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Partial-wave expansion of ANN three-baryon interactions in chiral effective field theory
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An expression of partial-wave expansion of three-baryon interactions in chiral effective field theory is
presented. The derivation follows the method by Hebeler ef al. [Phys. Rev. C 91, 044001 (2015)], but the
final expression is more general. That is, a systematic treatment of the higher-rank spin-momentum structure
of the interaction becomes possible. Using the derived formula, a A-deuteron folding potential is evaluated. This
information is valuable for inferring the possible contribution of the ANN three-baryon forces to the hypertriton
as the basis of further studies by sophisticated Faddeev calculations. A microscopic understanding of ANN
three-baryon forces together with two-body AN interactions is essential for the description of hypernuclei and

neutron-star matter.
DOI: 10.1103/PhysRevC.106.054004

I. INTRODUCTION

Any description of two-body baryon-baryon interactions in
which various degrees of freedom are eliminated or frozen is
effective. When the interactions are applied in many-body sys-
tems, the appearance of three-body interactions is inevitable
as induced interactions. The important role of three-body
forces (3BFs) in nuclear physics has been observed in scat-
tering and binding properties of few-nucleon systems [1-3]
and also in heavier nuclei and nuclear matter, in particular in
connection with saturation properties [3—5]. The recent devel-
opment of the construction of baryon-baryon interactions in
chiral effective field theory (ChEFT) [6,7] provides a system-
atic way to introduce three-body (and more-than-three-body)
forces in a power-counting scheme and therefore quantifies
the role of 3BFs as opposed to simple phenomenological
adjustment.

The inclusions of 3BFs in a microscopic description of
nuclei often need partial-wave expansion in two Jacobi mo-
menta. An efficient method was developed by Hebeler ef al.
[8] for the local 3BFs. Here the local means that the interac-
tion is a function of the momentum transfer of each Jacobi
momentum, except for the cutoff regularization function that
does not depend on angle variables. In their method, the
original eight-dimensional angular integration, though five
dimensional because of the rotational invariance, was reduced
essentially to two dimensional.

In this article, following the derivation in Ref. [8], a dif-
ferent expression for the partial-wave expansion of 3BFs is
presented, which is more systematic for treating higher-rank
coupling of spin and momentum vectors.

Before discussing the partial-wave expansion, the basic
structure of leading-order 3BFs in ChEFT is summarized
in Sec. II. The expression of partial-wave decomposition of
3BFs in momentum space concerning the Jacobi momenta
is presented in Sec. III. As an application of the derived
expression, a possible role of the ANN 3BFs in the hypertriton
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is studied by calculating a A-deuteron folding potential from
ANN 3BFs. A summary follows in Sec. IV.

II. STRUCTURE OF ANN 3BFs IN ChEFT

Two-pion exchange ANN 3BFs are considered as a con-
crete example, which is relevant for studying hypertriton.
The structure of the ANN force in the lowest order, namely,
next-to-next-to-leading order (NNLO), is particularly simple
because the m AA vertex is not present. The contribution is
only from the diagram shown in Fig. 1. The coordinate 1
is assigned to the A hyperon. Following the expression by
Petschauer et al. [9], the Born amplitude of this diagram is
written as

VANN _ & (03 - 434)(02 - q5y)
T3S 43, +m2) (g3, +m2)

x { = (3bo + bp)m; + (2by + 3b4)q3, - 2a}> (1)

where g,, (q5,) is the difference between the final and initial
momenta at the nucleon line 2 (line 3): ¢,, = k5 — k, and
g3y = k5 — k3. g4 is the axial coupling constant, f; is the pion
decay constant, m,, is the pion mass, and o; and t; stand for
the spin and isospin operators, respectively, of nucleon i (with
i = 2, 3). The coupling constants by, bp, by, and b, inherit
those in the underlying Lagrangian. These coupling constants
are to be determined in parametrizing AN interactions in the
next-to-next-to-leading order. However, such an attempt is not
possible at present. In this paper, we use the estimation by
Petshauer et al. [9]. In the following, particle 1 is assigned to
the A hyperon, and the case of the Jacobi momenta (p,, q;)
that is depicted by the leftmost diagram of Fig. 2 is considered.
In the center-of-mass frame, k; = q,, ko = p; — ryyg,, and
ks = —p, — ryng, with ryy = 1/2. Then, q,, =k} —k; =
4, — 41, 9%a =k, —ky =p| —p, — rww(q) — q,),and g3, =
ky —ky = —(p), — py) — ran(g) — qy). VARN is a function of
p=p,—p;, and g =¢q| —q, and can be organized in the

