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The effects of the isovector scalar δ-meson field on the properties of finite nuclei, infinite nuclear matter, and
neutron stars are investigated within a relativistic mean field (RMF) model which includes nonlinear couplings.
Several parameter sets (SRVs) are generated to asses the influence of the δ meson on the properties of neutron
stars. These parametrizations correspond to different values of the coupling constant of the δ meson to nucleons,
with remaining ones calibrated to yield finite nuclei and infinite nuclear matter properties consistent with the
available experimental data. It is observed that, to fit the properties of finite nuclei and infinite nuclear matter,
a stronger coupling between the isovector vector ρ meson and nucleons is required in the presence of a δ

field. Furthermore, the δ meson is found to affect the radius of the canonical neutron star significantly. The
value of dimensionless tidal deformability, �, for the canonical neutron star also satisfies the constraints from
the waveform model analysis of the GW170817 binary neutron star merger event. A covariance analysis is
performed to estimate the statistical uncertainties of the model parameters as well as correlations among the
model parameters and different observables of interest.
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I. INTRODUCTION

Neutron stars are the densest objects in the observable
universe and deep knowledge of the equation of state (EoS) of
dense matter in beta equilibrium is thus required to understand
their behavior. It has been shown that the dense matter EoS
must be treated relativistically [1,2]. For this reason, relativis-
tic mean field (RMF) models have been widely used to obtain
a realistic description of the properties of finite nuclei, bulk
nuclear matter, and neutron stars. Currently, many different
variants of RMF models with various couplings are in use to
study finite nuclei and neutron star properties [3–5]. Accurate
constraints are necessary to understand the limits of these
different types of models. During the last decade, a wide
range of astrophysical observations—such as the precise mea-
surement of massive millisecond pulsars using the Shapiro
delay technique [6,7], detection of gravitational waves gener-
ated by binary neutron stars in the GW170817 event by the
LIGO-Virgo Collaboration [8,9], and the joint mass radius
measurement of neutron stars using the x-ray timing tech-
nique by the NICER Collaboration [10–13]—have started to
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provide unprecedented new constraints on the dense matter
EoS. They have triggered plethora of theoretical studies to
look at the dense matter EoS from very different perspectives;
see Ref. [14] and references therein. First-of-its-kind model
independent measurement of neutron skin thickness �rnp of
208Pb [15] and 48Ca [16] at the Jefferesen laboratory also in-
spired theoretical studies to take a fresher look at the isovector
channel of the nuclear interaction [17–21].

The effective mass of a nucleon quantifies the momen-
tum dependence of the nuclear force in the medium. It
can be quoted for infinite nuclear matter at the Fermi sur-
face. It is, however, necessary to realize that the concept of
effective mass is different in nonrelativistic [22,23] and rela-
tivistic formalisms [24]. Nevertheless, it plays some crucial
roles in determining various finite nuclear properties, e.g.,
isoscalar giant quadrupole resonance (ISGQR) [25] and nu-
cleon nucleon scattering in optical potentials [26], or even
in realizing various properties of nuclear matter and neutron
stars [27,28]. Recently, a systematic study was performed
using RMF models which assessed the impact of relativis-
tic (Dirac) effective mass (M∗) on the properties of neutron
stars [29]. The isovector splitting of the effective mass, which
measures the difference between neutron (M∗

n ) and proton
(M∗

p) effective mass, can also influence greatly the physical
properties of finite nuclei, such as locating the drip lines [30]
or nucleon-nucleus scattering of asymmetric systems [26].
Its impact increases manifold in high density environments
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which can alter thermal and transport properties of asymmet-
ric matter [31,32] or neutrino opacities of neutron star matter
[33]. To settle its value, even at saturation, remains a persist-
ing challenge both theoretically [34–38] and experimentally
[26,39,40].

