number of orthonormal states that can be built
within a given interval of the generating coordinate. Such
an optimal value would be given by, first, fixing εnat to a
small value to ensure the orthonormality of the natural basis
and, second, choose Nint in such a way that its corresponding
natural basis fulfills the condition Nint � Nnat.

The above argument holds only in the case where natural
bases with a similar number of elements but built from a

different number of intrinsic states are equivalent when solv-
ing the HWG equation. To check such an assumption we
represent in Figs. 2(d) and 2(e) the ground-state energies
obtained with the natural bases defined in the top panels of the
same figures, i.e., for different combinations of εnat and Nint .
For εnat � 10−12 we see that the PGCM energies are rather
stable and have a very mild dependence on the number of
intrinsic states included originally in the set. That means that
we can reproduce the results obtained with many states in the
initial set with many fewer states, showing the equivalency of
the natural bases.

The PGCM energies obtained have a stronger dependence
on εnat. The number of states in the natural basis is gen-
erally larger for larger εnat and, consequently, the PGCM
energies are smaller (the variational space is larger). However,
for εnat � 10−11 such small deviations from orthonormality
of the natural basis introduce numerical instabilities, i.e.,
those natural bases still contain approximate linear depen-
dencies. Additionally, we see that the largest differences in
the PGCM energies obtained with εnat = 10−12 and 10−15

(stable cases) are 170, 220, and 45 keV for 40Ca, 80Sr, and
186Pb, respectively. As a reference for the PGCM energy,
we also plot in Figs. 2(d)–2(f) the PGCM energy obtained
from the plateau condition discussed previously. Even though
these values are smaller than those obtained with εnat as a
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convergence criterium (instead of ελ), the energy differences
are not larger than 200 keV. Therefore, the value of εnat should
be small enough to ensure a numerically sound natural basis
but not too small to leave natural bases made of too few states.
For this set of nuclei and EDFs, εnat ≈ 10−12–10−13 seems to
be a reasonable choice.

C. Convergence of the generator coordinate
method excited states

We finally discuss the convergence and meaningfulness of
the excited Eσ states obtained with the PGCM method. The
standard procedure to determine the energies of the excited
states is similar to the one used in the ground state. The HWG
equation is solved for a given set of intrinsic wave functions
and the resulting energies are studied as a function of the
number of states in the natural basis. Such a basis is sorted
out by introducing first the states in the natural basis that
are built with the eigenvectors (and the eigenvalues) of the
norm overlap matrix with the largest eigenvalues. In Fig. 3(a)
these energies (J = 0) are represented in a range around 10
MeV of excitation energy for the set S5 and the nucleus
186Pb. The values of σ = 1–16 are shown within this range.
Here we can clearly see that, as soon as σ is increased, the
plateaus are worse defined and show jumps much earlier than
the appearance of the approximate linear dependence in the
lowest eigenvalue (at Nnat = 98 in this case). Some of these
discontinuities fall down to the next lower plateau due to
the appearance of one state with lower energy that makes
that such a state, formerly located at a given σ for a small
Nnat, is now found at σ + 1 or even larger for larger Nnat.
These jumps are most likely a consequence of the approximate
linear dependence and many of the states that are obtained in
the diagonalization of the Hamiltonian matrix defined with a
large value of Nnat are spurious. For example, the first two
excited 0+ states with σ = 2, 3 obtained with Nnat = 98 (the
position of the big jump in the ground-state energy) are almost
(and suspiciously) degenerate. This result differs from the one
obtained if a smaller value for Nnat is chosen (or, equivalently,
a larger value for ελ). In such a case, clearly distinguishable
plateaus for σ = 1–6 are obtained within the same range of
Nnat, e.g., Nnat = 30–70. Then, computing the values of the
excitation energies with the natural basis defined just before
the linear dependence explosion observed in the ground state
could be meaningless.1

Let us discuss now, for the same nucleus, the results ob-
tained whenever we use the orthonormality of the natural basis
as the criterium to select the number of states included in it.
Calculations are performed by selecting a set of intrinsic wave
functions S j=1–5, and a given value for the orthonormality
condition, εnat. Hence, the HWG equation is solved with the
maximum number of states in the natural basis allowed by
εnat. The results (the eigenvalues of the Hamiltonian matrix

1A way to determine the energies for all values of σ that could be
explored in the future within the plateau condition could be the study
of the extended plateaus at large Nnat that are formed by joining the
points of different σ that show certain continuity [32].