(12 - T3)(
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FIG. 1. Diagram of two-pion exchange ANN 3BF. The small
filled circle denotes the NNm vertex with the coupling constant
ga/f2, and the large filled circle denotes the NN7 vertex specified
by the coupling constants 3by + bp and 2b, + 3b4 in Eq. (1).

following tensor-product representation:

Vise (p,q) =4m(t2-13) ) Y Vige " (p,9)
K=0,1,2¢,,¢;

x [V @) x Yo, @]" x [02 x 031€ ), ()

where the standard notation is employed for the tensor prod-
uct,
[¥e,@) x Yo, )] = > (Camaomy | cme)Ys,m, @)Yo,m, ().

Mamy,
(3)

The explicit expressions of VT(II,{EZ“‘[” ( p, q) for the Jacobi mo-
menta (p;, q;) are given in Appendix A. It is straightforward
to obtain a similar representation for the other two sets of
the Jacobi momenta, (p,, q,) and (p3, g;) in Fig. 2, for the
3BFs of Eq. (1). Because the mass of the A hyperon differs
from that of the nucleon, k; and k; (i =1, 2, 3) are not treated
cyclically and the functional form of VTI%"‘Z’J( D, q) is different
from those given in Appendix A. It is noted that the third
sigma operator 3 may appear in a general 3BF. In that case,
the rank of K = 3 can appear.

As for the cutoff, the following regulator function is in-
troduced for the initial and final Jacobi momenta, (a,b) =
(P, q,) or (p, q}), with the scale of A = 550 MeV in present
calculations:

fala,b) = exp {—(a® + 35%)° / A%}, (4)

Because this function does not depend on the angles, it does
not affect the calculation of the partial-wave expansion, which
is discussed in the next section.

3 3 3

P
2 2 2 qs
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1 1 1

FIG. 2. Three types of the Jacobi momenta. The length of the
vectors p; and g, does not correspond to the distance in the figure.

III. PARTTAL-WAVE EXPANSION

A 3BF is in general a function of the initial and final Jacobi
momenta, Vigr (P}, 4}, P, €;), in the case of the leftmost dia-
gram of Fig. 2 with suppressing the spin and isospin indices.
The partial-wave expansion requires integrals of the product
of four spherical harmonics and Vpr (!, 4}, Py, q,) over the
solid angles related to Jacobi momenta p/, ¢}, p;, and ¢, for

V3BF(P1,41,P1"11

Yy @) Yeum, (PO)Ye,m, @1)Vasr Py 410 P1 g1 (5)

To make the expression compact, the following notation is
used in the subsequent derivation, in which the angular mo-
menta £, and ¢, are coupled to L, and K; and Z; to L,
respectively. That is, supplementing the summation

ST (Cme tme |L'My) (€pme, Lgme, LML), (6)

ml;)m% mgpmgq

the angular integration on a 3BF V;pf is expressed as

{[Ye, @) x Yo, @ )]ZJVSBFHYKF(IAH) X Yz(,@])]ih),
@)

represent

(2m)e

where the left- and brackets
dp'dg\dp,dg, integration.

