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Exploring universal characteristics of neutron star matter with relativistic ab initio equations of state
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Starting from the relativistic realistic nucleon-nucleon (NN) interactions, the relativistic Brueckner-Hartree-
Fock (RBHF) theory in the full Dirac space is employed to study neutron star properties. First, the one-to-one
correspondence relation for gravitational redshift and mass is established and used to infer the masses of isolated
neutron stars by combining gravitational redshift measurements. Next, the ratio of the moment of inertia I to mass
times radius squared MR2 as a function of the compactness M/R is obtained, and is consistent with the universal
relations in the literature. The moment of inertia for 1.338M� pulsar PSR J0737−3039A I1.338M� is predicted
to be 1.356 × 1045, 1.381 × 1045, and 1.407 × 1045 g cm2 by the RBHF theory in the full Dirac space with
NN interactions Bonn A, B, and C, respectively. Finally, the quadrupole moment of neutron star is calculated
under the slow-rotation and small-tidal-deformation approximation. The equations of state constructed by the
RBHF theory in the full Dirac space, together with those by the projection method and momentum-independence
approximation, conform to universal I-Love-Q relations as well. By combing the tidal deformability from
GW170817 and the universal relations from relativistic ab initio methods, the moment of inertia of a neutron
star with 1.4 solar mass is also deduced as I1.4M� = 1.22+0.40

−0.25 × 1045 g cm2.

DOI: 10.1103/PhysRevC.106.045804

I. INTRODUCTION

Neutron stars are one of the most compact objects in the
universe: their central densities can reach as high as 5 to 10
times the saturation density of nuclear matter, ρ0 ≈ 0.16 fm−3

[1], which is far beyond what can be achieved in terrestrial
laboratories. Therefore, neutron stars are ideal laboratories
for studying ultradense matter, and have established close
connections among nuclear physics, particle physics, and as-
trophysics.

The astrophysical observations of the global properties of
neutron stars provide important constraints for the equation of
state (EOS) of dense matter [2–5], which is the only ingredient
needed to unveil the structure of neutron stars theoretically.
The high-precision mass measurements of massive neutron
stars constitute nowadays one of the most stringent astro-
physical constraints on the nuclear EOS; such measurements
include PSR J1614−2230 (1.928 ± 0.017M�) [6,7], PSR
J0348+0432 (2.01 ± 0.04M�) [8], and PSR J0740+6620
(2.08 ± 0.07M�) [9,10]. Recently, the Neutron star Interior
Composition Explorer (NICER) mission reported two inde-
pendent Bayesian parameter estimations of the mass and
equatorial radius of the millisecond pulsar PSR J0030+0451:
1.34+0.15

−0.16M� and 12.71+1.14
−1.19 km [11] as well as 1.44+0.15

−0.14M�
and 13.02+1.24

−1.06 km [12]. In combination with constraints from
radio timing, gravitational wave (GW) observations, and nu-
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clear physics experiments, these posterior distributions have
been used to infer the properties of the dense matter EOS (see
Ref. [13] and references therein). Moreover, two independent
Bayesian estimations of the radius for the massive millisecond
pulsar PSR J0740 + 6620 have also been reported [13,14].

Another unique probe for studying the properties of dense
matter was extracted from the recent observation of GW
signals emitted from a binary neutron star merger, i.e.,
GW170817 [15]. The tidal deformability, which denotes the
mass quadrupole moment response of a neutron star to the
strong external gravitational field induced by its companion
[16–20], can be inferred from the GW signals. The limits on
the tidal deformability have been widely used to constrain the
neutron star radius [21–24], the asymmetric nuclear matter
EOS [25–27], and hence the neutron skin thickness of 208Pb
[21].

