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Resonance-to-bound transition of 5He in neutron matter and its analogy
with heteronuclear Feshbach molecules
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We theoretically investigate the fate of a neutron-alpha p-wave resonance in dilute neutron matter, which may
be encountered in neutron stars and supernova explosions. While 5He is known as a resonant state that decays to
a neutron and an alpha particle in vacuum, this unstable state turns into a stable bound state in the neutron Fermi
sea because the decay process is forbidden by the Pauli-blocking effect of neutrons. Such a resonance-to-bound
transition assisted by the Pauli-blocking effect can be realized in cold atomic experiments for a quantum mixture
near the heteronuclear Feshbach resonance.
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I. INTRODUCTION

Nuclear clusters in astrophysical environments have gath-
ered tremendous attention thanks to recent progress in multi-
messenger astronomy. Light cluster states such as deuterons,
tritons, and alpha particles are expected to appear in supernova
explosions as well as in neutron-star mergers [1]. Moreover,
multialpha clusters (e.g., the Hoyle state consisting basically
of three alpha particles [2]), if appearing as bound states in
such environments, would play an important role in enhancing
the nuclear reaction rate. Recently, the existence of alpha clus-
ters has also been confirmed in heavy nuclei [3], indicating the
importance of the cluster states in medium. Note that single-
and multicluster states in medium can be dramatically differ-
ent from those in vacuum. To connect such cluster states in
vacuum, in nuclei, and in astrophysical environments, there-
fore, we need to consider a complicated many-body problem
involving inhomogeneities of the medium [4–6].

A concept of polarons, which was originally proposed
in the context of condensed matter physics [7] to tackle
quasiparticle properties in many-body backgrounds, has been
examined extensively and applied to cold atomic systems
(for review, see, e.g., Ref. [8]). In particular, the control-
lable interaction associated with the Feshbach resonance [9]
and the variety of atomic species with different quantum
statistics enable us to investigate many-body states of mat-
ter systematically as a quantum simulator [10,11]. In this
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regard, a quasiparticle impurity state immersed in a Fermi
sea (Bose-Einstein condensate) called a Fermi (Bose) polaron
is of particular interest in cold atoms. Moreover, utilizing
the notion of such atomic polarons, the present authors have
elucidated the fate of alpha clusters, that is, 8Be and the Hoyle
state, in dilute neutron matter [12]. While 8Be and the Hoyle
state are unstable two- and three-body alpha cluster states in
vacuum, it was found that they become bound states due to the
polaronic properties of alpha particles (i.e., increased effective
mass and mediated interpolaron interaction associated with
s-wave neutron-alpha interaction) [13,14]. On the other hand,
a narrow p-wave resonance for neutron-alpha scattering is
known to occur around 0.94 MeV [15], which should be im-
portant at sufficiently high neutron densities. In fact, polarons
and molecules predicted near the p-wave Feshbach resonance
[16,17] are analogous to alpha polarons and the emergence of
5He resonance and bound states in dilute neutron matter in
the sense that a p-wave quasiparticle state with finite lifetime
turns into a bound state as coupling with medium changes ef-
fectively. Also, in addition to the s-wave interaction examined
in Ref. [12], this p-wave interaction could have an increasing
influence on the formation of multialpha clusters (e.g., 9Be
[18]).

In this paper, we focus on the neutron-alpha p-wave inter-
action that was not considered in the previous work [12,13].
This interaction is associated with the 5He resonant state
decaying to a neutron and an alpha particle. While the s-
wave neutron-alpha interaction is a leading contribution in the
low-density limit of neutrons, the p-wave resonance would
not be negligible when the neutron Fermi energy exceeds
the 5He resonance energy. As shown in Fig. 1, we show
that the 5He resonant state turns into a bound state because
the decay process is forbidden by the Pauli-blocking effect
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FIG. 1. Schematics of (a) the 5He resonance decaying to a neu-
tron and an alpha particle in vacuum and (b) the in-medium bound
5He in a neutron Fermi sea, where the decay process is forbidden by
the Pauli blocking effect of neutrons. Such a sharp peak is in contrast
with the broad peak found in the resonance.

