
PHYSICAL REVIEW C 106, 045201 (2022)

K−d → π�N reaction for studying charge symmetry breaking in the �N interaction
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We propose to utilize the K−d → π−�p and K−d → π 0�n reactions in order to investigate the difference
between the low-energy �p and �n interactions. In these reactions, the �p and �n scatterings appear as final
state interactions. We calculate the differential cross sections of these reactions with stopped kaons theoretically.
We introduce isospin breaking by using the physical masses for the participating hadrons and through the
chiral unitary amplitudes for K−N → πN and K−N → K̄N . With stopped kaons, the �N interaction takes
place dominantly in the spin-triplet state thanks to the deuteron spin and s-wave dominance of the scattering
amplitudes at low energy. We find that the ratio of the �N invariant mass spectra of these reactions is useful
for revealing qualitative properties of charge symmetry breaking in the low-energy �N interaction. We also find
that the contributions coming from the π and � exchange diagrams which have πN final state interaction and
�N → �N conversion, respectively, are negligibly small around the �N threshold, while the contributions from
the impulse diagram without final state interactions and the K̄ exchange diagram containing the π� final state
interaction are main sources of the background.
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I. INTRODUCTION

Charge symmetry breaking in the �N system appears as a
difference between the �p and �n interactions, and is caused
by the isospin symmetry breaking. Recently a large isospin
symmetry breaking effect has been suggested by experimental
analysis for the A = 4 mirror hypernuclei [1,2]. From the
experimental data, one finds that the excitation energies of
the first 1− states are different by 0.3 MeV between 4

�H and
4
�He (both the ground states are 0+), while the difference
between nuclear systems 3H and 3He is just 0.071 MeV after
correcting for electromagnetic effects [3]. Therefore, one ex-
pects a large difference between the �p and �n interactions.
The scattering length a�p and effective range r�p for �p
scattering were determined experimentally by analyzing the
�p final state interaction in the pp → K+�p reaction [4]
and their values were extracted as as

�p = −2.43+0.16
−0.25 fm and

rs
�p = 2.21+0.16

−0.36 fm for the spin-singlet channel, and at
�p =

−1.56+0.19
−0.22 fm and rt

�p = 3.7+0.6
−0.6 fm for the spin-triplet chan-

nel. Here we use the sign convention as positive (negative)
scattering length for repulsive (attractive) interaction. On the
other hand, the low-energy �n scattering parameters have not
been experimentally determined yet. Therefore it is necessary
to confirm whether charge symmetry breaking in the �N
interaction is large, and it is important to know the direction
of charge symmetry breaking.

*iizawa.y.aa@m.titech.ac.jp

For theoretical approaches, several phenomenological in-
vestigations of the �N interaction have been performed
by using boson-exchange models (Nijmegen [5–7], Jülich
[8–10] and Ehime [11,12]), quark models [13–15], and hybrid
model known as Kyoto-Niigata [16]. Effective field theory
approaches have also investigated the �N interactions based
on the SU(3) chiral symmetry [17–27]. Among them isospin
symmetry breaking in the �N interactions was investigated
in Ref. [27], giving a difference of the �N scattering lengths
�aCSB ≡ a�p − a�n of 0.62 ± 0.08 fm for the spin-singlet
state and −0.10 ± 0.02 fm for the spin-triplet state.

In this paper, we propose the K−d → π�N reaction with
stopped kaons in order to study the direction of charge sym-
metry breaking in the �N interaction from the final state
interactions. One of the advantages of the reaction is that it
is initiated by the same K−d system and includes π−�p and
π0�n in the final states, which are isospin partners. Thus, we
can use the same theoretical framework for these two final
states and the formulation can be fixed by better-known �p
channel to apply the uncertain �n channel. By taking the
cross section ratio of these two final states, we can study how
the isospin symmetry breaking effects appear in the scattering
parameters of the �N interaction. The spin of the �N system
is either singlet or triplet. If one considers stopped kaons, the
spin-triplet configuration dominates the �N final state inter-
action around its production threshold because the deuteron
has spin 1 and the non-spin-flip s-wave interactions are the
main contributions at low energies. This is a good feature to
fix the spin configuration of the �N system. It is also reported
in Refs. [28,29] that, thanks to the finite size of the deuteron,
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K− in the atomic p-orbit is also absorbed by the s-wave K−N
interaction.

Historically the K−d → π−�p reaction has been studied
to investigate the �p scattering and also the �N interaction
with kaons at rest [30,31] and in flight [32–35]. There are
many theoretical calculations of this reaction with kaons at
rest so far [28,36–46]. Some of these works have mainly
concerned a possible bound state below the �N threshold
by considering �-� conversion in the intermediate states.
Here, focusing on the �p and �n interactions, we revisit this
reaction based on the formulation developed in Refs. [47–50]
by using modern meson-baryon K̄N → MB scattering ampli-
tudes obtained by the chiral unitary approach [51–57] and
introducing isospin breaking in the �N interaction and the
scattering amplitudes. The chiral unitary amplitudes have
isospin symmetry breaking introduced by using the physical
masses in the loop functions and reproduce the observed cross
sections of K− p to various channels, say π−�+ and π+�−,
at low energies. We include the kaon rescattering diagram to-
gether with the quasifree production of the � hyperon, which
are main sources of the background.