The angular momentum projection in momentum space
postulates a complete plane-wave basis [10],

5(p'—p)
(r'\ptym,) = —————
P P'p

right-angle

Yfpm,, (ﬁ/) (8)

The three-body basis states in jj coupling for the total three-
body angular momentum J are constructed as

|pgee) =|pq(€psp)jp(Lql/2)jq(jpig)IM)

= Z Z Z (jpmjququ|JM)

mj,mj, mpms, Mgy,
x (gpmpspmvp |j[7mjp) (Eqmqsqqu |jpmjp)

LMy,
" glamg) xg", ©)

where x, and X;"’m“’ represent spin states of the p and
q degrees of freedom, respectively. The isospin state can be
treated separately. The basis states satisfy the orthonormality
condition,

X Ipﬁpmp>xp

Sp>Tsp

§(p'=péd —q)
(P/q/a/mqa) ; , 8&’a~ (10)
pp 94

For the case of a local 3BE Vigr(p),q), pi.q1) =
Vapr (P} — P14} — q,), the subtle manipulation [8] of adding
aradial part to the angle integration while keeping the absolute
value by a § function is helpful,
8 /! _ / 8 1 _ /
M and dg, — dq]’M. 11

P q,

dp, — dp/

054004-2



PARTIAL-WAVE EXPANSION OF ANN ... PHYSICAL REVIEW C 106, 054004 (2022)

Changing the variables p| and ¢/ to p and ¢ by the shifts of p{ = p 4+ p; and ¢| = q + ¢, Eq. (7) is modified as

1
(2T[)6([Y4 ) x Yy (@, ]M’ |V33F|[Ye (P1) x Yy (%)]ML) (27 )6 / zdP/ qu [Ye’ (Pl +p) x Y (q +‘I)] |
8 — 8
(p=p =P =0 =90y 1y, ) x v, @) )
pl q1
(12)

The § function can be written as follows by using a Legendre polynomial of the first kind P:

/

, )4
8(p—pyl — py) = —
Pp1

6<cos1717: - %> — 2 D oL ZPk/(cpx—l)kf Ry x L@l (13)

2pip
4, O e 4 S R
5(g —q:1 — d)) = —ls(cosqlq -4 ) =2-L ZPk(cqx—l)"\/l?[Yk(ql) x Y@}, (14)
991 2q19 ‘i
where k = 2k + 1, cp = vt 2}’; lz'p_p and ¢, = @t ZZlq . These § functions restrict the p and ¢ integrations as
Pmin = 1P} — P1l < P < pmax = P + P1, (15)
Gmin = 191 — q1] < ¢ < gmax = 4 + q1.- (16)

The spherical-harmonic functions Yy, (p, + p) and Yy, (q; + q) are also expanded as follows:

- A (O plr piv
Youm @ +2)= Y | o s e [V, () x ,,,(p>] (17)
i, \ UL P
. Am (L) glrg X e
Yom @ +9)= ) m ,K [n¢,<q1>ijt;<q>],,;g]. (18)
Joti=t, N Ya)-Uq

A straightforward evaluation of the recoupling of these decoupled spherical harmonics finally gives

1
(2m)°

([Ye <p>xYw@’l)]M,IVT%’]!NI[YeP(pl)xY« @ly,)

1 Pmax Gmax
— / pdp / qdq
Paipia Jp, i

'min

(=D Y (DML — M LML)
JM

(271)6

Ja

@)

o

o (é/ ) p./ppj,') o q —
x 1) Y KkPo(cp)Pilcy) Y | 1@ 3 (it | e AT o ppp
i i N OO %, 52 IALTAT
X 4— \/ I Jh o Ja(K'05,01L,0) (k0 j,01Lg0)(K'0,j,01€,0)(k0,j40[€,0)
L,L,
e ¢ L
¢, ¢ L)[¢, ¢ L P "q o . .
x{.,q 4 .‘1}{.{’ 4 .”} ¢, ¢, L / dpdg [YLp(p)xYLq(q)] VNN (p, q). (19)
.]q ]q .]p ]p Lp Lq J

Observing P;(cos pg) = (—1)5%[&@) X Yg((})]g, the above expression with J = 0 corresponds to Eq. (6) of Ref. [8]. It is
i

verified numerically that Eq. (19) with J = 0 delivers the same results as Eq. (6) of Ref. [8]. The evaluation of Ir1 Vapr with
J > 0 is straightforward and transparent.
The angle integration in Eq. (19) for 3BFs in the form of Eq. (2) needs

PPN ~ AT n ~1K
/ dpdq [Ye, () x Yo, @], [Ye.®) x Yo, @], = (=1 " 81x8u,—1,6,01,0,(= 1) (20)