of neutrons. The situation is analogous to the competition
between molecules and polaron states in the population-
imbalanced mixture with the narrow Feshbach resonance.
Indeed, p-wave Feshbach molecules have been already ob-
served experimentally [19], while p-wave polarons have been
studied theoretically [16,17]. Moreover, the polaron-molecule
transition for a narrow s-wave resonance has also been inves-
tigated in the literature [20,21]. In this work, being motivated
by the p-wave atomic polaron study [16], we describe the in-
medium 5He state within a two-channel model, which is well
established for the study of many-body atomic systems near
the Feshbach resonance. More specifically, while Ref. [16]
employed the two-channel model for the p-wave Feshbach
resonance between two hyperfine states (corresponding to
spin-1/2 fermions), we generalize this p-wave two-channel
model to the neutron-alpha scattering with spin and orbital
degrees of freedoms. Using this model, we draw an analogy
of the resonance-to-bound transition of 5He in neutron mat-
ter with heteronuclear Feshbach molecules coexisting with a
Fermi sea in a Bose-Fermi mixture, where the transition from
polaronic condensates to heteronuclear Feshbach molecules
were recently observed [22,23].

This paper is organized as follows. In Sec. II, we intro-
duce the two-channel Hamiltonian for the 5He resonance.
In Sec. III, we examine the p-wave neutron-alpha scattering
amplitude in our two-channel model. In Sec. IV, we discuss
the in-medium 5He state and its resonance-to-bound transition
in neutron matter. We summarize this paper in Sec. V.

II. HAMILTONIAN

We consider a system of alpha particles, neutrons, and 5He
nuclei by analogy with the p-wave Feshbach resonance in cold
atomic systems. We employ the two-channel Hamiltonian
given by

H = H0,ν + H0,α + H0,� + V, (1)

where

H0,ν =
∑

k

∑
sz=±1/2

ξk,νν
†
k,sz

νk,sz , (2)

H0,α =
∑

q

ξq,αα†
qαq, (3)

H0,� =
∑

P,J,Jz

(ξP,�,J + E�,J )�†
P,J,Jz

�P,J,Jz (4)

are the kinetic terms of a spin-1/2 neutron, an alpha parti-
cle, and a closed-channel neutron-alpha state (corresponding
to the bare 5He state), respectively. νk,sz and αq denote the
annihilation operators of a neutron and an alpha particle. The
annihilation operator �P,J,Jz of the bare 5He state involves the
total spin J = 3/2, 1/2 consisting of the neutron spin s = 1/2
and the neutron-alpha relative angular momentum � = 1, and
its z component Jz. We have defined the kinetic energies
(minus the chemical potentials) of neutrons, alpha particles,
and closed-channel neutron-alpha states as ξk,ν = k2

2Mν
− μν ,

ξq,α = q2

2Mα
− μα , and ξP,�,J = P2

2M�
− μ�,J , respectively. The

energy level of the bare 5He state amounts to E�,J . For sim-
plicity, we consider the spin-degenerate system. Moreover, we
may use relations among masses given by M� = Mν + Mα

and Mα = 4Mν .
The interaction term V is given by

V =
∑

J=1/2,3/2

∑
Jz,sz,m

∑
P,k

(
kgk,J

√
4π

3
Y �=1

m (k̂)

× 〈1, m; 1/2, sz|J, Jz〉�†
P,J,Jz

νk+P/2,szα−k+P/2 + H.c.

)
,

(5)

where 〈1, m; 1/2, sz|J, Jz〉 is the Clebsch-Gordan coefficient.
The p-wave properties manifest themselves in the Feshbach-
like coupling gk,J with the � = 1 component of the spherical
harmonics Y �=1

m (k̂), where k is the relative momentum be-
tween a neutron and an alpha particle.

Hereafter we shall set μα = 0 because alpha particles are
supposed to be present as impurities. For simplicity, we ignore
the presence of electrons and keep the total number of neu-
trons and of protons unchanged. The chemical potentials of
neutrons, alpha particles, and 5He nuclei have a relation given
by μ�,3/2 = μ�,1/2 ≡ μ� and μν + μα = μ� because of the
number conservation under thermodynamic equilibrium.

III. p-WAVE NEUTRON-ALPHA SCATTERING
AMPLITUDE

We proceed to examine the scattering properties in vac-
uum, i.e., at μν = μα = 0. The scattering amplitude of the
�th partial wave with J reads [24,25]

f�,J (k) = − Mr

2π
T�,J

(
k, k; � = k2

2Mr

)
, (6)

where Mr = (1/Mν + 1/Mα )−1 is the reduced mass (note
that � denotes the two-body energy). T�,J (k, k′; �) is the
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�th component of the neutron-alpha T matrix at the zero
center-of-mass frame. f�=1,J (k) is associated with the p-wave
scattering phase shift δ�=1,J (k) as

f�=1,J (k) = k2

k3 cot δ�=1,J (k) − ik3
. (7)

The effective-range expansion of δ�=1,J (k) reads

k3 cot δ�=1,J (k) = − 1

aJ
+ 1

2
rJk2 + O(k3), (8)

where aJ and rJ are the scattering volume and the effective
range in the state with J , respectively.