FIG. 3. (a) Energies of the 0+ states (up to 10 MeV of excitation
energies) obtained by solving the HWG equations as a function of the
number of the states included in the natural basis, Nnat for the set S5

(Nint = 320) and the nucleus 186Pb. Red (blue) filled diamonds (bul-
lets) represent the energies Eσ with σ = 1, 3, 5, . . . (σ = 2, 4, 6, . . .)
and are connected with lines to guide the eye. (b) Energies of the
0+ states (up to 10 MeV of excitation energies) obtained by solving
the HWG equations for the different sets, Sj = 1–5, and six values
for the orthonormality condition of the natural basis, εnat = 10−15,
10−14, 10−13, 10−12, 10−11, for the same nucleus (186Pb).

written in such a natural basis) are shown in Fig. 3(b) within
the same range of energies as in Fig. 3(a). Here we observe
again that the states with σ = 1 are well converged for the
range of εnat values plotted in the figure and their energy is
practically independent of the initial set, S j=1–5. Moreover, for
smaller values of εnat, i.e., more restricted orthonormality of
the natural basis, the number of excited states is smaller [see
also Fig. 2(c)]. For εnat = 10−15 few and rather dependent on
the initial set excited states are obtained. For the rest of the
values of εnat we observe that the set with a smaller number
of intrinsic states S1 is the one that deviates most from the
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rest, even for small values of σ . However, the results show
an excellent agreement for the different initial sets S j=2–5 in
the states with σ = 2–6 for values of εnat = 10−13–10−12. For
larger σ , the energies are rather dependent both on εnat and
S j and some degenerate states are also observed, e.g., the
states with σ = 3, 4 for εnat = 10−11 and the set S5. Therefore,
we can conclude from this case that the σ �= 1 excited states
show larger dependencies than the σ = 1 state both on the
parameter that controls the orthonormality of the natural basis
and the number of intrinsic states. These dependencies are
larger for larger values of σ and smaller values of εnat. These
uncertainties can be a limiting factor to use the PGCM method
to study, e.g., excited states at high energy or level densities.
On the positive side, we can also assure that the results ob-
tained with a very dense initial set of intrinsic wave functions
can be reproduced with initial sets containing much less intrin-
sic wave functions that are determined by the orthonormality
condition, i.e., before computing costly Hamiltonian kernels.
In the present case, if we choose εnat = 10−13 and follow the
protocol proposed above, the set that fulfills Nint � Nnat with
the minimum number of Nint is S2 (Nint = 40). We see in
Fig. 3(b) that the results obtained in this case for σ = 1–6 are
very much like those obtained with sets made of many more
intrinsic states.

IV. SUMMARY AND CONCLUSIONS

To summarize, we have analyzed the determination of
PGCM energies once a collective coordinate and the interval
in which such a coordinate is defined are chosen. In our
case, Gogny EDF calculations of three selected nuclei have
been performed using the axial quadrupole degree of freedom
as the generating coordinate and including particle number
and angular-momentum symmetry restorations. Several sets
of initial intrinsic states have been defined to study the conver-
gence of the results with the number of initial states—within
the same interval. These states are not orthonormal and can
contain (exact or approximate) linear dependencies. We have
observed that the largest normalized eigenvalues of the norm

overlap matrices are very similar for all the sets although the
sets with more intrinsic states accumulate more small eigen-
values. We also see similar energy plateaus for the different
sets, suggesting that a lot of redundancies (or approximate
linear dependencies) are contained in the sets with a larger
number of intrinsic states.

Inspired by these results, we have proposed a way of de-
termining a priori (without evaluating Hamiltonian overlaps)
natural bases with much less approximate linear dependencies
based on their orthonormality conditions. We have clearly
seen the saturation of the number of states in the natural
basis with the number of initial states. Moreover, the results
obtained with a similar number of states in the natural basis
that are coming from a very different number of states in the
initial sets are strikingly similar.

Finally, we have also analyzed the excited states (σ �= 1)
and have seen the difficulties of using the plateau criterium
to determine the excitation energies reliably. Using the or-
thonormality of the natural basis as a criterium reduces the
uncertainties in the lowest values of σ but the situation is still
out of control for higher excitation energies. Nevertheless,
the main outcome of this work is that one could define, be-
fore computing expensive nondiagonal Hamiltonian kernels,
an initial set of nonorthogonal states containing most of the
physical information but a small amount (or none) of approxi-
mate linear dependencies. Applications to other Hamiltonians,
multiple degrees of freedom and other observables beyond the
0+ energies are left for future analyses.
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