Appearance of isovector splitting of effective mass to the
leading order in RMF models occurs through the isovector
scalar δ mesons. It impacts the proton fraction in neutron stars
and hence the cooling process of neutron stars after formation
[41,42]. It can also influence the global properties of neutron
stars [27,28,43–46]. A systematic study of RMF models with
added freedom in the isospin channel through the δ meson,
optimized using well constrained finite nuclear properties and
extrapolating at high density to understand the properties of
neutron stars and in general the dense matter EoS, can enhance
our knowledge of the density dependence of the isovector
channel of nuclear interaction.

The present study is aimed towards investigating the effects
of the δ meson on the dense matter EoS within the framework
of RMF model. We generate several parameter sets by varying
the coupling strength of the δ meson to nucleons such that the
low density behavior of the EoSs remain consistent with the
available finite nuclei data and a few empirical properties of
infinite nuclear matter evaluated at the saturation density. The
properties of neutron stars obtained with these EoSs are them
compared to assess the role of δ mesons.

The paper is organized as follows. In Sec. II, the theoretical
framework which is used to construct the EoS for neutron stars
is discussed. We also discuss the procedure to optimize the
coupling constants and the method to perform a covariance
analysis in the same section. In Sec. III, we present our results.
We summarize and draw our conclusions in Sec. IV.

II. FORMALISM

A. Theoretical model

The Lagrangian density for the RMF model used in the
present study—based on different nonlinear self-couplings
and intercouplings among isoscalar scalar σ , isoscalar vector
ωμ, isovector scalar δ, and isovector vector ρμ meson fields
and the nucleonic Dirac field � [47,48] is given by,

L =
∑

q

�

[
iγ μ∂μ − (M − gσ σ − gδδ · τ ) −

(
gωγ μωμ

+ 1

2
gργ

μτ · ρμ
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2
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)
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3!
g3
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g4

σ σ 4 − 1

4
ωμνω
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4!
ζg4
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4
ρμνρ

μν + 1

2
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ρρμρμ
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2

(
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δ δ
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c1g2

ωg2
ρωμωμρμρμ. (1)

The Dirac effective mass for the nucleons (q) appearing in the
Lagrangian density above is specified as

M∗
q = (M − gσ σ − gδδ · τ ), (2)

where τ = 1 (−1) for q = neutron (proton). Following the
Euler-Lagrange formalism one can readily find the expres-
sions for energy density E and pressure P as a function of
density from Eq. (1) [49].

B. Optimization and covariance analysis

In the present study, five new relativistic interactions
SRV00, SRV01, SRV02, SRV03, and SRV04 have been gener-
ated for the Lagrangian density given by Eq. (1) to investigate
the effect of δ mesons on the properties of finite nuclei and
neutron star matter. Here, SRV00, SRV01, SRV02, SRV03,
and SRV04 parametrizations correspond to different values of
the coupling of the δ meson to the nucleon, i.e., gδ = 0.0,
1.0, 2.0, 3.0, and 4.0 respectively. As the effect of the δ me-
son is predominantly important at suprasaturation densities,
one can a priori anticipate its insignificant impact in finite
nuclei, which is primarily sensitive to the EoS at subsaturation
densities. This is the reason why we kept fixed the gδ at
aforementioned values, optimizing the rest of the parameters
in Eq. (1). This is not far from the strategy recently used by Li
et al. in Ref. [46]. The parameters of the model are obtained
by fitting the experimental data [50] on binding energies (BEs)
and charge rms radii (rch) [51] of some spherical nuclei,
16,24O, 40,48Ca, 56,78Ni, 88Sr, 90Zr, 100,116,132Sn, and 208Pb. For
the open shell nuclei, the pairing has been included using the
BCS formalism with constant pairing gaps [52,53] that are
taken from the nucleon separation energies of neighboring
nuclei [50]. Neutron and proton pairing gaps are evaluated
by using fourth-order finite difference mass formula (five
point difference) [54]. The neutron and proton pairing gaps
(�n,�p) in MeV for the open shell nuclei are 88Sr(0.0,1.284),
90Zr(0.0,1.239), and 116Sn(1.189,0.0). The neutron pairing
gap for 24O practically vanishes since the first unoccupied
orbit 1d3/2 is almost 4.5 MeV above the completely filled 2s1/2

orbit [55,56]. The pairing correlation energies for a fixed gap
� is calculated by using the pairing window of 2h̄ω, where
h̄ω = 45A−1/3–25A−2/3 MeV [48]. We also incorporated the
recently measured neutron skin thickness of 208Pb using the
parity violating electron scattering experiment [15] in our fit
data. The optimization of the parameters (p) appearing in the
Lagrangian [Eq. (1)] is done by using the simulated anneal-
ing method (SAM) [57–59] by following a χ2 minimization
procedure which is given as