To calculate the p-wave scattering amplitude in our
model, first we consider the bare closed-channel propagator
D0

J,Jz
(P,�) with the momentum P and the energy � as

D0
J (P,�) = 1

�+ − ξP,�,J − E�,J
, (9)

where �+ = � + iδ with an infinitesimally small value δ.
The renormalized propagator [physically corresponding to the
ground (J = 3/2) and first-excited (J = 1/2) states of 5He] is
given by

DJ,Jz (P,�) = 1[
D0

J (P,�)
]−1 − 
J,Jz (P,�)

, (10)

where the one-loop self-energy 
J,Jz (P,�) describes the de-
cay process to a neutron and an alpha particle [26]. At zero
center-of-mass frame (P = 0), the self-energy is independent
of Jz as 
J,Jz (P = 0,�) ≡ 
0,J (�) because of the spherical
symmetry in the momentum space given by

∑
q q2

j F (q) =
1
3

∑
q q2F (q) for an arbitrary function F (q) ( j = x, y, z).


0,J (�) reads


0,J (�) = 1

3

∑
q

q2g2
q,J

�+ − ξq,ν − ξ−q,α

. (11)

Using DJ,Jz (P = 0,�) with 
0,J (�), we obtain the p-wave
component of the T matrix as [24,25]

T�=1,J (k, k; �) = 1

3

k2g2
k,J

�+ − E�,J − 
0,J (�)
. (12)

Practically, we introduce the momentum-dependent cou-
pling

gk,J = gJγk,J ≡ gJ

1 + (k/�J )2
, (13)

where �J is the cutoff scale and gk,J is assumed to be a
real value. While the steplike form factor gk,J = gJθ (�J − k)
is used in Ref. [16], a smoothly decreasing function γk,J is
required to reproduce the neutron-alpha scattering properties.
In this case, we can analytically obtain 
0,J (�) as


0,J (�) = −Mrg2
J�

4
J

[
�3

J + 6�JMr� + 2i(2Mr�)
3
2
]

12π
(
2Mr� + �2

J

)2 . (14)

Combining Eqs. (6)–(8) and Eqs. (12)–(14), we obtain the
relation between the low-energy constants (i.e., aJ and rJ ) and

Π =
Gn

Gα
FIG. 2. The diagrammatic representation of the self-energy. The

thin and thick lines denoted by Gn and Gα represent the Green’s
functions of a neutron and an alpha particle, respectively. The
black dots show the Feshbach-like neutron-alpha-5He coupling√

4π

3 qgq,JY �=1
m 〈1, m; 1/2, sz|J, Jz〉.

the model parameters (i.e., gJ , E�,J , and �J ) as

− 1

aJ
+ 1

2
rJk2 − ik3 + O(k4)

= − 6π

Mrg2
J

[
1 +

(
k

�J

)2]2[
k2

2Mr
− E�,J

+ Mrg2
J�

4
J

(
�3

J + 3�Jk2 + 2ik3
)

12π
(
k2 + �2

J

)2

]
. (15)

Comparing the coefficients of k0 and k2 between the left and
right sides of Eq. (15), we obtain

aJ = Mrg2
J

6π

(
E�,J − Mrg2

J�
3
J

12π

)−1

, (16)

rJ = − 6π

M2
r g2

J

+ 24πE�,J

Mrg2�2
J

− 3�J . (17)

In this study, we focus on the empirically known Jπ = 3/2−
resonance with a3/2 = −67.1 fm3 and r3/2 = −0.87 fm−1

[13]. Here, we set �3/2 = 0.9 fm−1 in such a way that
the resonance energy Eres. obtained from Re[ f�=1,J=3/2(k =√

2MrEres.)] = 0 is close to 0.94 MeV [15]. In this way,
we can determine E�,3/2 = 449.607 MeV and Mrg2

3/2 =
113.388 fm2 from the empirical values of a3/2 and r3/2. These
parameter sets lead to Eres. � 0.93 MeV. We note that the
model parameters for J = 1/2 can also be determined in such
a way that the corresponding neutron-alpha phase shift is
reproduced [15,27].