This means that the angular momentum J in Eq. (19) corresponds to the rank K of the tensor-product structure of the angular-
momentum coupling in 3BFs.
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For actual calculations of the matrix element of 3BFs in various situations, it is convenient to define a reduced matrix element

in a form similar to the Wigner-Eckart theorem,

1 ~ ~ 1K ~ N L
Gy @) x Y, L@y VASE™ ™ 0, ) [Ye, &) % Yo, @] [V, 1) % Ye,@)]y,)
aq! a7 U ” PN ~v1K N ~ 1L
= (LMK L M)([Ye, (B)) % Yo, @D [ [Vige™ ™ (0, D [Ye, ) x Yo, @] [|[Ye, B1) x Ye,@D]") e 1)
From Eq. (19), the reduced matrix element is found as
N AL \ . ~ 1K N .~ L
([Ye, @) x Yz'q(q/l)] [Vige™ ™ (0, D[Ye, ) x Yo, @] [|[Ye, B1) x Ye,@D]')
1 l 1 AAAAAAAA Pmax Gmax A
‘/ — (=)t ———— [0 0 € 0 LL G f pdp / qdq Y K'kPu(cy)Pi(cy)
47{ (27T )4 plq]plql ! 'min 'min %C: ! !
@y pirpi . @)
SIS P o AR A O —"‘w (K0£,01j,0)(k0£,01 ;)
BN UG P G, UDI! 4
¢ 0 L
, . (e, 0 e (e, €, ) |r Ca
x (K'02,01j,0)(k0¢,0] ]qo){jjf kq jb”f o } Do L vEL (g, 22)
q q p Pile, £, K

It should be remembered that this expression is valid for a 3BF
depending only on p = p| — p, and ¢q| — q,. Introduction of
the regularization functions given by Eq. (4) does not affect
the angular integrations.

IV. A-DEUTERON FOLDING POTENTIAL

The construction of hyperon-nucleon interactions in the
strangeness S = —1 sector has a difficulty in lacking sufficient
scattering data. The fact that there is no two-body AN bound
state enhances the difficulty. The hypertriton is, therefore,
an important hypernuclear system [11,12] for adjusting the
interaction, where the tuning of AN interactions in the spin-
singlet and -triplet states together with the strength of AN-XN
coupling can be carried out. However, the possible role of
the ANN 3BFs has been investigated little. Expecting the
settlement of the current controversy over the shallow binding
energy [13], it is important to describe the hypertriton in-
cluding ANN 3BFs. Before considering Faddeev calculations
for the hypertriton including ANN 3BFs, it is instructive to
calculate the A-deuteron folding potential due to the ANN
interactions, applying the expression derived in the previous
section, to obtain some idea about the contribution of the
3BFs.

The folding potential is evaluated by the following integra-
tion:

Ul () q) = //p dppidp i ([Wa(p)), (€4 1/2)jalJ]

X VAN [Wa(p)), (Ea1/2)jalr),  (23)
Yi(p)= > Lot x KL @4
£4=0,2

The above expression is in an abbreviated notation. A more
detailed calculational procedure is given in Appendix B.

Deuteron wave functions, the s and d components, are
those of the N3LO ChEFT interactions with the cutoff of
550 MeV [14]. This scale of the wave functions and the
3BFs may not be soft enough to permit a perturbative treat-
ment. Nevertheless, without strong short-range singularities,
the resulting folding potential helps intuitively infer the A-
deuteron interaction and therefore the possible role of the
ANN 3BFs to the hypertriton. It is noted that it is not ap-
propriate to employ deuteron wave functions of other NN
interactions having strong short-range singularities together
with the ChEFT 3BFs. For comparison, deuteron wave func-
tions in momentum space are shown in Fig. 3 in which those
of other NN interactions, i.e., AV18 [15], CD-Bonn [16], and
Paris [17], are compared.

Calculated s-wave [¢, = £, = 0 in Eq. (23)] A-deuteron
folding potential with J, = 1/2 from the leading-order ANN
interactions is presented in Fig. 4. The upper panel shows the
contribution from the s-wave component of the deuteron wave
function, in which VT({,(EZ 0,basts) participates. The lower panel
presents the sum of the remaining contributions from the s-d,
d-s, and d-d pairs of the deuteron wave function. VT(IIfE 2408
contributes in the s-d and d-s pairs. Both VT({)(E 0-Lats) and
VT(}[)(E: 2Lat) contribute in the case of the d-d pair. The potential
with J; = 3/2 is identical to that with J, = 1/2.