χ2(p) = 1

Nd − Np

Nd∑
i=1

(
Mexp

i − M th
i

σi

)2

, (3)

where Nd is the number of experimental data points and Np

is the number of fitted parameters. The σi denotes adopted
errors [60,61] and Mexp

i and M th
i are the experimental and

the corresponding theoretical values, respectively, for a given
observable. The minimum value of χ2

0 corresponds to the
optimal values p0 of the parameters.

Once the optimized parameter set is obtained, the cor-
relation coefficient between two quantities Y and Z can be
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TABLE I. SRV parameter sets for the Lagrangian of RMF model as given in Eq. (1). The parameter κ is in fm−1. The values of meson
masses mσ , mω, mρ , and mδ are in MeV. The nucleonic mass (M) and meson masses (mω, mρ , and mδ) are taken as 939, 782.5, 762.468, and
980 MeV, respectively. The values of κ , λ, and c1 are multiplied by 102.

Parameter SRV00 SRV01 SRV02 SRV03 SRV04

gσ 10.3109 ± 0.1109 10.3442 ± 0.0978 10.3344 ± 0.1135 10.3723 ± 0.0999 10.3735 ± 0.1294
gω 13.1772 ± 0.1621 13.2508 ± 0.1379 13.2137 ± 0.1414 13.3113 ± 0.1269 13.2984 ± 0.1815
gρ 10.8834 ± 1.1730 11.2832 ± 1.0110 11.5834 ± 0.9676 12.4834 ± 1.1274 13.1833 ± 0.8043
κ 1.8509 ± 0.0500 1.8624 ± 0.0700 1.8780 ± 0.0200 1.8242 ± 0.0500 1.8490 ± 0.0800
λ −0.05151 ± 0.0700 −0.05803 ± 0.0600 −0.06060 ± 0.0600 −0.04934 ± 0.0800 −0.05621 ± 0.0800
ζ 0.02116 ± 0.0017 0.02050 ± 0.0013 0.02017 ± 0.0011 0.02177 ± 0.0012 0.02089 ± 0.0027
c1 4.60038 ± 2.3600 4.49219 ± 1.9200 4.20853 ± 1.5600 3.66169 ± 1.4900 3.01068 ± 0.8800
mσ 501.9596 ± 0.9230 501.0200 ± 1.0071 501.6638 ± 1.3141 500.7480 ± 1.2629 501.0215 ± 1.3663

calculated by covariance analysis [60–64] as

rY Z = �Y �Z√
�Y 2 �Z2

, (4)

where covariance between Y and Z is expressed as

�Y �Z =
∑
αβ

(
∂Y

∂ pα

)
p0

C−1
αβ

(
∂Z

∂ pβ

)
p0

. (5)

Here, C−1
αβ is an element of inverted curvature matrix given by

Cαβ = 1

2

(
∂2χ2(p)

∂ pα∂ pβ

)
p0

. (6)

The standard deviation, �Y 2, in Y can be computed using
Eq. (5) by substituting Z = Y .

III. RESULTS AND DISCUSSION

We have obtained five different parameter sets correspond-
ing to different values of gδ by calibrating the remaining
parameters to a suitable set of finite nuclei as described earlier.
All parametrizations obtained in the present work give equally
good fit to the properties of finite nuclei which were used for
the optimization procedure. In Table I we display optimum
values of the model parameters for all five SRV parameter
sets along with the uncertainties on them computed using
Eq. (5). It can be seen that the parameter gρ increases with the
increase in value of gδ . A larger value of gρ is required in the
presence of the δ field to fit the properties of finite nuclei. As
the contribution of the δ field is attractive, increased binding
due to the δ field has to be compensated by the higher value of
the repulsion by the ρ field. The parameter gρ has its lowest
value for the SRV00 parametrization (gδ = 0). For any finite
value of δ coupling (gδ > 0), i.e., for SRV01, SRV02, SRV03,
and SRV04 parametrizations, the strength of ρ coupling (gρ)
increases gradually. The cross-coupling between the ωμ and
ρμ fields quantified by the term c1 decreases slightly from
4.6003 to 3.0107 as the value of coupling constant gδ increases
from 0.0 to 4.0 corresponding to different SRV parametriza-
tions.