IV. IN-MEDIUM 5He STATE

In this section, we explain how the medium effect is incor-
porated in the description of the 5He state in neutron matter.
The thermal dressed propagator of 5He is given by

Dm
J,Jz

(P, i�n) = 1

[D0,J (P, i�n)]−1 − 
m
J,Jz

(P, i�n)
, (18)

where �n = (2n + 1)πT is the fermionic Matsubara fre-
quency. D0,J (P, i�n) = (i�n − ξP,�,J − E�,J )−1 is the bare-
propagator. The medium effect is described by the self-energy

m

J,Jz
(P, i�n), which is diagrammatically given by Fig. 2.
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Their explicit forms read


m
3/2,3/2(P, i�n) = −4π

3
T

∑
q,iωn′

q2g2
q,3/2

∣∣Y 1
1 (q̂)

∣∣2
Gn(P/2 + q, i�n + iωn′ )Gα (P/2 − q,−iωn′ ), (19)


m
3/2,1/2(P, i�n) = −4π

3
T

∑
q,iωn′

q2g2
q,3/2

(
1

3

∣∣Y 1
1 (q̂)

∣∣2 + 2

3

∣∣Y 1
0 (q̂)

∣∣2
)

Gn(P/2 + q, i�n + iωn′ )Gα (P/2 − q,−iωn′ ), (20)


m
3/2,−1/2(P, i�n) = −4π

3
T

∑
q,iωn′

q2g2
q,3/2

(
2

3

∣∣Y 1
0 (q̂)

∣∣2 + 1

3

∣∣Y 1
−1(q̂)

∣∣2
)

Gn(P/2 + q, i�n + iωn′ )Gα (P/2 − q,−iωn′ ), (21)


m
3/2,−3/2(P, i�n) = −4π

3
T

∑
q,iωn′

q2g2
q,3/2

∣∣Y 1
−1(q̂)

∣∣2
Gn(P/2 + q, i�n + iωn′ )Gα (P/2 − q,−iωn′ ), (22)


m
1/2,1/2(P, i�n) = −4π

3
T

∑
q,iωn′

q2g2
q,1/2

(
1

3

∣∣Y 1
0 (q̂)

∣∣2 + 2

3

∣∣Y 1
1 (q̂)

∣∣2
)

Gn(P/2 + q, i�n + iωn′ )Gα (P/2 − q,−iωn′ ), (23)


m
1/2,−1/2(P, i�n) = −4π

3
T

∑
q,iωn′

q2g2
q,1/2

(
1

3

∣∣Y 1
0 (q̂)

∣∣2 + 2

3

∣∣Y 1
−1(q̂)

∣∣2
)

Gn(P/2 + q, i�n + iωn′ )Gα (P/2 − q,−iωn′ ), (24)

where Gn(p, i�n) and Gα (p, iωn′ ) are the thermal Green’s
functions of a neutron and an alpha particle, respectively
(ωn′ = 2n′πT is the boson Matsubara frequency). In this
study, we consider nonsuperfluid neutrons for simplicity,
as given by Gn(p, i�n) = (i�n − ξp,ν )−1. Note that for su-
perfluid neutrons, we can use the Nambu-Gor’kov Green’s
function Gn(p, i�n) = u2

p/(i�n − Ep) + v2
p/(i�n + Ep) with

Ep =
√

ξ 2
p,ν + �2

p, where �p is the neutron pairing gap,

and u2
p = 1

2 (1 − ξp,ν

Ep
) and v2

p = 1
2 (1 + ξp,ν

Ep
) are the coherence

factors [28]. Although alpha particles may also form a con-
densate, in this paper, we consider the single 5He state and
hence the single alpha particle described by Gα (p, iωn′ ) =
(iωn′ − ξp,α )−1 with μα = 0. In such a case, the summation of
the Matsubara frequency can be performed analytically. For
example, we obtain


m
3/2,3/2(P, i�n) = 1

2

∑
q

(
q2

x + q2
y

)
g2

q,J [1 − f (ξP/2+q,ν )]

i�n − ξP/2+q,ν − ξP/2−q,α

,

(25)

where the Fermi distribution function f (ξ ) = 1/(eξ/T + 1) is
replaced by the step function θ (−ξ ) at T = 0.