Besides, as rotating objects, the internal structures of
neutron stars are strongly constrained by the moment of
inertia, which can be determined from the measurements of
spin-orbit coupling in double pulsar systems [28]. Such a
measurement of the moment of inertia for neutron stars would
have crucial implications for delimiting the EOS significantly
[29] and can be used to distinguish neutron stars from quark
stars [30]. Special attention has been attracted by the system
PSR J0737−3039 [28,31,32], which is the only currently
known double pulsar system. It is hoped that the moment of
inertia of the 1.338M� primary component in this system, i.e.,
PSR J0737−3039A, will be measured eventually to within

2469-9985/2022/106(4)/045804(9) 045804-1 ©2022 American Physical Society

https://orcid.org/0000-0002-2050-0040
https://orcid.org/0000-0003-3591-3670
https://orcid.org/0000-0002-9666-6098
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.106.045804&domain=pdf&date_stamp=2022-10-12
https://doi.org/10.1103/PhysRevC.106.045804


SIBO WANG, CHENCAN WANG, AND HUI TONG PHYSICAL REVIEW C 106, 045804 (2022)

10% [33], and could be used to impose new constraints on the
EOS [34].

The global properties of neutron stars, like masses, radii,
tidal deformabilities, and moments of inertia are highly sensi-
tive to the EOS for neutron star matter [35–37]. Nevertheless,
it has been shown [30,38] that, for slowly rotating neutron
stars, there exist universal relations between the moment of
inertia I , the tidal deformability � (or Love number), and
the quadrupole moment Q of neutron stars, i.e., the so-called
I-Love-Q relations, which are approximately independent
of the internal composition and the EOS for neutron star
matter. Wide attention has been attracted by these universal
relations (see Ref. [39] for a review). Although so far the
reasons for these universal behaviors are not well understood
[40,41], attempts have been made to combine the universal
relations with GW detections to infer neutron star properties
[42,43].

The robustness of the I-Love-Q relations has been exten-
sively studied with EOSs constructed from a variety of nuclear
models (see Refs. [39,44] and references therein), includ-
ing the relativistic Brueckner-Hartree-Fock (RBHF) theory
[45–50]. Since the 1980s the RBHF theory has played an
important role in understanding the properties of dense nu-
clear matter from realistic nucleon-nucleon (NN) interactions
[51,52]. In the RBHF theory, the single-particle motion of the
nucleon in nuclear matter is described with the Dirac equation,
where the medium effects are absorbed into the single-particle
potentials. In principle, the scalar and the vector components
of the single-particle potentials should be determined in the
full Dirac space [53], i.e., by considering the positive-energy
states (PESs) and negative-energy states (NESs) simultane-
ously. However, to avoid the difficulties induced by NESs, the
RBHF calculations are primarily performed in the Dirac space
without NESs [45–49,54].

Recently, a self-consistent RBHF calculation in the full
Dirac space was achieved for symmetric nuclear matter
(SNM) [55,56] and asymmetric nuclear matter (ANM) [57].
By decomposing the matrix elements of single-particle poten-
tial operator in the full Dirac space, the momentum-dependent
scalar and vector components of the single-particle potentials
are determined uniquely [55]. The long-standing contro-
versy about the isospin dependence of the effective Dirac
mass in relativistic ab initio calculations of ANM is also
clarified [57].

The RBHF theory in the full Dirac space has been applied
to neutron stars [37,57], where the mass, radius, and tidal
deformability are calculated with realistic NN interactions
Bonn A, B, and C [58]. The maximum mass of a neutron
star is found less than 2.4M� and the neutron star radius for
1.4M� is predicted about 12 km, which are consistent with
the astrophysical observations of massive neutron stars and
simultaneous mass-radius estimations by NICER [12]. The
tidal deformabilities for a 1.4M� neutron star are predicted
as 376, 473, and 459 for the three parametrizations of NN
interactions respectively, and all lie in the region �1.4M� =
190+390

−120 inferred from the revised analysis by LIGO and Virgo
Collaborations [59].