In Table II, different observables fitted in the present
work, their experimental values [50,51], adopted errors σ on
them [65], along with the calculated values for different SRV

parametrizations are displayed. The estimated uncertanties
are also listed for the fitted observables. The fitted values of
finite nuclei properties are quite close to their experimental
counterparts. The root mean square (rms) errors on the BEs
are found to be in the range 1.50–1.86 MeV, and the ones
for rch are found to be 0.02 fm for the different parametriza-
tons. It is quite interesting to observe that, even though gδ

influences the coupling gρ , the isovector sensitive observable
�rnp varies only slightly, ≈0.01 fm, across the different SRV
models obtained in the present work. This observation is quite
similar to the one obtained by Li et al. [46]. In Table III,
we present the results for the properties of symmetric nuclear
matter (SNM) such as binding energy per nucleon (E/A), in-
compressibility (K), the ratio of effective mass to the mass of
nucleon (M∗/M), along with the symmetry energy coefficient
(J), and its slope (L), all are evaluated at the saturation density
(ρ0). We also quote the theoretically calculated error on them.
The results are presented for all five SRV parametrizations.
The value of E/A lies in the range −16.09 to −16.12 for
the five parametrizations. The values of J and L obtained
by our parametrizations are consistent with the constraints
from observational analysis, J = 31.6 ± 2.66 MeV and L =
58.9 ± 16 MeV [66,67]. The value of K is also in agreement
with the value 240 ± 20 MeV determined from the isoscalar
giant monopole resonance (ISGMR) for 90Zr and 208Pb nuclei
[68,69]. It can also be seen from Table III that the mean values
of the slope of symmetry energy (L) for SRV parametrizations
decrease with the increase in the value of gδ . The average
value of L decreases from 65.23 MeV in SRV00 to 55.31
MeV for SRV04. It can be noted that the isoscalar properties
(E/A, K , ρ0, and M∗/M) are well constrained for all SRV
parametrizations. The only exception is the error on K in the
case of SRV04, where the error is almost 10% of its central
value. But in the isovector sector, the percentage error on the
slope of symmetry energy (L) are consistently on the larger
side for all SRV parametrizations.

The importance of performing covariance analysis in the-
oretical studies was pointed out recently [60,63]. It not only
enables one to quote statistical uncertainties on model pa-
rameters or any calculated observables, but also provides
complementary information about the sensitivity of the pa-
rameters to physical observables, redundancies among fitted
observables, or interdependencies among model parameters.
As our primary objective is not to establish an ultimate model,
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TABLE II. The values of binding energy (BE) and charge radii (rch) of fitted nuclei along with theoretical errors obtained for different SRV
parametrizations. The corresponding experimental values [50,51] are also listed. The value of neutron skin thickness (�rnp) for 208Pb is given
along with the experimental data [15]. The adopted errors on the observables (σ ) used for optimization of parameters are also displayed. The
values of BE are given in units of MeV and rch and �rnp are in fm.