The structure of this paper is as follows. In Sec. II, we
explain our theoretical formalism to calculate the K−d →
π�N reactions. In Sec. III we show our numerical results
and discuss the effects of isospin symmetry breaking in the
�N interaction. Section IV is devoted to the summary and
conclusion.

II. FORMULATION

A. Kinematics

The reaction K−d → π�N requires five kinematical vari-
ables to fix the phase space of the three-body final state
[58]. In this study we are interested in the mass spectra of
the �N systems, thus we choose the following variables for
unpolarized deuteron targets: the �N invariant mass M�N , the
solid angle of the final pion in the total center-of-mass (c.m.)
frame �π , and the solid angle of the final � in the �-nucleon
c.m. frame �∗

�. Considering stopped kaons, a reference of
the coordinate is taken along the direction of the final-pion
emission. In addition, once one fixes the reaction plane, the
scattering amplitude does not depend on the azimuthal angle
of �∗

� for unpolarized deuterons. The cross section of the
reaction is calculated by

dσ = 1

(2π )3

Md M�MN

2kc.m.E2
c.m.

|T |2|pπ | |p∗
�| dM�N d cos θ∗

�, (1)

where Ec.m. is the total c.m. energy, kc.m. and pπ are the initial
K− and final π momenta in the total c.m. frame, respectively,
p∗

� and θ ∗
� denote the momentum and the polar angle of the

final � in the �-nucleon c.m. frame, respectively, and T
represents the T matrix of the reaction.

B. K−d scattering amplitudes

In this section, we formulate the scattering amplitudes of
the K−d → π�N reactions by following Refs. [47–50]. The
Feynman diagrams that we consider in our calculation are
given in Fig. 1 for the �p process and Fig. 2 for the �n

FIG. 1. Feynman diagrams used for the calculation of the �p
process. In the diagrams, TMB (TY N ) denotes the meson-baryon
(hyperon-nucleon) amplitude scattering amplitude.

process. The initial K− is absorbed by one of the nucleons
in the deuteron as K−N → πY or K−N → K̄N . In Dia. 1,
the � hyperon produced by the K− absorption scatters with
another nucleon. This diagram, which we call the � exchange
diagram, is our target diagram (foreground) that contains the
final state interaction of �N . Diagram 2 has the � hyperon
exchange and contains a transition amplitude of �N → �N .
In Dia. 3, which we call impulse approximation, the K−
absorption takes place without any final state interaction. In
Dia. 4 the initial K− scatters with one of the nucleons in
the deuteron and rescatters with another nucleon. We call
this diagram K exchange. Diagrams 3 and 4 will turn out to
be main sources of the background. Diagram 5 has the pion
exchange with final state interaction between a pion and a
nucleon. We will see later that the pion exchange contribution
is negligibly small.

The c.m. energies of these processes are low enough and
one may use s-wave amplitudes. We use the hadron masses
given in the Review of Particle Physics [58] in the following
calculation.

First, we formulate the amplitude of the � exchange dia-
grams Dia. 1 in Figs. 1 and 2. According to Ref. [48], we can
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FIG. 2. Same as in Fig. 1 but for the �n process.

write the scattering amplitude for the � exchange diagram as

T (1)
π�N = T�N (M�N )

∫
d3q

(2π )3

2M�

q2 − M�
2 + iε

× ϕ̃(q + pπ ) TK−N→π�(W ) (2)

where M�N is the invariant mass of � and N in the final
state, q is the momentum of the exchange �, ϕ̃ is the s-wave
deuteron wave function in the momentum space, and W de-
notes the invariant mass of the initial kaon and the nucleon
inside the deuteron. The amplitudes T�N and TK−N→π� stand
for the s-wave scattering amplitudes of the �N → �N and
K−N → π� processes, respectively. The charges of N and
π are fixed in each process as shown in Figs. 1 and 2. For
instance, K−N → π� for the �p process corresponds to
K−n → π−�.

The nonrelativistic propagator is extended to a relativistic
one as

1

q0 −
√

q2 + M2 + iε
� 2M

q2 − M2 + iε

for simplicity of the calculation. With this approximation we
can perform the momentum integral of Eq. (2) analytically,
which reduces the calculation costs a lot.

For the baryon exchange diagrams, q0 and W are fixed as

q0 = MK− + Md −
(

M2 − Bd

2

)
− p0

π , (3)

W =
(

M1 − Bd

2

)
+ MK− , (4)

where Bd is the binding energy of a deuteron, M1 (M2) is the
participant (spectator) nucleon mass in K−N → π�, and p0

π

is the energy of the final state pion.
We neglect the small d-wave component of the deuteron

wave function and use a parametrization of the s-wave com-
ponent given by an analytic function in the CD-Bonn potential
[59] as

ϕ̃(p) = N
11∑
j=1

Cj

p2 + m2
j

, (5)

where N is the normalization factor, and Cj and mj were
determined in Ref. [59]. The argument of ϕ̃ in Eq. (2) is
fixed by the momentum conservation of the vertex of the first
scattering.

