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Quantum expression for the electrical conductivity of massless quark matter and of the hadron
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We have studied the classical and quantum expressions of electrical conductivity and their numerical estima-
tion in the presence of a magnetic field for hadron resonance gas (HRG) and massless quark matter. Classical
results of transport coefficients of HRG matter in the presence of a magnetic field were studied previously
by Dash et al. [Phys. Rev. D 102, 016016 (2020)] using the standard relaxation time approximation in the
Boltzmann equation. In the same reference, the transition from isotropic transport coefficients to anisotropic
coefficients in the presence of a magnetic field was also estimated for massless and HRG matter. This led
to an upper limit or Stefan-Boltzmann (SB) type limit to the nonperturbative domain transition of transport
coefficients. In a similar context, the present work has concentrated on the classical to quantum transition of
HRG transport from the domain of high temperature and low magnetic field to that of low temperature and
high magnetic field. We have also compared the quantum modification of HRG results with that of massless
quark matter, where we observed an opposite trend. A similar kind of quantum effect is also noticed between
mesons and baryons due to their different particle distribution functions. Despite the fact that HRG contains
both mesons and baryons, Landau quantization of its net magnetothermodynamic phase space reveals meson-
or boson-dominated quantum modification. That is why the quantum modification of HRG results reveals the
opposite trend from that of massless quark matter, which faces fermionic quantum modification.

DOI: 10.1103/PhysRevC.106.044914

I. INTRODUCTION

In the presence of a magnetic field, quark gluon plasma
(QGP) exhibits a number of interesting phenomena [1–6].
The magnitude of magnetic field produced at the BNL Rel-
ativistic Heavy Ion Collider (RHIC) for Au-Au collisions at√

s = 200 GeV is of the order of 1019 G, and it it eB ≈ 1020

G for Pb-Pb collisions at the CERN Large Hadron Collider
(LHC). This is much larger than �2

QCD(≈ 2 × 1018 G), where
�QCD(≈ 0.2 GeV) is the strong interaction scale. The mag-
nitude of the produced field is also very high compared to
those of neutron stars and magnetars, which are of the order
of 1014–1015 Gauss [7].

Understanding of the impact of this high magnetic field on
different transport coefficients of QGP has recently appeared
to become an important research topic within the community
of heavy ion physics. Recent Refs. [8–37] have gone through
the calculations of different transport coefficients such as
shear viscosity [8–18], bulk viscosity [20–24], and electrical
conductivity [13–15,17,25–37] in the presence of a magnetic
field. Among them, electrical conductivity (σ ) plays an im-
portant role in the lifetime of the magnetic field produced
in heavy ion collisions (HICs). The produced magnetic field

*Presently at Indian Institute of Technology Indore.

can exist for a longer time when the electrical conductivity of
RHIC or LHC matter is high [38].

From microscopic calculations, studied in earlier
Refs. [13–15,17,25–37], we can get temperature and
magnetic field dependent values of the electrical
conductivity of RHIC or LHC matter. If we analyze those
investigations minutely, we can find mainly two classes
of calculations: those done in classical and those done in
quantum pictures. Among Refs. [13–15,17,25–29,31–37],
Refs. [13–15,17,26,29,31,33,35,36] examined the classical
expressions of electrical conductivity, whose multicomponent
values show an anisotropy in coordinate space. They did
not, however, take into account the quantum aspects of
Landau quantization. In the context of neutron stars, Ref. [29]
used a similar classical expression of conductivity for
magnetic fields of the order of 1014 G, beyond which it is
important to take into account the quantum effects, as done
in Ref. [39]. In the quantum domain, due to the Landau
quantization, the motion of charged particles gets quantized
in the plane perpendicular to the magnetic field. References
[25,27,28,32,34,37] considered this Landau quantization,
and most of them [25,27,28,32] went through the lowest
Landau level (LLL) approximation that is applicable for
the strong field limit. The LLL approximation reduces
the multicomponent structure of conductivity to a single
component which is parallel to the magnetic field’s direction.
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This component is referred to as longitudinal conductivity.
The classical framework will be useful in the weak field
range, while the LLL approximated quantum framework
will be useful in the strong field limit. How does the
multicomponent classical expression of conductivity change
during the weak to strong field transition? Answering this
question is attempted in the current work using the numerical
benchmark of the ideal hadron resonance gas (HRG) model,
which is well established as an alternative description of
QCD thermodynamics within the hadronic temperature
range [40].