Nucleus Observables Expt. σ SRV00 SRV01 SRV02 SRV03 SRV04

16O BE 127.62 4.0 128.67 ± 0.52 128.83 ± 0.50 128.94 ± 0.55 128.90 ± 0.51 128.94 ± 0.61
rch 2.699 0.04 2.709 ± 0.008 2.712 ± 0.023 2.711 ± 0.031 2.710 ± 0.013 2.710 ± 0.023

24O BE 168.96 1.0 169.95 ± 0.96 169.38 ± 0.90 169.64 ± 0.89 168.90 ± 1.01 169.00 ± 0.93
40Ca BE 342.04 3.0 343.40 ± 0.69 343.14 ± 0.65 343.18 ± 0.53 344.41 ± 0.63 344.39 ± 0.91

rch 3.478 0.02 3.454 ± 0.014 3.457 ± 0.007 3.455 ± 0.016 3.455 ± 0.014 3.455 ± 0.017
48Ca BE 415.97 1.0 415.59 ± 0.54 415.15 ± 0.52 415.37 ± 0.45 415.37 ± 0.63 415.48 ± 0.52

rch 3.477 0.02 3.468 ± 0.016 3.469 ± 0.014 3.468 ± 0.014 3.467 ± 0.014 3.467 ± 0.022
56Ni BE 484.01 5.0 482.05 ± 1.28 482.39 ± 1.21 482.28 ± 1.31 483.12 ± 1.48 483.22 ± 1.56

rch 3.750 0.02 3.712 ± 0.022 3.709 ± 0.017 3.708 ± 0.14 3.707 ± 0.017 3.705 ± 0.013
78Ni BE 642.56 2.0 641.39 ± 1.03 640.01 ± 0.97 641.05 ± 1.01 640.21 ± 1.08 640.18 ± 1.07
88Sr BE 768.42 1.0 768.24 ± 0.60 767.72 ± 0.57 767.84 ± 0.58 768.39 ± 0.60 768.40 ± 0.62

rch 4.219 0.02 4.226 ± 0.016 4.227 ± 0.014 4.227 ± 0.013 4.225 ± 0.021 4.225 ± 0.0146
90Zr BE 783.81 1.0 783.92 ± 0.69 783.58 ± 0.64 783.59 ± 0.68 784.37 ± 0.69 784.36 ± 0.68

rch 4.269 0.02 4.280 ± 0.019 4.280 ± 0.019 4.280 ± 0.013 4.278 ± 0.029 4.278 ± 0.015
100Sn BE 825.10 2.0 826.60 ± 1.28 826.95 ± 1.24 827.56 ± 1.14 827.09 ± 1.23 827.01 ± 1.66
116Sn BE 988.67 2.0 988.34 ± 0.83 987.74 ± 0.73 987.72 ± 2.18 988.49 ± 0.82 988.25 ± 0.88

rch 4.627 0.02 4.617 ± 0.016 4.618 ± 0.014 4.617 ± 0.009 4.615 ± 0.012 4.615 ± 0.020
132Sn BE 1100.22 1.0 1101.38 ± 0.84 1100.58 ± 0.80 1101.48 ± 0.77 1100.59 ± 0.86 1100.70 ± 0.82

rch 4.709 0.02 4.721 ± 0.019 4.721 ± 0.019 4.720 ± 0.010 4.719 ± 0.012 4.717 ± 0.011
208Pb BE 1636.34 1.0 1636.58 ± 1.03 1635.98 ± 0.98 1636.32 ± 0.96 1636.27 ± 1.05 1636.10 ± 1.02

rch 5.501 0.02 5.530 ± 0.015 5.531 ± 0.014 5.529 ± 0.014 5.527 ± 0.021 5.526 ± 0.011
�rnp 0.283 ± 0.071 0.071 0.222 ± 0.032 0.223 ± 0.028 0.217 ± 0.026 0.215 ± 0.035 0.214 ± 0.029

for the purpose of demonstration we will discuss the results
of covariance analysis as outlined in Sec. II B, only for the
model SRV02. The results for other parameter sets are quite
similar (not shown here). In Fig. 1, the correlation coefficients
between different model parameters appearing in Eq. (1) are
outlined for SRV02 parametrization. A strong correlation is
found between several pairs of model parameters, such as gσ

and gω, gρ and c1, and λ and ζ with correlation coefficients
0.99, 0.98, and 0.95, respectively. These interdependencies
mean that, if one of these pairs are fixed at a particular value,
the other must attain the precise value as suggested by their
correlation to satisfactorily obtain the fit data. The results ob-
tained for the correlations among model parameters presented
in Fig. 1 are quite similar to those obtained in Refs. [19,70].
The strong correlation between L and �rnp, which is shown
later (see Fig. 3), may be attributed to the large experimental