Next, the � exchange diagrams given by Dia. 2 in Figs. 1
and 2 are formulated as

T (2)
π�N = T�N→�N (M�N )

∫
d3q

(2π )3

2M�

q2 − M�
2 + iε

× ϕ̃(q + pπ ) TK−N→π� (W ) (6)

as well as the foreground diagram. Here q0 and W are fixed
as we do in Eqs. (3) and (4). The charge of the exchange � is
specified in Figs. 1 and 2.

Then we consider the amplitudes of the impulse approxi-
mation given by Dia. 3. The amplitudes are calculated as

T (3)
π�N = TK−N→π�(Mπ�) ϕ̃(pN ), (7)

where pN is the momentum of the spectator nucleon in the rest
frame of the deuteron.

The kaon exchange processes given by Dia. 4 can be cal-
culated as

T (4)
π�N = TK̄N→π�(Mπ�)

∫
d3q

(2π )3

ϕ̃(q + pN )

q2 − M2
K̄

+ iε

× TK−N→K̄N (W ). (8)

For K−d → π−�p, the exchanged kaon is only K−, however
for K−d → π0�n, K− and K̄0 are allowed as the exchanged
kaon considering charge conversion. For the kaon exchange
diagrams, q0 is fixed as

q0 = MK− + Md −
(

M2 − Bd

2

)
− p0

N (9)

with p0
N the energy of the final state nucleon and W is the same

as Eq. (4).
Finally we obtain the amplitudes for the pion exchange

processes given by Dia. 5 as

T (5)
π�N = TπN→πN (MπN )

∫
d3q

(2π )3

ϕ̃(q + p�)

q2 − M2
π + iε

× TK−N→π�(W ), (10)
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where both π0 and π− are allowed as the exchanged pion
for each process, and p� is the momentum of the final state
� baryon in the total c.m. frame. For the pion exchange
diagrams, q0 is fixed as

q0 = MK− + Md −
(

M2 − Bd

2

)
− p0

� (11)

with p0
� the energy of the final state � baryon and W is the

same as Eq. (4).
The total amplitude for K−d → π�N is given by the sum

of all amplitudes described above as

Tπ�N =
∑

j

T ( j)
π�N . (12)

The amplitude of primary interest (the foreground amplitude)
in our calculation for K−d → π�N is given by the � ex-
change diagram (Dia. 1 in Figs. 1 and 2) as

T FG
π�N = T (1)

π�N , (13)

and we call the rest of the processes background,

T BG
π�N =

∑
j �=1

T ( j)
π�N . (14)

The relative phases of these amplitudes are safely fixed within
the model. As discussed in the next subsection, the meson-
baryon scattering amplitudes are calculated by using the chiral
unitary approach in which the amplitudes are obtained by
resumming the interaction kernel given by the chiral pertur-
bation theory. The interaction kernels are obtained at the tree
level, having real values. The baryon-baryon interactions are
parametrized by the effective range expansion and the values
at the threshold are given by the scattering length which is real
for the �N interaction. In this way the phases of the two-body
amplitudes are fixed without any ambiguities.

The isospin breaking effects on the T matrix of the reaction
T are counted by using the observed masses for the exchanged
particles and through the amplitudes of the absorption pro-
cesses and the final state interactions. The details of isospin
breaking of these amplitudes are described below.

C. Hyperon-nucleon and meson-baryon amplitudes

In this section, we explain the hyperon-nucleon and meson-
baryon amplitudes that we use in the calculation of the cross
section. We parametrize the low-energy s-wave �N scattering
amplitude by the scattering length a�N and the effective range
r�N given by

T�N = N 1

− 1

a�N
+ 1

2
r�N p∗

�
2 − ip∗

�

, (15)

where p∗
� is the momentum in the �-nucleon c.m. frame, and

the kinematic factor N is given by

N = − 8πM�N√
(2MY )(2M2)(2M f )(2M�)

(16)

for the Y N2 → �Nf process, where MY , M2 and M f are the
masses of Y , N2, and Nf , respectively. We use the observed

baryon masses for each channel, and this kinematic factor is
also used for the �N → �N transition.

The experimentally obtained a�N and r�N of the
spin-triplet � proton are at

�p = −1.56+0.19
−0.22 fm and rt

�p =
3.7+0.6

−0.6 fm, respectively [4]. On the other hand, the �-neutron
interaction is not measured separately. The sensitivity of the
�N scattering parameters to the cross section of the reaction
will be discussed in Sec. III C.