In this work, we employ the RBHF theory in the full
Dirac space to study other global properties of neutron

stars, including the gravitational redshift, moment of inertia,
and quadrupole moment under the slow-rotation and small-
tidal-deformation approximation. The main focus will be the
relation between the moment of inertia and the compactness
parameter, as well as the universal I-Love-Q relations. This
paper is organized as follows. In Sec. II, the theoretical frame-
work of the RBHF theory and structure equations for neutron
star properties are briefly described. The obtained results and
discussions are presented in Sec. III. Finally, a summary is
given in Sec. IV.

II. THEORETICAL FRAMEWORK

A. The relativistic Brueckner-Hartree-Fock theory

In the RBHF calculations, one of the most important proce-
dure is the self-consistent determination of the single-particle
potential operator U of the nucleons, which is generally di-
vided into scalar and vector components [60]:

U (p) = US (p) + γ 0U0(p) + γ · p̂UV (p). (1)

Here p̂ = p/p is the unit vector parallel to the momentum
p. The quantities US (p), U0(p), and UV (p) are the scalar
potential, the timelike part, and the spacelike part of the vector
potential.

In principle, the scalar and the vector components of the
single-particle potentials can only be determined uniquely
in the full Dirac space. However, to avoid the numerical
difficulties in the full Dirac space, different approximations
are proposed to extract the single-particle potentials in the
Dirac space without NESs. The momentum-independence ap-
proximation [46] assumes that the single-particle potentials
are independent of the momentum, and the spacelike com-
ponent of the vector potential, UV , is negligible. The scalar
potential US and the timelike part of the vector potential,
U0, are then extracted from the single-particle potential en-
ergies at two selected momenta. In the projection method
[49], the effective NN interaction G matrix, which is obtained
by solving the in-medium scattering equation, is projected
onto a complete set of five Lorentz invariant amplitudes, from
which the single-particle potentials are calculated analytically.
However, the choice of these Lorentz invariant amplitudes is
not unique.

Only by decomposing the matrix elements of U in the
full Dirac space can the Lorentz structure and momentum de-
pendence of single-particle potentials be uniquely determined
[53]. The theoretical framework for the RBHF theory in the
full Dirac space has been described in detail in Ref. [55] for
SNM and Ref. [37] for ANM. In this work this method is used
to construct the EOS of neutron star matter, which is regarded
as beta equilibrium nuclear matter consisting of protons, neu-
trons, electrons, and muons [61]. Using the relativistic Bonn
A potential [58], the RBHF theory in the full Dirac space for
nuclear matter is applicable for density in the range 0.08–0.57
fm−3. For lower density in the crust of a neutron star, the
EOS introduced with the Baym-Bethe-Pethick (BBP) [62]
and Baym-Pethick-Sutherland (BPS) models [63] is used. For
higher density, we follow the strategy proposed in Ref. [64]
and applied in Refs. [57,65], where the neutron-star matter
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EOS above a critical density ρc = 0.57 fm−3 is replaced with
the maximally stiff or causal one, which predicts the most
rapid increase of pressure with energy density without vio-
lating the causality limit.

B. Mass, radius, gravitational redshift, and tidal deformability

The stable configurations of a cold, spherically sym-
metric, and nonrotating neutron star can be obtained from
the Tolman-Oppenheimer-Volkov (TOV) equations [66,67].
Adopting natural units G = c = 1, the TOV equations are
given by

dP(r)

dr
= − [P(r) + E (r)][M(r) + 4πr3P(r)]

r[r − 2M(r)]
, (2a)

dM(r)

dr
= 4πr2E (r), (2b)

where P(r) is the pressure at neutron star radius r, M(r) is the
total neutron star mass inside a sphere of radius r, and E (r)
is the total energy density. These differential equations can
be solved numerically with a given central pressure Pc and
M(0) = 0. The quantity R for P(R) = 0 denotes the radius
of the neutron star, and M(R) is its mass. The gravitational
redshift which relates the mass of the neutron star to its radius
is defined as

z = (1 − 2M/R)−1/2 − 1. (3)

Since the radius of the neutron star is harder to observe relative
to its mass, the simultaneous measurements of the mass and
the gravitational redshift would provide a clear radius deter-
mination.