error on �rnp for 208Pb, which also led us to choose a rather
large adopted error during optimization. The theoretical errors
on the �rnp of the 208Pb nucleus are found to be 0.032, 0.028,
0.026, 0.0353, and 0.029 fm for SRV00, SRV01, SRV02,
SRV03, and SRV04 parametrizations, respectively. These are
much smaller compared to the adopted error (0.071 fm, which
is also the experimental error obtained in Ref. [15]).

We now display in Fig. 2 the correlation coefficients be-
tween the model parameters appearing in the Lagrangian [Eq.
(1)] and the different properties of interest corresponding to
SNM and the neutron skin thickness �rnp of 208Pb for SRV02.
A strong correlation is observed between the isovector param-
eter gρ with the symmetry energy coefficient (J), its slope (L),
and �rnp of 208Pb. The vector mixing parameter c1 is also
found to have a strong correlation with J and L. This strong
correlation is anticipated, as c1 and gρ are strongly correlated

TABLE III. The bulk nuclear matter properties at saturation density for SRV parametrizations are listed: ρ0, E/A, K , J , L, and M∗/M
denote the saturation density, binding energy per nucleon, incompressibility coefficient, symmetry energy, the slope of symmetry energy, and
the ratio of effective nucleon mass to the nucleon mass, respectively.

Parameter SRV00 SRV01 SRV02 SRV03 SRV04

ρ0 (fm−3) 0.149 ± 0.003 0.149 ± 0.002 0.149 ± 0.002 0.149 ± 0.003 0.149 ± 0.008
E/A (MeV) −16.11 ± 0.06 −16.11 ± 0.05 −16.09 ± 0.05 −16.12 ± 0.06 −16.11 ± 0.04
K (MeV) 223.94 ± 8.57 221.78 ± 9.95 222.05 ± 5.47 221.72 ± 10.62 221.11 ± 23.20
J (MeV) 33.49 ± 1.82 33.75 ± 1.77 33.31 ± 1.78 33.54 ± 2.13 33.34 ± 2.08
L (MeV) 65.23 ± 15.37 63.82 ± 13.50 61.49 ± 13.22 58.06 ± 15.93 55.31 ± 13.76
M∗/M 0.606 ± 0.013 0.602 ± 0.010 0.603 ± 0.005 0.601 ± 0.009 0.600 ± 0.009
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FIG. 1. Correlation coefficients (absolute values) among the
model parameters for SRV02 parametrization for the Lagrangian
given by Eq. (1).

to each other, which was observed in Fig. 1. It is also realized
from Fig. 2 that bulk properties of SNM like E/A, K , ρ0,
and M∗/M have strong correlations with isoscalar coupling
parameters gσ , gω, and κ . This study is quite consistent with
previous calculations in the literature [20,56,70]. In Fig. 3,
we display the correlation coefficients among the different
observables in graphical form, particularly those which were
also shown in Fig. 2. In the isoscalar sector the only strong
correlation observed is between binding energy per nucleon
(E/A) and incompressibility coefficient (K). K also shows
some mild correlations with all other observables displayed

FIG. 2. Correlation coefficients (absolute values) between the
model parameters and a set of physical observables for the SRV02
parametrization (see text for details).

FIG. 3. Correlation coefficients (absolute values) for a few bulk
nuclear matter properties and the neutron skin of 208Pb for SRV02
parametrization.

in the figure. The symmetry energy J and its slope parameter
L are found to be strongly correlated. As mentioned earlier in
the discussion of Table III, we observe a strong correlation of
the neutron skin thickness of 208Pb with J and L. These results
are also in line with earlier ones [70].