For the �N → �N transition amplitude T�N→�N , we em-
ploy the unitarity of S matrix in the isospin-doublet �N and
�N channels. With the diagonal �N and �N amplitudes
given, we determine the off-diagonal amplitude �N → �N
according to the unitarity. The details of the calculations are
given in the Appendix. The diagonal �N and �N amplitudes
at their threshold are fixed by the scattering lengths. For the
�N amplitude, we first adopt a�N = 1.68 − i2.35 fm, which
is obtained by the Nijmegen NSC97f potential [5]. We also
compare the results with a�N = −3.83 − i3.01 fm taken from
the Jülich ’04 potential [10]. In the following calculations, we
introduce the known isospin breaking effect into the transition
amplitude T�N→�N through the kinematic factor N given in
Eq. (16). Anyhow the isospin breaking effects on the transition
amplitude are irrelevant to the cross sections around the �N
threshold, because the � exchange diagram itself provides
little contribution there, as we will see below in the next
section.

The K̄N → K̄N , K̄N → π�, and K̄N → π� amplitudes
are given by the chiral unitary model using the parameters in
Ref. [54] similarly to Refs. [47–50]. The isospin breaking of
these amplitudes is introduced by using the physical hadron
masses in the loop functions and kinematic factors of the
chiral unitary model. The interaction kernels are given by the
Weinberg-Tomozawa interaction and do not contain explicit
flavor symmetry breaking. The subtraction constants are also
determined in an isospin symmetric way. In Fig. 3, we plot the
modules of the K̄N scattering amplitudes used in this work.
The isospin breaking of the K̄N thresholds is properly intro-
duced by using the observed masses in the loop functions. It
is known that the chiral unitary amplitudes reproduce the ob-
served K− p scattering cross sections well. (See, for instance,
Ref. [57].) Around the K̄N thresholds the isospin breaking
effects look large. There, the theoretical description of the K̄N
scattering amplitudes could be less reliable. This is because
isospin breaking was not considered in the interaction kernels,
although the isospin breaking effects may be enhanced around
the thresholds.

For πN → πN scattering, we use the empirical amplitude
tπN [60] which is based on the available scattering data. Thus,
this amplitude contains certain contributions from the nucleon
resonances. It has been constructed isospin symmetrically.
Our amplitude TπN is obtained by tπN with a kinematic factor
as follows:

TπN = − 8πMπN√
ki

√
k f

√
2Mi

√
2M f

tπN , (17)

where MπN in the invariant mass of πN , ki (k f ) is the momen-
tum of the initial (final) pion, and Mi (Mj) is the mass of the
initial (final) nucleon. The isospin breaking effect in the πN
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FIG. 3. Modules of K̄N → K̄N , K̄N → π�, and K̄N → π�

scattering amplitude obtained in the chiral unitary approach using
the parameters in Ref. [54].

amplitude TπN comes from the kinematic factor. We will see
below that the contributions of the π exchange are negligibly
small, and thus the introduction of the isospin breaking in the
πN amplitudes is not important.

III. NUMERICAL RESULTS

In this section, we show numerical results of the calculation
for the K−d → π−�p and K−d → π0�n reactions. Using
Eq. (1), we evaluate the �N invariant mass spectrum as

SN (M�N ) ≡ kc.m.

dσ

dM�N

= Md M�MN

16π3E2
c.m.

|pπ | |p∗
�|

∫
|Tπ�N |2d cos θ∗

� (18)

with the K−d → π�N scattering amplitude Tπ�N discussed
in the previous section. In our calculation, the incident kaon
momentum in the laboratory frame is fixed at 0 MeV/c.

FIG. 4. �p invariant mass spectrum for the �p process with
stopped kaons. The horizontal axis represents the excitation energy
from the threshold in a unit of MeV. The solid, dashed, and dash-
dotted lines indicate the contributions of the total amplitudes, the
foreground amplitude (only Dia. 1 in Fig. 1), and the background
amplitudes (the diagrams other than Dia. 1).

We use the most probable values of the observed spin-
triplet �-proton scattering parameters a�p = −1.56 fm and
r�p = 3.7 fm as the �-proton and �-neutron scattering am-
plitudes in Eq. (15), and use a�N = 1.68 − i2.35 (NSC97f).

A. Background reduction

First we discuss background reduction in the �N invariant
mass spectrum for the K−d → π�N reaction. In Fig. 4 we
show the �p invariant mass spectra for the �p process where
θ∗
� is integrated from 0 to π . Here we use the excitation energy

E�N defined from the threshold as

E�N ≡ M�N − (M� + MN ) (19)

instead of the invariant mass itself. We also plot the separated
foreground and background spectra in Fig. 4. As seen in these
plots the background contributions dominate the total spectra.
Therefore it might be hard to extract the �p scattering prop-
erties from the invariant spectra. We decompose them into
components and look for appropriate kinematical conditions
to reduce the background contributions.

In Fig. 5, we show the decomposed spectra. As seen in
the figure the impulse diagram gives the largest contribution
and dominates the background. The contribution from the
kaon exchange diagram is the second largest and is compa-
rable with the foreground diagram. The � and π exchange
diagrams give tiny contributions. Especially the π exchange
contribution is found to be negligibly small in the range of the
excitation energy.