We note that, in general, the self-energy may be in
the tensor form with the off-diagonal component associ-
ated with the coupling between different Jz. However, such
a component does not appear due to the orthogonality of
Y �

m (q̂). More explicitly, for the momentum integration of q,
we take z axis along the P direction as P = (0, 0, P) and
q = (q sin θ cos φ, q sin θ sin φ, q cos θ ), without loss of gen-
erality. In this case, we obtain q · K = qK cos θ , which is

independent of φ. Therefore, we find

∑
q

qiq jF (P, q, θ ) = δi j

(2π )2

∫ ∞

0
dq

∫ π

0
dθ q2 sin θF (P, q, θ )

(26)

for an arbitrary function F (P, q, θ ). Note that
[Y �=1

m (q̂)]∗Y �=1
m′ (q̂) (m �= m′) is associated with qiq j (i �= j).

In this regard, the off-diagonal component of the self-energy
disappears after the φ integration. This fact is consistent with
Ref. [29].

Using the in-medium propagators, we shall examine exci-
tation properties of the in-medium 5He state. The excitation
spectrum of the in-medium 5He state can be obtained from
Dm

J,Jz
(P, i�n → �+) with the analytic continuation. We define

the spectral function as

AJ,Jz (P,�) = − 1

π
Im Dm

J,Jz
(P, i�n → �+). (27)

In what follows, we consider the zero center-of-mass state
P = 0 at T = 0. Also, we take μν = EF, where EF = k2

F
2Mν

and kF are the Fermi energy and momentum of neutrons,
respectively. While 
J,Jz (P, i�n) depends on Jz for nonzero
P, we can impose the spherical symmetry of q at P = 0 as in
the in-vacuum case. In this way, we obtain the Jz-independent
self-energy at P = 0 as 
m

0,J (i�n) ≡ 
J,Jz (P = 0, i�n). Us-
ing this fact, we obtain


m
J (i�n → �+) = 1

3

∑
q

q2g2
q,J [1 − f (ξq,ν )]

�+ − ξq,ν − ξ−q,α

, (28)
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which reproduces the in-vacuum result given by Eq. (11) when f (ξq,ν ) → 0 and μν → 0. One can perform the momentum
integration of 
m

J (�+) analytically as


m
J (�+) = −Mrg2

J�
4
J

6π2

[
i[2Mr (�+ + EF)]3/2[

2Mr (�+ + EF) + �2
J

]2

{
π + i ln

(√
2Mr (�+ + EF) − kF√
2Mr (�+ + EF) + kF

)}

+ kF�
2
J[

2Mr (�+ + EF) + �2
J

](
k2

F + �2
J

) + 6Mr (�+ + EF)�J + �3
J[

2Mr (�+ + EF) + �2
J

]2

{
π

2
− tan−1

(
kF

�J

)}]
. (29)

We note that Eq. (29) reproduces Eq. (11) in the dilute limit
(kF → 0). This is because the diagram shown in Fig. 2 is
equivalent to the in-vacuum case. In this way, we can get

Dm
J,Jz

(0,�+) = 1

�+ − E�,J + μ� − 
m
J (�+)

, (30)

where μ� ≡ μν + μα = EF. For convenience, we introduce
the Jz-independent spectral function at P = 0 as AJ (�) ≡
AJ,Jz (P = 0,�).

Figure 3 shows the calculated spectral function AJ=3/2(�)
of the Jπ = 3/2− 5He state at the center-of-mass frame in
dilute neutron matter. For visibility of the spectral function,
we have taken δ = 10−3 MeV. The result at kF = 0 corre-
sponds to the 5He resonance in vacuum. Indeed, the resonance
peak can be found around � = Eres.. As kF increases, the
resonance peak moves to the lower energy side and eventually
the continuum edge appears at � = Mν

Mα
EF (note that it corre-

sponds to � + EF = k2
F

2Mν
+ k2

F
2Mα

with the zero center of-mass
momentum P = −kF + kF = 0). In this regard, the resonance
remains broad when the peak is located above the continuum
edge. When the peak is lowered below the continuum edge,
the resonance turns into the bound state exhibiting a sharp
peak structure [30].