Using the HRG model, Refs. [15,17,33] estimated the clas-
sical multicomponent transport coefficients in the presence of
a magnetic field. However, their quantum extensions have not
been done yet. The current work will fill the gap by focusing
solely on electrical conductivity, because the mathematical
extension of other transport coefficients is analogous.

The article is organized as follows: The next sec-
tion (Sec. II) addresses all working formulas of multicompo-
nents of conductivity at a finite magnetic field with a quick
description of kinetic theory formalism based on the stan-
dard relaxation time approximation (RTA). This formalism
section is divided into three subsections, where Sec. II A
is devoted to the expressions of anisotropic conductivity
components, which we call classical expressions, then in
Sec. II B, their quantum extensions are addressed. After that,
in Sec. II C, HRG versions of both classical and quantum
expressions are addressed; they behave as working formulas
of the Results section, i.e., Sec. III. In the Results section, the
classical to quantum transitions for the HRG model are graph-
ically sketched and discussed. At the end, the investigation is
summarized in Sec. IV.

II. FORMALISM

Here, we will go over the formalism section step by step so
that we can see how the expressions change from classical
to quantum and then to the HRG model. We know that in
the presence of a magnetic field, the conductivity tensors
lose their isotropic nature, and we get different numerical
values or expressions for the parallel and perpendicular com-
ponents and another component called the Hall conductivity.
The anisotropic conductivity tensor can obtained using the
relaxation time approximation (RTA) based kinetic theory
approach [13,29,41], whose expressions are considered here
as classical (CL) expressions where the Landau quantiza-
tion is not taken into account. We are, however, considering
quantum aspects of statistical mechanics by employing Fermi-
Dirac (FD) and Bose-Einstein (BE) distribution functions for
baryons and mesons, respectively. So, from the same per-
spective, the notation CL does not exactly mean classical
expression. The derivation of these CL expressions is given
in the following subsection (Sec. II A) and the quantum (QM)
expressions, where the Landau quantization is considered, are
addressed in the subsequent subsection (Sec. II B). Finally, in
Sec. II C, the HRG versions of CL and QM expressions are
formulated.

A. Classical expressions of electrical conductivity

For a detailed derivation of classical expressions
(CL) of anisotropic conductivity reader can go through
Refs. [13,14,29,41]. However, for the sake of completeness,
let us quickly go through the steps of the derivation.

Let us consider an electric field E = Exx̂ that is applied to
a relativistic charged fermion/boson fluid, for which a current
density is obtained along the same direction J = Jxx̂. Hence,
macroscopic Ohm’s law can be written as

Jx = σxxEx, (1)

where σxx is the electrical conductivity. In microscopic the-
ory of dissipation, the equilibrium distribution function of
fermions/bosons,

f0 = 1

eβω ∓ 1
, (2)

undergoes a small deviation (δ f ) driven by the electric field
(neglecting other dissipative forces). So, the ansatz of δ f can
be written as

δ f ∝
(

∂ f0

∂ω

)

δ f = −α · E
(

∂ f0

∂ω

)

= (αxEx )β f0(1 ∓ f0), (3)

where α is an unknown coefficient that can be find using
the Boltzmann transport equation. Therefore, one can express
(dissipative) current density as [13,14,29,41]

Jx = gẽ
∫

d3k
(2π )3

kx

ω
δ f

=
[

gẽβ
∫

d3k
(2π )3

kx

ω
αx f0(1 ∓ f0)

]
Ex, (4)

where g is the degeneracy factor (excluding charge-flavor de-
generacy), ẽ is electric charge, and ω = {k2 + m2}1/2 is energy
of the particle. To find out αx, we take help of relaxation time
approximated relativistic Boltzmann equation (RTA-RBE),