Let us examine the angular dependence of the cross sec-
tion for the impulse diagram. With a stopped kaon the final
pion is emitted in the opposite direction to the � in the labo-
ratory frame, because the initial nucleon in the deuteron has a
small Fermi momentum thanks to the small deuteron binding
energy. Thus, the impulse diagram gives a larger contribution
for larger θ∗

�. The kaon exchange diagram has also similar
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FIG. 5. Decomposed background contributions for the �p pro-
cess. The solid, dashed, dash-dotted, dotted, dash-dotted, and
short-dash–dotted lines show the contributions from the foreground,
� exchange, impulse, K exchange, and π exchange diagrams,
respectively.

angular dependence because the exchange kaon also has a
small momentum for a stopped initial kaon. Therefore, the
main background diagrams, Dias. 3 and 4, have a smaller
contribution for smaller θ∗

�’s. This can be checked by plotting
a ratio defined by

RB =
∣∣T BG

π�N

∣∣2

∣∣T FG
π�N

∣∣2 . (20)

As seen in Fig. 6, RB is large at θ∗
� > 3π/4. In order to

reduce the background, we should avoid this region. In E�N �
40 MeV, RB is large independently of θ∗

�. This is because the
contribution of � exchange increases as E�N approaches the
�N threshold seen in Fig. 5.

In order to reduce the background contributions, let us
propose to restrict the integral region of the angle θ∗

� as 0 to
π/2. In Fig. 7, we show the total, foreground, and background
�N mass spectra for the �p process integrated in the range
[0, π/2]. From Fig. 7, it can be seen that the background
contributions are substantially suppressed for E�p < 30 MeV.
We also plot the �N mass spectrum for each contribution in

 0  10  20  30  40  50
EΛp [MeV]

0

π/4

π/2

3π/4

π

θ
Λ

*  [r
ad

]

 0

 0.5

 1

 1.5

 2

FIG. 6. Two-dimensional plot of RB as a function of θ∗
� and E�p

for the �p process.

FIG. 7. �p mass spectrum for the �p process integrated in the
range [0, π/2] with stopped kaon. The horizontal axis represents the
excitation energy from the threshold in units of MeV. The solid,
dashed, and dash-dotted lines indicate the contributions of the total
amplitudes, the foreground amplitude (only Dia. 1 in Fig. 1), and the
background amplitudes (the diagrams other than Dia. 1).

Fig. 8, showing that the foreground contribution dominates
over the other contributions for E�p < 40 MeV. Especially
the contribution of the pion exchange diagram is negligibly
small. The � exchange contribution is also quite small E�p <

30 MeV, but it gets comparable to the foreground contribution
for E�p > 40 MeV. Hereafter the integral of θ∗

� is performed
from 0 up to π/2.

The purpose of this study is to see isospin symmetry break-
ing in the �N interaction. It is very important to control the
isospin symmetry breaking effects from the other sources.
In particular, there is a large isospin breaking effect around
the K̄N thresholds in the K̄N → MB amplitudes as seen in
Fig. 3. If possible, it is better to avoid these energy region by
controlling the kinematical variables of the final state. In the

FIG. 8. Decomposed background contributions for the �p pro-
cess integrated in the range [0, π/2]. The solid, dashed, dash-dotted,
dotted, dash-dotted, and short-dash–dotted lines show the contribu-
tions from the foreground, � exchange, impulse, K exchange, and π

exchange diagrams, respectively.
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FIG. 9. Ratio (21) for the K̄N → π� amplitudes as a function
of the c.m. energy of π�. The thresholds of K− p, K̄0n, and K−n are
at 1431.95, 1433.24, and 1437.18 MeV, respectively.

diagrams except the impulse approximation (Dia. 3) in Figs. 1
and 2, the energy of the first scattering is determined by those
of the initial kaon and the participant nucleon in the deuteron.
Thus, the first scattering cannot be controlled by the final state
kinematics. For the second scattering, on the other hand, the
c.m. energy is dependent on the kinematics of the final state
and is controllable.

In order to see isospin breaking of the K̄N → π� am-
plitudes, let us plot the following ratio of the K̄N → π�

amplitudes in Fig. 9:

RV (W ) = |TK− p→π0� − TK̄0n→π0�|√
2|TK−n→π−�| . (21)

The ratio should be unity if the amplitude is isospin sym-
metric. This figure shows the large isospin breaking effect
around the threshold region, 1420 < W < 1450 MeV. The
c.m. energy of the second scattering is determined by the
final state momenta. In order to find kinematic conditions in
the final state corresponding a large isospin breaking effect
in the K̄N → π� amplitudes, we show the c.m. energy W
of π� as function of θ∗

� in Fig. 10 for several E�p. One
can see that if one wants to avoid the large isospin breaking

FIG. 10. Center-of-mass energy W of π� as a function of θ∗
� for

several E�p.

FIG. 11. �p invariant mass spectra calculated with different a�p

and r�p values for the �p process. In the upper plot the value of
the scattering length is changed within a�p = −1.56+0.19

−0.22 fm, while
the value of the effective range varies within r�p = 3.7+0.6

−0.6 fm in the
lower plot. For the two plots a�N = 1.68 − i2.35 fm (NSC97f) is
used.

area 1420 < W < 1450 MeV for the K̄N → π� amplitudes,
smaller angles are favorable, such as θ∗

� < π/2. This implies
that our integral region of θ∗

� is in this safe range.