It is quite important to emphasize that we kept fixed the
strength of the coupling of the δ meson at different values
and optimized the rest. This might be partially responsible
for imparting a strong correlation among the isovector sen-
sitive parameters gρ, c1 to J , L, or �rnp of 208Pb (see Fig. 2)
in reproducing the fitted data within bounds. It gets further
clarified in the strong correlations among �rnp (208Pb), J ,
and L in Fig. 3. Anticipating the results obtained for neutron
stars which are discussed later, this strong correlation some-
what restricts the behavior of the matter at high densities in
the isovector channel, resulting in a monotonic increase in
the radius and tidal deformability of a 1.4M� neutron star
(see Table IV) with the increase of the δ meson coupling
gδ . A full optimization is thus needed with suitable data in
the future, including gδ , to understand this behavior further.
To study the effects of the δ meson on nucleon mass, in
Fig. 4 the effective masses of the proton and neutron are
plotted as a function of baryon density for three values of
asymmetry parameter α = 0, 0.5, 1 (α= ρn−ρp

ρn+ρp
) for the SRV04

parametrization, which has the largest value of gδ among all
SRV variants obtained in the present work. The asymmetry
parameter α = 0.0 represents SNM and α = 1 corresponds
to pure neutron matter (PNM). It is clear from Eq. (2) that
the presence of the δ meson leads to splitting of the nucleon
mass. For SNM, there is no splitting of the nucleon mass. In
Fig. 4, the solid (dashed) lines depict the effective mass of
the proton (neutron) for α = 0, 0.5, and 1.0. One can observe
from the figure that the effective proton mass is larger than the
neutron effective mass. The splitting of the proton and neutron
effective masses due to the δ meson can be important in a
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TABLE IV. The properties of a nonrotating neutron star for the various EoSs computed with SRV parameter sets are presented along with
the theoretical errors on them. MG and Rmax denote the Maximum Gravitational mass and corresponding radius. The values for R1.4 and �1.4

denote radius and dimensionless tidal deformability at 1.4M�.

MG Rmax R1.4 R2.0 �1.4

No. EoS (M�) (km) (km) (km)

1. SRV00 2.04 ± 0.03 11.48 ± 0.08 12.92 ± 0.22 12.07 ± 0.31 484.16 ± 62.10
2. SRV01 2.06 ± 0.02 11.55 ± 0.13 12.99 ± 0.20 12.24 ± 0.21 504.95 ± 58.02
3. SRV02 2.07 ± 0.02 11.67 ± 0.07 13.16 ± 0.13 12.43 ± 0.14 565.52 ± 60.33
4. SRV03 2.08 ± 0.02 11.81 ± 0.11 13.41 ± 0.21 12.60 ± 0.16 652.60 ± 52.01
5. SRV04 2.13 ± 0.06 12.11 ± 0.23 13.86 ± 0.21 13.09 ± 0.33 783.96 ± 70.03

highly asymmetric system like a neutron star or supernova
environment. At the center of a neutron star the density can
reach ≈5–6 ρ0 and α ≈ 0.7–0.8. One can readily estimate the
amount of splitting in the effective mass in this situation by
looking at Fig. 4. It can also affect the transport properties of
neutron star matter [74].

To assess the impact of the δ meson on the global prop-
erties of neutron stars, we plot the gravitational mass (MG)
of a nonrotating neutron star as a function of radius for all
SRV parametrizations in Fig. 5. The maximum mass (Mmax)
and the corresponding radius (Rmax) of a neutron star for
all the models obtained here lie in the range 2.04–2.13 M�
and 11.48–12.11 km, respectively. This satisfies the recently
measured radius of PSRJ0740+6620 of 12.45+0.65

−0.65 km by
the NICER Collaboration [12,13]. The radius of a neutron
star of 2M� is also in accordance with the observational
data of PSRJ0740+6620 by NICER [12,13]. The maximum
mass of a neutron star attained by various SRV parametriza-
tions supports the constraint from PSRJ0740+6620 with the
mass of 2.08 ± 0.07M� [75,76]. It is observed that the radius
(R1.4) of a neutron star with mass 1.4M�, can be signifi-
cantly affected by the presence of δ mesons as we move from
parametrization set SRV00 to SRV04. The value of R1.4 with
the inclusion of the TM1 crust EoS [77] lies in the range
12.92–13.86 km, which is also in line with the range proposed
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FIG. 4. Effective masses of proton and neutron for a few values
of asymmetry parameter α for the SRV04 parametrization.

in Ref. [12,78]. It is observed that the radius R1.4 increases
by 7.27% and the maximum mass of neutron star changes by
4.4% from SRV00 to SRV04 parametrizations with the vari-
ation of coupling gδ = 0.0 to 4.0. This change in the neutron
star properties may be attributed to the impact of the δ meson,
which affects high-density behavior of asymmetric nuclear
matter.