In Fig. 4, we show the contour plot of AJ=3/2(�) in the
plane of � and kF. As shown in Fig. 3, the resonance peak
appears around � = Eres.. While the continuum edge moves
towards the higher energy as Mν

Mα
EF ∝ k2

F, the broad 5He peak
is lowered gradually and changes into the bound-state peak
around kF = 0.2 fm−1. This change, which is reminiscent of

Ω [MeV]

AJ = 3/2(Ω) [fm]

kF [fm-1] = 0 

0.1

0.3
0.2

FIG. 3. Spin-3/2− 5He spectral function AJ=3/2(�) in dilute
neutron matter at different neutron densities (where the Fermi mo-
mentum is given by kF = 0, 0.1, 0.2, and 0.3 fm−1 in each curve).

the resonance-to-bound transition of the 5He state, occurs at
a density close to the point where EF exceeds Eres. [30]. The
corresponding density ρ � 2.7 × 10−4 fm−3 for the transition
is sufficiently low compared to the threshold ρ � 0.01 fm−3

of the alpha-particle condensation in asymmetric nuclear mat-
ter [31]. In other words, while we ignore the Pauli constraint
on neutrons inside an alpha particle by considering a pointlike
alpha particle, our description may be qualitatively valid up
to ρ � 0.01 fm−3 (i.e., kF � 0.67 fm−1). This value is also
close to the density where EF reaches the alpha binding energy
per nucleon ≈7 MeV [13]. Even above this density, there
is a possibility that alpha-particle-like states may remain as
Cooper quartets [32–34].

We conclude this section by discussing the relation
between in-medium 5He bound states and heteronuclear Fesh-
bach molecules. In cold atomic systems near a narrow p-wave
Feshbach resonance, one can tune the p-wave scattering vol-
ume a by applying an external magnetic field [9]. If a is
tuned to be large at fixed density (i.e., kF), the p-wave inter-
action is enhanced and hence the molecular binding energy
becomes large as reported in Ref. [16]. In this case, the

−1.86 −0.23 −0.07−∞

kF [fm−1]

(kF
3aJ = 3/2)

−1

Ω
 [

M
eV

]

FIG. 4. Contour plot of the Jπ = 3/2− 5He spectral function
AJ=3/2(�) in the unit of fm in the plane of the energy � and the
neutron Fermi momentum kF. On the top of the figure, we show the
value of the dimensionless coupling parameter (k3

FaJ=3/2)−1 in terms
of the p-wave scattering volume, which is frequently used in cold
atomic physics.
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interaction strength can be measured by the dimensionless
coupling parameter (k3

Fa)−1. To see the same physics in the
present nuclear system, we also show (k3

FaJ=3/2)−1 as an-
other horizontal axis of Fig. 4. While aJ=3/2 is unchanged
in this system, (k3

FaJ=3/2)−1 approaches zero from the neg-
atively large value with increasing kF. At the same time,
the dimensionless range parameter rJ=3/2/kF also runs from
−∞ to −1.45. Therefore, one can understand the decrease
of the 5He bound state energy by analogy with the case of
the Feshbach resonance. In contrast, one may expect that the
resonance-to-bound transition can also be found in ultracold
atomic systems (e.g., a Bose-Fermi mixture recently observed
in Refs. [23,35]) by measuring the spectral function of the
in-medium Feshbach molecule in the so-called weak-coupling
Bardeen-Cooper-Schrieffer regime (a < 0). Indeed, the spec-
tral function of the Feshbach molecules can be measured by
radio-frequency spectroscopy (e.g., Refs. [35,36]).

V. SUMMARY

In this paper, we theoretically examined the resonance-to-
bound transition of the Jπ = 3/2− 5He ground state in dilute
neutron matter. Using the two-channel model developed for
the description of a cold atomic gas near the narrow Feshbach
resonance, we succeeded in describing the 5He resonant state
in vacuum. Within this framework, we calculated the 5He
spectral function in dilute neutron matter at T = 0. As a result
of increase in the neutron density, the resonance-to-bound
transition of the 5He state was found to occur around kF =
0.2 fm−1. At higher densities, we have found that the spectral

function exhibits a sharp peak at negative energy because the
decay process to a neutron and an alpha particle is forbidden
by the Pauli-blocking effect of neutrons.

For future work, we need to consider finite temperature
effects and superfluid fermions for a more realistic description
of astrophysical situations. A 5He state with nonzero center-
of-mass momentum will have to be taken into account to
discuss a possible transition from the p-wave alpha polaronic
to 5He bound state in neutron matter and also the fate of
multialpha cluster states such as 9Be. For better description of
such states, it would be desirable to simultaneously consider
the polaronic properties of alpha particles due to the neutron-
alpha s-wave interaction, in addition to the p-wave resonant
or bound state of 5He. Moreover, it is interesting to examine
how larger neutron-rich nuclei such as 6He and 8He known
as Borromean halo nuclei [37] appear in a neutron Fermi sea.
The coupling with the d − 3H state would also be important
for the description of the fusion reaction with spin-3/2+ [38].
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