B. Sensitivity to a�N , r�N , and a�N

In this section, we discuss the sensitivity of a�N , r�N , and
a�N .

First we evaluate the �p invariant mass spectra by chang-
ing the values of a�p and r�p within the experimental errors
in order to see the experimental uncertainties on the �p
scattering parameters. The result is shown in Fig. 11 using
a�N = 1.68 − i2.35 fm (NSC97f) and Fig. 12 using a�N =
−3.83 − i3.01 fm (Jülich ’04). In each upper plot we change
the value of the scattering length within a�p = −1.56+0.19

−0.22 fm
with fixing the effective range as r�p = 3.7 fm, while we vary
the value of the effective range within r�p = 3.7+0.6

−0.6 fm with
a�p = −1.56 fm in each lower plot. From these plots one
can see that the �p mass spectrum changes in the regions of
the lower excitation energies 0 < E�p < 15 MeV when a�p

is varied, and it changes in 5 < E�p < 30 MeV when r�p is
varied.
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FIG. 12. Same as Fig. 11 but a�N = −3.83 − i3.01 fm
(Jülich ’04) is used.

Comparing Figs. 11 and 12, we find that at low energies the
two models have little difference, while at E�p > 40 MeV the
spectrum using a�N = 1.68 − i2.35 fm (NSC97f) increases
as increase of E�p and that using a�N = −3.83 − i3.01 fm
(Jülich ’04) does not.

Next we calculate the invariant mass spectrum for the �n
process. In order to see isospin symmetry breaking, we change
the interaction parameters for the �n process, a�n and r�n,
within ±10% of the experimentally determined values for �p
scattering. In Figs. 13 and 14 we show the calculated spectra
with different a�n and r�n for the �n process. In each upper
plot we change a�n, while we vary r�n in each lower plot.
One can see from the plots that the invariant mass spectra
change significantly in the region 0 < E�n < 15 MeV for the
scattering length and less significantly in 5 < E�p < 30 MeV
for the effective range. Again we also compare the results with
different a values from NSC97f in Fig. 13 and Jülich ’04 in
Fig. 14.

One can see that the shapes of the spectra with NSC97f and
Jülich ’04 are different above 40 MeV, while they are almost
the same below 40 MeV. Thus, we could determine the �N
scattering properties insensitively to the value of a�N from the
invariant mass spectra for E�N < 40 MeV.

FIG. 13. �n invariant mass spectra calculated with different a�n

and r�n values for the �n process. In the upper plot the value of
the scattering length is changed within ±10% of the observed �p
scattering a�p = −1.56 fm, while the value of the effective range
varies within ±10% of the observed �p effective range r�p = 3.7 fm
in the lower plot. For the two plots a�N = 1.68 − i2.35 fm (NSC97f)
is used.

C. Ratio between two reactions

It may be difficult to extract the �N scattering properties
by comparing directly the line shapes of the �N invariant
mass spectra obtained in experiments to that from the theo-
retical calculation.

Here we would like to propose to take the ratio of the cross
sections as a function of the excitation energy E�N between
the �n and �p processes:

RS = 2
Sn

Sp
, (22)

where the factor 2 is introduced to normalize the ratio to be
unity when the isospin symmetry is satisfied. Using RS , we
expect to study how different a�n is from a�p, that is isospin
symmetry breaking. We notice that the isospin breaking from
other sources is modeled by introducing the observed hadron
masses when we calculate the energy-momenta of particles
and the kinematic factors. It is also noted that, because the �
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FIG. 14. Same as Fig. 13 but a�N = −3.83 − i3.01 fm
(Jülich ’04) is used.

and π exchange diagrams do not contribute visibly around the
�N threshold, the isospin breaking in the �N transition and
πN amplitudes is not important in this calculation.

First of all, we show the ratio calculated only with the
foreground diagram in order to check the feasibility of ex-
tracting the isospin symmetry breaking effects in the �N
interaction from RS . In Fig. 15 we show RS for several a�n

values within range of ±10% of a�p. This range must be much
wider than the typical uncertainty in the difference between
a�n and a�p from isospin symmetry breaking. We fix the
other �N parameters: a�p = −1.56 fm, r�n = r�p = 3.7 fm.
Figure 15 shows that for a�n/a�p < 1.0 the ratio RS tends
to go down as the excitation energy approaches the thresh-
old, while for a�n/a�p > 1.0 it tends to be enhanced. Thus
the isospin symmetry breaking effect on the �N scattering
could be clearly seen, particularly around the threshold if one
could observe only the foreground contribution. We find RS

to work for studying isospin symmetry breaking in the �N
scattering length. We see that even though RS for the isospin
symmetric case with a�n/a�p = 1 is almost constant against
the excitation energy, it deviates from unity. This is because of
the isospin symmetry breaking of the K−N → π� amplitudes

FIG. 15. Ratio RS calculated only with the foreground diagram
as a function of the excited energy E�N . We take several a�n values
within ±10% of a�p, while the other �N parameters are fixed at
a�p = −1.56 fm and r�n = r�p = 3.7 fm.