The tidal deformability is defined as

� = 2
3 k2C

−5. (4)

where C = M/R is the compactness parameter. The second
Love number k2 [17,68] is calculated by

k2 = 8C5

5
(1 − 2C)2[2 − yR + 2C(yR − 1)]

× {6C[2 − yR + C(5yR − 8)]

+ 4C3[13 − 11yR + C(3yR − 2) + 2C2(1 + yR)]

+ 3(1 − 2C)2[2 − yR + 2C(yR − 1)] ln(1 − 2C)}−1,

(5)

where yR = y(R) is the solution of the following nonlinear,
first-order differential equation:

r
dy(r)

dr
+ y2(r) + F (r)y(r) + r2Q(r) = 0. (6)

Here the two functions F (r) and Q(r) depend on the known
mass, radius, pressure, and energy density profiles of the star:

F (r) =
[

1 − 2M(r)

r

]−1

{1 − 4πr2[E (r) − P(r)]}, (7a)

Q(r) =
{

4π

[
5E (r) + 9P(r) + E (r) + P(r)

∂P/∂E
]

− 6

r2

}

×
[

1 − 2M(r)

r

]−1

−
[

2M(r)

r2
+ 8πrP(r)

]2

×
[

1 − 2M(r)

r

]−2

. (7b)

The differential equation (6) for k2 can be solved together with
the TOV equations and the initial condition y(0) = 2.

C. The moment of inertia

The moment of inertia is calculated under the slow-rotation
approximation pioneered by Hartle and Thorne [69,70], where
the frequency � of a uniformly rotating neutron star is far
smaller than the Kepler frequency at the equator:

� � �max �
√

M/R3. (8)

In the slow-rotation approximation the moment of inertia of a
uniformly rotating, axially symmetric neutron star is given by
the following expression [71]:

I = 8π

3

∫ R

0
r4e−ν(r) ω̄(r)

�

E (r) + P(r)√
1 − 2M(r)/r

dr. (9)

The quantity ν(r) is a radially dependent metric function and
is defined as

ν(r) = 1

2
ln

(
1 − 2M

R

)
−

∫ R

r

M(x) + 4πx3P(x)

x2[1 − 2M(x)/x]
dx. (10)

The frame-dragging angular velocity ω̄ is usually obtained by
the dimensionless relative frequency w̃ ≡ ω̄/�, which satis-
fies the following second-order differential equation:

d

dr

[
r4 j(r)

dω̃(r)

dr

]
+ 4r3 d j(r)

dr
ω̃(r) = 0, (11)

where j(r) = e−ν(r)√1 − 2M(r)/r for r � R. The relative
frequency ω̃(r) is subject to the following two boundary con-
ditions:

ω̃′(0) = 0, (12a)

ω̃(R) + R

3
ω̃′(R) = 1. (12b)

It should be noted that under the slow-rotation approxi-
mation the moment of inertia does not depend on the stellar
frequency �.

D. The quadrupole moment

It has been shown [30,38] that there exist universal rela-
tions between the moment of inertia, the Love number, and the
quadrupole moment of neutron stars. Physically, the moment
of inertia quantifies how fast a neutron star can spin for a
fixed angular momentum, the quadrupole moment describes
how much a neutron star is deformed away from spheric-
ity due to rotation, and the Love number characterizes how
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FIG. 1. The speed of sound squared for neutron star matter as a function of density (left) and the neutron star mass-radius relation (right)
obtained by the RBHF theory with the potential Bonn A in the full Dirac space (red solid line), in comparison with those obtained by the
projection method (green dashed line) and the momentum-independence approximation (gray dotted line). The dark (light) blue and purple
regions indicate the 68% (95%) confidence intervals constrained by the NICER analysis of PSR J0030+0451 [12] and PSR J0740+6620 [14].
The red dotted line corresponds to the maximally stiff EOS.