The employed parameters are taken from the estimation by
Petshauer et al. [9]; that is, (3by + bp) = 0 and (2b, + 3b4) =
3.0 x 1073MeV~!. In principle, parameters of the two-pion
exchange 3BFs should be determined in fitting the two-body
AN interactions. However, the present experimental situation
of the strangeness S = —1 sector does not allow such an
investigation.

The calculated potential is weakly attractive, with a depth
below about 200 keV. The experimental separation energy
of the hypertriton is very small, 130 £ 50 keV, though the
actual value is still controversial. Therefore, its wave function
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FIG. 3. Deuteron s- and d-wave functions in momentum space
described by various NN interactions: ChEFT [14], AV18 [15],
CD-Bonn [16], and Paris [17]. The sign of the d-wave function is re-
versed. The normalization of these wave functions is fooc dk (k) +

()] = 1.

extends and the ANN 3BF contribution can be considered
hindered. Still, the similar magnitude of the ANN 3BF ef-
fect shown in Fig. 4 as the separation energy indicates that
the effect may not be negligible in the hypertriton. Thus,
it suggests that further study of the hypertriton in Faddeev
formalism with incorporation of the 3BFs is necessary. The
repulsive bump structure seen beyond ¢ >~ 2.5 fm implies that
the scale of 550 MeV employed for the ChEFT description
still has remnants of shorter-range singularities, which should
be treated in a Faddeev framework.

V. SUMMARY

We have presented an expression of partial-wave decom-
position of 3BFs concerning the relevant Jacobi momenta.
The derivation essentially follows that of Hebeler et al. [8],
but the final formula differs in that it can systematically treat
the higher-rank spin and angular-momentum tensor-product
structure of 3BFs. Although the consideration is intended
specifically for ANN 3BFs and one set of the Jacobi mo-
menta, the formula is general, as far as 3BFs are a function
of the momentum transfer in each Jacobi momentum. Even if
a regularization function is angle dependent, the 3BFs can be
expressed in the form of Eq. (2) and then the result of Eq. (22)
is applicable.

As an application of the derived expression, the A-deuteron
folding potential from NNLO ANN 3BFs is evaluated. At the
present stage, the construction of baryon-baryon interactions
in the strangeness S = —1 sector in ChEFT is practiced up to
the NLO level [12,18]. Even at this low order, it is difficult to

1 00 T T T T T T T T
co'g' 0
>
Q
=,
A
o 15
[\ z -100 1.0 4
. 0.5
=2 0.01
o .
v diagonal
2b,+3b,=-3 GeV
0 1 2 » 3 4
q[fm ]
1 OO T T T T T T T T
.- diagonal
q [fm™]
—_ 2.0
g .
>
[0)
=,
A
k=2
Qv
- <
=)
T
\Y;
3b0+bD=0 _q
2b,+3b,=-3 GeV
_1 OO 1 1 1 1 1 1 1 1
0 1 2 3 4

q [fm™]

FIG. 4. A-deuteron folding potential with £, = 0 from two-pion
exchange ANN interactions. The upper panel shows the contribution
of the deuteron s-state pair. The lower panel shows the contribution
from the remaining pairs: sd, ds, and dd.

unambiguously determine coupling constants because of the
lack of sufficient experimental data, and therefore a plausible
assumption of the SU(3) symmetry has to be called for. In
addition, there is no conclusive way to fix the parameters of
the two-pion exchange ANN 3BFs that are basically of the
NNLO. This means that experimental and theoretical investi-
gations are needed in the future. It is essentially important to
quantitatively establish the contribution of ANN 3BFs in hy-
pernuclei, which is also relevant for the understanding of the
appearance or absence of A hyperons in neutron-star matter
[19,20].
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In particular, the investigation of the hypertriton is of fun-
damental importance. Before doing full Faddeev calculations
for the hypertriton including ANN 3BFs, it is worthwhile to
estimate the possible role of the 3BFs for the hypertriton. The
present folding potential calculation indicates the necessity of
considering ANN 3BFs in the theoretical study of the hyper-

triton because the quantitative estimation of their effects will
influence the parametrization of AN two-body interactions.
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APPENDIX A: TENSOR-PRODUCT DECOMPOSITION OF ANN THREE-BODY INTERACTIONS