(the first scattering in Dia. 1), which is independent of the
excitation energy.

Next, we calculate the ratio RS by incorporating all
the background contributions. We change the �n scatter-
ing length a�n within ±10% of the �p scattering length
a�p = −1.56 fm and fix the effective range as r�n = r�p =
3.7 fm again. The results are shown in Fig. 16. The upper
panel (in Fig. 16) is calculated with a�N = 1.68 − i2.35 fm
(NSC97f) while the lower panel (Fig. 16) is with a�N =
−3.83 − i3.01 fm (Jülich ’04).

These figures show that the interference to the background
contributions gives an enhancement of RS at the vicinity of
the threshold. Still we find qualitative sensitivity to the change
of the ratio a�n/a�p in a wide range of the excitation energy,
0 � E�p < 30 MeV, in which the ratio RS gets enhanced
with larger a�n/a�p. Unfortunately, we do not find qualitative
sensitivity as seen in Fig. 15.

Comparing Figs. 15 and 16, we find that the interference
between the foreground and backgrounds is substantially large
even if we reduce the background effects by making an an-
gular cut on θ∗

�. In order to enhance the interference, we
calculate the ratio RS without the angular cut. The results
are shown in Fig. 17. The difference between a�n and a�p

can be seen more qualitatively than in Fig. 16. It should be
noted that the difference is seen only near threshold up to
E�p = 10 MeV. For a�n/a�p < 1.0, RS tends to go down
significantly as the excitation energy approaches the thresh-
old, while for a�n/a�p > 1.0 it tends not to go down so
much. This behavior stems from the effect of the interference
between the foreground diagram and the impulse diagram,
which is the largest background contribution. This will help
us to extract the nature of isospin symmetry breaking in the
�N interaction. At least we could find out the direction of
isospin symmetry breaking of the �n scattering length against
�p.
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FIG. 16. Same as Fig. 15 but for incorporating the background
contributions. The upper and lower panels show the ratios obtained
by using the a�N values in NSC97f and Jülich ’04, respectively.

D. Comparison to the previous experiments

In order to check the consistency of our formulation with
existing experimental data, we compare our calculation with
the past experiments of K−d → π−�p with stopped K−.

First we show the proton kinetic energy Tp spectrum in
Fig. 18 together with the experimental data in Ref. [30]. Our
calculation is multiplied by a constant to adjust the height to
the data. In Ref. [30] the authors showed the kinetic-energy
(Tp) distribution of emitted protons in the K−d → π−�p
reaction with stopped K−s as a function of the kinetic energy
of the emitted proton, Tp. In their result, a bump structure
was found around Tp = 30 MeV, but it was not reproduced
in the previous theoretical calculation [28]. Reference [30]
mentioned that the bump structure would be explained by the
effect of the �(1385) resonance. Nevertheless, it is unnatu-
ral that the �(1385) resonance, coupling to K−N in the p
wave, appears in the relevant energy region of this reaction.
Our calculation reproduces nicely the bump structure seen

FIG. 17. Same as Fig. 16 but the cutoff of θ∗
� is not applied. The

upper and lower panels show the ratios obtained by using the a�N

values in NSC97f and Jülich ’04, respectively.

in the experimental data without introducing the �(1385)
resonance. In our calculation, we take into account several
diagrams with their interference, and the bump structure is
actually explained by the interference between the � ex-
change and other contributions coming from the foreground,
the impulse and the kaon exchange diagrams. The theoretical
line shown in Ref. [30] considered only the impulse and �-�
conversion effects without their interference. Our calculation
shows that one does not have to introduce the �(1385) reso-
nance in the calculation of such low-energy K̄N scattering.

Next we show the �p invariant mass spectrum in compar-
ison with the experimental data [31] as plotted in Fig. 19. In
Ref. [31] the authors showed the �p invariant mass distribu-
tion in the K−d → π−�p reaction with stopped K−s. It was
pointed out in Refs. [44,45] that only events with proton recoil
momenta more than 75 MeV/c were counted in Ref. [31].
Thus, in order to compare our result with the experimental
data given in Ref. [31], we make a similar cut on proton
momenta in our calculation. Our calculation reproduces well
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FIG. 18. Proton kinetic energy Tp spectrum for the K−d →
π−�p reaction in comparison with the experimental data taken from
Ref. [30].

the rapid increase at the threshold observed in the experimen-
tal data. The �p invariant mass spectrum without the proton
momentum cutoff is shown in Fig. 4.