easily a neutron star can be deformed due to an external
tidal field. These quantities can be computed by numerically
solving for the interior and exterior gravitational field of a
neutron star in a slow-rotation approximation [69,70] and in
a small-tidal-deformation approximation[17,68]. In this work
the quadrupole moment is calculated by following the detailed
instructions described in Ref. [38]. In order to investigate
the universal I-Love-Q relations, the following dimensionless
quantities are introduced:

Ī ≡ I

M3
, Q̄ ≡ − QM

(I�)2
. (13)

III. RESULTS AND DISCUSSIONS

In the left panel of Fig. 1, the speed of sound squared for
neutron star matter from the RBHF theory with potential Bonn
A is depicted as a function of density. The results calculated
with the projection method and momentum-independence
approximation show slowly increasing tendencies with the
increase of density. In the full Dirac space, the speed of sound
squared increases quickly with the density, and reaches 0.77 at
0.57 fm−3. Above this density, the amplitude of scalar poten-
tial US exceeds the nucleon rest mass, and the RBHF iteration
in the full Dirac space is very difficult to achieve. This fact
might be related to the extension of the Bonn potential to the
full Dirac space, which was determined with PESs only. When
the central density of a neutron star is fixed at ρc = 0.57 fm−3,
our calculations could support a neutron star with mass equal
to 1.9M�. To further explore the maximum mass of a neutron
star from the RBHF theory in the full Dirac space, we continue
with an EOS where the speed of sound is equal to the speed of

light [57,64,65] (red dotted line). This would provide an upper
bound on the maximum mass of a neutron star.

Based on the EOS from the RBHF theory, the mass-radius
relations of a neutron star can be calculated from the TOV
equations, which are shown in the right panel of Fig. 1.
The 68% and 95% contours of the joint probability density
distribution of the mass and radius of PSR J0030 + 0451
[12] and PSR J0740 + 6620 [14] from the NICER analysis
are also shown. It can be found that the results obtained
in the full Dirac space, with the projection method, and
with the momentum-independence approximation are consis-
tent with the recent constraints by NICER. The maximum
masses Mmax predicted by the three methods are 2.43M�,
2.31M�, and 2.18M� respectively, which are consistent with
the available astrophysical constraints from massive neu-
tron star observations, such as PSR J1614−2230 (1.928 ±
0.017M�) [6,7], PSR J0348+0432 (2.01 ± 0.04M�) [8], and
PSR J0740+6620 (2.08 ± 0.07M�) [9,10]. The radii R1.4M�
of a 1.4M� neutron star from the three methods are 11.97 km,
12.38 km, and 12.35 km, respectively.

In Table I we summarize the maximum mass of a neutron
star and the radius and the central density for a 1.4M� neutron
star obtained by the RBHF theory in the full Dirac space,
together with those obtained with the projection method and
momentum-independence approximation. The smallest value
for R1.4M� found in the full Dirac space corresponds to the
softest EOS for neutron star matter below a density of about
0.4 fm−3. This fact can be further related to nuclear matter
properties, which are also summarized in Table I, including
the binding energy per nucleon E/A, the symmetry energy
Esym, and its slope L. It is found that the symmetry energy and
its slope at the saturation density obtained in the full Dirac
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TABLE I. Neutron star properties and nuclear matter properties
at saturation density calculated by the RBHF theory in the full
Dirac space with potential Bonn A, in comparison with the results
obtained by the RBHF calculation with the projection method and
the momentum-independence approximation.

Model Mmax R1.4M� ρ1.4M� ρ0 E/A Esym L
(M�) (km) (fm−3) (fm−3) (MeV) (MeV) (MeV)

Full Dirac space 2.43 11.97 0.46 0.188 −15.40 33.1 65.2
Projection method 2.31 12.38 0.42 0.179 −16.15 34.7 68.8
Mom.-ind. approx. 2.18 12.35 0.43 0.178 −15.36 33.2 67.3

space are the smallest among the three methods. This explains
the reason for smallest R1.4M� and shows how important it is
to take both the PESs and NESs into account.