Tidal deformability imparted by companion stars on one
another in a binary system can yield remarkable information
on the EoS for neutron stars [79,80]. In Fig. 6, we show
the results of dimensionless tidal deformability �, defined
as �= (2/3)k2(R/MG)5, where k2 is the Love number, as
a function of the neutron star mass MG for different SRV
models. The recent constraints on the tidal deformability �1.4

of a 1.4M� neutron star including GW170817 [8,81] is also
given in the figure. The value of �1.4 lies in the range 484–
783 for different SRV parametrizations, which satisfies the
proposed limit as listed in Refs. [8,78,81,82]. The value of
�1.4 increases with the increase in the value of the coupling
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FIG. 5. Mass-radius relation of a neutron star for SRV
parametrizations.
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FIG. 6. Variation of dimensionless tidal deformability (�) with
respect to gravitational mass for SRV parametrizations.

gδ corresponding to the SRV parametrizations, as can be seen
from Fig. 6. All these results are summarized in Table IV.
The theoretical errors/uncertainties in neutron star properties
for SRV parametrizations are also mentioned in the table.
The neutron star properties such as Mmax, Rmax, R1.4, R2.0 are
relatively well constrained for all SRV parametrizations (at
� 3%) whereas for �1.4, the theoretical uncertainties are
found to be �10%.

To this end, we may mention that the contribution of the
δ meson is considered only through its linear interaction
with nucleons. However, inclusion of the self-interaction of
δ mesons and the mixed interactions with other mesons may
alter the symmetry energy at suprasaturation densities. This
would further enhance the flexibility of the EoS of dense
matter and accordingly the properties of neutron stars [71–73].
Inclusion of the higher order contributions of the δ meson
thus enables one to model the properties of neutron stars
somewhat independently of the properties of finite nuclei.
The optimization of the effective Lagrangian that includes
different terms involving the δ meson field requires accurate

knowledge of neutron star properties over a wide range of
mass.

IV. SUMMARY AND CONCLUSIONS

The effect of the isovector scalar field corresponding to
δ-meson in relativistic mean field theory is investigated. We
have generated five sets of SRV parametrizations SRV00,
SRV01, SRV02, SRV03, and SRV04 to explore the effects
of the δ meson on the properties of finite nuclei, infinite
nuclear matter, and neutron stars. A covariance analysis to
measure the accuracy of model predictions is also performed.
This also enabled us to carry out a systematic study of cor-
relations among model parameters and various finite nuclei
and infinite nuclear matter properties of interest. The SRV
parametrizations have been obtained in such a way that they
reproduce the ground state properties of the finite nuclei and
infinite nuclear matter properties quite convincingly. In turn,
they satisfy the constraints on mass and radius of the neutron
star and its dimensionless tidal deformability, �, from recent
astrophysical observations [8,66,67,78,81]. It is observed that
to fit the properties of finite nuclei and infinite nuclear matter,
a stronger coupling between the ρ meson and nucleons (gρ) is
required in the presence of the δ meson field. Furthermore, the
δ meson significantly affects the radius of a canonical neutron
star. It is found that the contributions from the δ meson are im-
portant and have some significant effects on the dense matter
EoS. The value of �1.4 for different SRV parametrization is
also in line with the constraint obtained from the GW170817
event. It is clear that the isovector splitting of the effective
mass of nucleons in the presence of δ in dense asymmetric
matter, like the scenario present in the core of a neutron star,
can be significant. It remains, however, an open question how
to identify in future the signatures of isovector effective mass
splitting from astrophysical observations.
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