For future experiments on the K−d → π�N reaction, it
will be challenging to determine the �N invariant mass pre-
cisely and accurately. Since neutron detection always involves
the uncertainty in estimation of detection efficiency, high
resolution is a key issue for energy measurement of neutral
pions in the π0�n final state. It should be noted that the pion
energy directly corresponds to the �n invariant mass when we
use stopped kaons. Detecting neutral pions is possible with
enough energy resolution for our purpose using the CsI(Tl)
calorimeter developed in Refs. [61–63] for instance, which
was originally designed for a T -violation search in the Kμ3

decay [64,65]. It is also relatively easy to identify the �

baryon to confirm the reaction channel of interest through its
decay into charged particles. The �N invariant mass spectra
must be smeared owing to a finite energy resolution, but the
energy resolution can be estimated and the smearing effects
can be removed by using data obtained with high statistics.

IV. CONCLUSION

In this paper, we have studied K−d → π�N reactions
with stopped kaons to investigate the difference between low-
energy �p and �n interactions. We have proposed that the
K−d → π�N reaction has an advantage for the study of
isospin symmetry breaking in the �N interaction, because
both isospin partners, �p and �n, are possible in the final
state and we can observe �p and �n final state interactions
with the same initial condition by selecting the charge of
the final state pion. We have formulated the K−d → π�N
amplitudes by considering not only the foreground contribu-
tion which contains the �N final state interaction but also
background contributions which include the impulse diagram
and the �, K , and π exchange diagrams. These background
diagrams contains the π� and πN final state interactions. For
stopped kaons, the �N interaction is dominated by the spin
triplet configuration because of the deuteron spin and s-wave

FIG. 19. �p invariant mass spectrum for the K−d → π−�p
reaction in comparison with the experimental data taken from
Ref. [31]. The theoretical spectrum is obtained by removing the
events with proton momentum less than 75 MeV/c.

dominance of low-energy scattering. In order to reduce the
background effects, we have examined the dependence of the
cross section on the angle between � and π in the final state
and have found that the background effects can be suppressed
for narrower angles between � and π .

We have found that the �N invariant mass spectra
for both the �p and �n processes are sensitive to the
�N scattering properties around the �N threshold, E�p <

30 MeV, and that one may extract the scattering lengths and
the effective ranges from these spectra. It has also turned
out that the �N → �N transition effect is less important
around the �N threshold and the π exchange contribu-
tion is negligibly small. We have suggested that the ratio
of the invariant mass spectra for the �n and �p pro-
cesses works well to extract the qualitative tendency of the
charge symmetry breaking effects between the low-energy �p
and �n scatterings. We have also compared our calculation
with the past experiments for K−d → π−�p reaction and
found that the calculation reproduces the data well.
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APPENDIX: �N → �N TRANSITION AMPLITUDES

In order to obtain the �N → �N transition amplitude
T�N→�N , we employ the unitarity of the S matrix in the
isospin-doublet �N and �N channels. The unitarity is im-
plemented to the normalized transition amplitude f , which is
defined by T ≡ N f with the kinematical factor N given in
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TABLE I. Model parameters in units of MeV−1.

a�N 1.68 − i2.35 fm (NSC97f) −3.83 − i3.01 fm (Jülich ’04)

v11 8.3 × 10−5 2.1 × 10−2

v12 6.5 × 10−3 4.4 × 10−2

v22 8.8 × 10−3 7.1 × 10−2

Eq. (16), as

F = (−V −1 + iP)−1, (A1)

where F , V , and P stand for the matrices of the scattering
amplitudes, the interaction kernels, and the momenta, respec-
tively, and are defined as

F =
(

f�N f��

f�� f�N

)
, (A2)

V =
(

v11 v12

v12 v22

)
, (A3)

P =
(

p∗
� 0
0 p∗

�

)
. (A4)

Here, p∗
� and p∗

� in P are the momenta of � and � in
the �-nucleon c.m. frame, respectively. Note that p∗

� is pure
imaginary when one considers the energy region below the
�N threshold. Here we assume that model parameters, vi j ,
are constant.

By using Eq. (A1), we obtain the off-diagonal amplitude
f�N→�N from the unitarity of the S matrix. The model param-
eters are determined so as to reproduce the scattering lengths
of the �N and �N at their thresholds:

f�N = −a�N , (A5)

f�N = −a�N = −(A − iB) (A6)

with the spin-triplet isospin-doublet �N scattering length a�N

and �N scattering length a�N = A − iB, where A and B are
real. We obtain the matrix V :

v11 = −κ�B + a�Nκ�(1 − κ�A)

κ�(1 − κ�A + κ�Ba�Nκ�)
, (A7)

v12 = −
√

B
(
1 − 2κ�A + κ2

�A2 + κ2
�B2

)(
1 + a2

�Nκ2
�

)
√

κ�(1 − κ�A + κa�N Bκ�)
,

(A8)

v22 = A − κ�A2 − κ�B2 + a�N Bκ�

1 − κ�A + κ�a�N Bκ�

, (A9)

where κ� = p∗
� at the �N threshold and κ� = −ip∗

� at
the �N threshold. All the vi j parameters are real. The
determined vi j parameters are summarized in Table I. In
these calculation, we use the isospin averaged masses to
obtain the kinematical variables and find κ� = 283.8 MeV
and κ� = 282.6 MeV.
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