Figure 2 shows the relations between the gravitational red-
shift z of a neutron star with its mass M and radius R obtained
by the RBHF theory in the full Dirac space with the potentials
Bonn A, B, and C. It can be seen that the z − M relation is not
strongly affected by the NN interactions. With the increase
of mass, the gravitational redshift shows a monotonically in-
creasing behavior. A backbending phenomenon is found for
the gravitational redshift with the decrease of radius, similar
to the case for M − R relations as shown in Fig. 1.

The clear one-to-one correspondence relation for gravita-
tional redshift and mass established in the left panel in Fig. 2
can be used to infer the mass of a isolated neutron star,
when the observation of the gravitational redshift is provided.
In Fig. 2, astrophysical observations of gravitational redshift
for isolated neutron stars RX J0720.4−3125 [73], RBS 1223
[72], and RX J1856.5−3754 [72] are shown as shadow bands.
The predicted masses by combining these observations and
the theoretical calculations from the RBHF theory in the full
Dirac space with Bonn A potential are listed in the third col-

TABLE II. The masses of isolated neutron stars RBS 1223 [72],
RX J1856.5–3754 [72], and RX J0720.4–3125 [73] predicted by
combining gravitational redshift measurements and the RBHF theory
in the full Dirac space with potential Bonn A. The radii are also
given. The uncertainties in the last two columns are all from the
gravitational redshift measurements.

System Gravitational Mass Radius
redshift z M (M�) R (km)

RBS 1223 [72] 0.16+0.03
−0.02 1.03+0.15

−0.11 11.85+0.05
−0.04

RX J1856.5–3754 [72] 0.22+0.06
−0.12 1.33+0.25

−0.64 11.94+0.03
−0.18

RX J0720.4–3125 [73] 0.205+0.006
−0.003 1.258+0.028

−0.014 11.922+0.008
−0.004

umn of Table II. The uncertainties are from the gravitational
redshift measurements. In Table II the corresponding radii are
also shown in the last column.

In Fig. 3 we display the ratio of the moment of inertia
I to MR2 as a function of the compactness parameter M/R
obtained by the RBHF theory in the full Dirac space with NN
interactions Bonn A, B, and C. Lattimer et al. [29] showed
that, in the absence of phase transition and other effects that
strongly soften the EOS at supranuclear densities, there is a
relatively unique relation between the quantity I/MR2 and
M/R:

I/MR2 � (0.237 ± 0.008)(1 + 2.844C + 18.91C4). (14)

This relation is shown as the purple band in Fig. 3. It is found
that our results are consistent with the universal relations ob-
tained in Ref. [29] for the range where M/R > 0.08M�/km.
The derivation for smaller compactness is unimportant, since
the observational evidence for neutron star masses and radii
lie in the ranges of 1.2M� � M � 2.2M� and 9 km � R �
15 km respectively, which leads to the range of compactness

FIG. 2. The relation between the gravitational redshift z of a neutron star with its mass M (left) and radius R (right) obtained by the RBHF
theory in the full Dirac space with the potentials Bonn A, B, and C. Astrophysical observation for the gravitational redshift of isolated neutron
stars RBS 1223 [72], RX J1856.5−3754 [72], and RX J0720.4−3125 [73] are also shown.

045804-5



SIBO WANG, CHENCAN WANG, AND HUI TONG PHYSICAL REVIEW C 106, 045804 (2022)

FIG. 3. The ratio of the moment of inertia I to MR2 as a function
of the compactness parameter M/R obtained with the RBHF theory
in the full Dirac space with NN interactions Bonn A, B, and C. The
probability distribution (orange) from the Bayesian analysis together
with the fitted (orange) line in Ref. [35] are shown for comparison.
The empirical (purple) band from Ref. [29] is also shown. See the
text for details.

as 0.08M�/km < M/R < 0.24M�/km. Lim and collabora-
tors [35] have investigated neutron star moments of inertia
from Bayesian posterior probability distributions of the nu-
clear EOSs that incorporate information from microscopic
many-body theory and empirical data of finite nuclei. The
probability distribution for I/MR2 is shown as in Fig. 3. They
found that over the entire range of neutron star compactness
0 < C � 0.25M�/km, their results can be well fitted with the

following formula:

I/MR2 = C + 27.178C4

0.0871 + 2.183C
. (15)

This result is also shown as the orange dashed line in Fig. 3. It
can be seen that our results are very close to that obtained
by Lim et al., especially for the neutron stars with small
compactness.