VT(ffl;‘e“’Z”)(p, q) in Eq. (2) for K = 0, 1, and 2 in the case of the leftmost diagram of Fig. 1 are as follows:

= 2 Com2 + C (—P2 + 7 612)}(192 —r? qz)
Vive (P, q) = (= 1) 81,08, cveny £ {Comy = N ) (A1)
TPE b ,even 3 2prNNq(p2 + r]%]qu + m%) Pq
_ Com2 + Ci(—p* + ring®)} 1 [La(ly+ 1)
v E=Ltoty q) =8y 48 { 1 NN g ACASCE ) — iz ’ A2
'TPE (P, q) = 8¢,0,0¢,,0ad 7P+ R+ m2) 7 o {Q+1(2pg) — Qe—1(2pg)} (A2)
_ [2 {Com} + (=P +rind’)} /77
yE=2balo(p g) = — | — ” NN £.,6,(£,00,0120){ P20, (2p0) — iG> Or (zpa) ], A3
TPE (P Q) 15 2p7’1v1v6](p2 +r§,Nq2 +m%) b( b | ){P Qﬁb( pq) NNd QZ(,( pq)} ( )

2

where Cy = —5—%(3[90 + bp), C; = 3‘%(%2 + 3b4), and zp, = %. Qy is a Legendre polynomial of the second kind.

APPENDIX B: EVALUATION OF A-DEUTERON FOLDING POTENTIAL FROM ANN 3BFs

An explicit calculational procedure of the A-deuteron folding potential, given by Eq. (23), is provided. The abbreviated
notation of Eq. (23) means

Ul (g, q1) = / f PR, prdpi ([ Ya(p)), (U 1/2)jal VAN [Wa(py)s (€a1/2)jalT;)

2 X

€,=0,2 £4=0.2

X VIRV e, B0 x ] [Yeu @) x 031" )

/| / 1 / 1 ~ 1 Al j ‘]I
|[ vear P ) GOl 0 x 1] > Ve @ < 1,
1

B

where x (} and X,l\/ % denote spin functions for the deuteron and the A hyperon, respectively. The isospin degrees of freedom are
not explicitly shown. Because the isospin of the A hyperon is 0 and that of the deuteron is O, the matrix element of the isospin
operator (75 - 73) in Eq. (2) becomes —3. Substituting VAYY of Eq. (2), the following angular-momentum recoupling is carried
out:

{1V, @) x xd] % [Ye, @) x x> T VA (o, ) {[Ye, (8) % Yo, @] x [0 x 031K

x H[Y@I(i’l) X Xc}]] X [Y(ZA@l) X X/l\/z]jA }il)

[ o L) [ e L p .
=Y Y 3AVESES{ 1 12 s a1 1720 S H({[Ye, D) x Yo, @D] x [xd x xa T
UL 'S 1 ja 4 1 ja I
x VALt (o, ) [Ye, ) % Yo, @] x [0 x 031¥ S { [Yeu 1) x Yer @D]" % [xd x 232 T 1)
¢, by L[t € L s 0 ,
=> "> 3uVLSLS i 12 ST 12 SEALDSIL Lo K H{[Ye () x Yo, @D]" ||Vik " (p, @)
LL 'S 1 ja 1 ja S S K
- ~\1K . N1 or k+324s)S S K 1 I K
x [Ye, () x Yo, @] [|[¥e, B0 % Y2, @)]"),.,, 18V SR (— 1)}/ {1 1 1 /2} /2 12 1¢, (B2)
12 12 1

where p = p| — p, and ¢ = ¢| — q,. Then, Eq. (22) is applied in this expression. The result does not depend on M,. Numerical
results of the case of £/, = £; = 0 are presented in Sec. IV.
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