Although the ratio of the neutron star moment of inertia I
to MR2 has a universal function of the compactness parameter
M/R, the moment of inertia itself depends sensitively on the
neutron star’s internal structure. It has been suggested [29]
that a measurement accuracy of 10% for I is sufficient to place
strong constraints on the EOS.

In Table III, we show the momenta of inertia I1.338M�
and radius R1.338M� for PSR J0737−3039A predicted by the
RBHF theory in the full Dirac space with three parametriza-
tions for NN interactions. The results obtained by the
projection method [49,74] and momentum-independence ap-
proximation [46] are also shown. The RBHF theory in the
full Dirac space leads to minimum values compared to the
approximations in the Dirac space without NESs. This is
understandable since the RBHF theory in the full Dirac space
gives the minimum radius of a neutron star for the fixed
canonical mass, as shown in Table I.

The moment of inertia for PSR J0737−3039A predicted
by the RBHF theory in the full Dirac space with Bonn
A is 1.356 × 1045 g cm2, which is very close to the most
probable value 1.36 × 1045 g cm2 obtained from Bayesian
analysis (95% credibility) [35]. The result from the nonrel-
ativistic ab initio variational calculations [76] is also shown
in Table III, where the Argonne v18 interaction (AV18) [77]
is used, together with the relativistic boost corrections to
the two-nucleon interaction as well as three-nucleon interac-
tions modeled with the Urbana force [78]. The nonrelativistic
ab initio calculation leads to a moment of inertia smaller that
what we obtain, similarly to the case for radius. In Ref. [42],
by using well-known universal relations among neutron star

TABLE III. The momenta of inertia for 1.338M� pular PSR J0737–3039A predicted by the RBHF theory in the full Dirac space with
potentials Bonn A, B, and C. The results obtained with the projection method [49,74] and momentum-independence approximation (Mom.-ind.
approx.) [46] are also shown. For comparison, the values obtained with nonrelativistic ab initio calculation [75], predicted with the tidal
deformability in GW170817 combing universal relations [42] as well as that inferred from Bayesian analysis (95% credibility) [35] are also
shown. The last column is the corresponding radius.

Model Potential I1.338M� (1045 g cm2) R1.338M� (km)

A 1.356 11.94
Full Dirac space B 1.381 12.11

C 1.407 12.26
A 1.440 12.34

Projection method B 1.465 12.49
C 1.487 12.60
A 1.431 12.32

Mom.-ind. approx. B 1.452 12.46
C 1.471 12.57

Variational calculation (APR) [75] AV18 + δv + UIX* 1.24 11.56
GW170817 + universal relations [42] 1.15+0.38

−0.24

Bayesian analysis [35] 1.36+0.15
−0.32 12.2+0.7

−1.9
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FIG. 4. Top: The I-Love (left) and Q-Love (right) relations for slowly-rotating neutron stars with EOSs obtained by the RBHF theory in
the full Dirac space, projection method, and momentum-independence approximations with potentials Bonn A, B, and C. The solid curves
show the fit by using Eq. (16). Bottom: Absolute fractional difference from the fit.

observables, the reported 90% credible bound on the tidal
deformability �1.4M� = 190+390

−120 from GW170817 [59] has
been translated into a direct constraint on the moment of
inertia of PSR J0737−3039A, giving I1.338M� = 1.15+0.38

−0.24 ×
1045 g cm2. It can be seen that the results with the three
methods for RBHF theory are consistent with this constraint.

Let us now compare the EOSs obtained by the relativistic
ab initio calculations, i.e., the RBHF theory in the full Dirac
space, projection method, and momentum-independence ap-
proximation with Bonn potentials, to the universal I-Love-Q
relations. The I-Love as well as Q-Love relations and I −
Q relations are shown in the top panels of Figs. 4 and 5,
respectively. The dimensionless moment of inertia Ī and di-
mensionless quadrupole moment Q̄ are defined in Eq. (15). A
single parameter along the curve is the mass or compactness,
which increases to the left of the plots. Similarly to Ref. [39],

FIG. 5. The same as the left panel in Fig. 4, but for I − Q
relations.

we only show data with the mass of an isolated, nonrotating
configuration in the range 1M� < M < Mmax with Mmax rep-
resenting the maximum mass for such a configuration. One
observes that the universal relations hold very well. Since the
relations are insensitive to EOS, one can construct a single fit
(black solid curves) given by [38,39]

ln yi = ai + bi ln xi + ci(ln xi )
2 + di(ln xi )

3 + ei(ln xi )
4, (16)

where coefficients are listed in Table IV. These coefficients
are very close to that in Ref. [39], where a large number of
EOSs are considered. The bottom panels of Figs. 4 and 5 show
the absolute fractional difference between all the data and the
fit, which is less than 1% in the whole range.

The universal relations between Ī and � allows one to
extract the momenta of inertia of a neutron star with 1.4
solar mass, Ī1.4M� , from the tidal deformability �1.4M� from
GW170817. The revised analysis from LIGO and Virgo Col-
laborations, �1.4M� = 190+390

−120 [59], corresponds to Ī1.4M� =
10.30+3.39

−2.10 as shown in the left panel of Fig. 4. From Ī1.4M�
and the relation Ī = I/M3 we obtain I1.4M� = 1.22+0.40

−0.25 ×
1045 g cm2. These values are consistent with the results
Ī1.4M� = 11.10+3.64

−2.28 and I1.4M� = 1.15+0.38
−0.24 × 1045 g cm2 in

Ref. [42], where the I-Love relation is obtained by using a
large set of candidate neutron star EOSs based on relativistic
mean-field and Skyrme-Hartree-Fock theory.

TABLE IV. Numerical coefficients for the fitting formula of the
I-Love, I − Q, and Q-Love relations given in Eq. (16).

yi xi ai bi ci di ei

Ī � 1.493 0.06409 0.02104 −5.381 × 10−4 1.957 × 10−6

Ī Q̄ 1.387 0.5722 0.01043 0.02342 6.245 × 10−4

Q̄ � 0.1899 0.09937 0.04380 −3.430 × 10−3 7.054 × 10−5
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IV. SUMMARY

In summary, the RBHF theory in the full Dirac space has
been employed to study the gravitational redshift, moment
of inertia, and quadrupole moment of a neutron star under
the slow-rotation and small-tidal-deformation approximation.
The one-to-one correspondence relation for gravitational red-
shift and mass is established and used to infer the masses
of isolated neutron stars by combining gravitational redshift
measurements. The ratio of the moment of inertia I to MR2

as a function of the compactness M/R is obtained, and is
consistent with the universal relations shown by Lattimer et al.
[29] and that from Bayesian posterior probability distribu-
tions by Lim et al. [35]. Using NN interactions Bonn A,
B, and C, the moment of inertia for 1.338M� pulsar PSR
J0737−3039A is predicted to be 1.356 × 1045, 1.381 × 1045,
and 1.407 × 1045 g cm2, which are consistent with the con-
straint translated from the tidal deformability deduced from
GW170817 with universal relations among neutron star ob-
servables. The EOSs constructed by the RBHF theory in the
full Dirac space, together with those by the projection method
and momentum-independence approximation, are compared

successfully to universal I-Love-Q relations. By combing the
tidal deformability �1.4M� from GW170817 and the numer-
ical fitting for these universal relations from relativistic ab
initio EOSs, the moment of inertia of neutron star with 1.4
solar mass is deduced as I1.4M� = 1.22+0.40

−0.25 × 1045 g cm2.
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