−ẽE·∇k f0 = −δ f /τc

⇒ δ f = τcẽE· k
ω

[
∂ f0

∂ω

]

= τcẽEx

(
kx

ω

)
[β f0(1 ∓ f0)], (5)

where τc is called the relaxation time. Now, comparing Eq. (5)
and (3), we get

αx = ẽτc
kx

ω
. (6)

Using the above expression of αx in Eq. (4) and comparing
with Eq. (1), we get the expression of electrical conductivity
which gives rise to electric current in the x direction as

σxx = gẽ2β

∫
d3k

(2π )3
τc

k2
x

ω2
f0(1 ∓ f0). (7)
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Next, we will derive the electrical conductivity in the pres-
ence of a magnetic field B = Bẑ, where the force term dk

dt in
RTA-RBE will be modified by the Lorentz force [−ẽ(E + v ×
B)] as

−ẽ

(
E + k

ω
× B

)
· ∇k f0 = −δ f

τc

−ẽ

(
E + k

ω
× B

)
·
(

k
ω

)
∂ f0

∂ω
= −δ f

τc
. (8)

The second term on the left hand side gives null contribution
because of the vector identity (k × B) · k = B· (k × k) = 0,
so we consider the contribution from the term ∇k (δ f ) in RTA-
RBE,

−ẽE ·
(

k
ω

)
∂ f0

∂ω
− ẽ

(
k
ω

× B
)

· ∇k (δ f ) = −δ f /τc. (9)

Here, the dissipation is driven by E as well as B. So, we
consider δ f = −(k · F ) ∂ f0

∂ω
, F is a function of E and B. Now,

using the standard vector identity(
k
ω

× B
)

· ∇k (δ f ) = −
(

k
ω

× B
)

· ∇k (k · F )
∂ f0

∂ω

= −
(

k
ω

× B
)

· F
∂ f0

∂ω

= − k
ω

· (B × F )
∂ f0

∂ω
(10)

in Eq. (9), we get(
k
ω

)
· [−ẽE + ẽ(B × F )] = k · F/τc. (11)

In general, we can consider

F = [Axx̂ + Azẑ + Ay(x̂ × ẑ)], (12)

for which Eq. (11) becomes
τc

ω
[−ẽExx̂ + ẽBẑ × (Axx̂ + Azẑ − Ayŷ)]

= (Axx̂ + Azẑ − Ayŷ). (13)

Equating the coefficients of x̂, ẑ and ŷ of Eq. (13), we get

Az = 0,

Ax = −ẽ
1

1 + (τc/τB)2

τc

ω
Ex,

Ay = ẽ
τc/τB

1 + (τc/τB)2

τc

ω
Ex, (14)

where τB = ω/(ẽB) is the inverse of cyclotron frequency. So,
the final form of the deviation becomes

δ f = − k ·
{

− ẽτc

ω

(
x̂ + τc

τB
ŷ

)}
1

1 + (τc/τB)2

∂ f0

∂ω

= − ẽτc

(
kx

ω
+ ky

ω

τc

τB

)
Ex

1

1 + (τc/τB)2
β f0(1 − f0). (15)

Now, using this δ f in the matrix form of Ohm’s law,(
Jx

Jy

)
=

(
σxx σxy

σyx σyy

)(
Ex

0

)
, (16)

one can obtain

σxx = gẽ2β

∫
d3k

(2π )3
τc

1

1 + (τc/τB)2

k2
x

ω2
f0(1 ∓ f0)

= gẽ2β

∫
d3k

(2π )3
τc

1

1 + (τc/τB)2

k2

3ω2
f0(1 ∓ f0), (17)

σyx = gẽ2β

∫
d3k

(2π )3
τc

τc/τB

1 + (τc/τB)2

k2
y

ω2
f0(1 ∓ f0)

= gẽ2β

∫
d3k

(2π )3
τc

τc/τB

1 + (τc/τB)2

k2

3ω2
f0(1 ∓ f0), (18)

where gẽ2 = 2 × 2 × 3( 4e2

9 + e2

9 + e2

9 ) = 8e2 for three-flavor
quark matter [14,34]. For other relevant system or matter (e.g.,
HRG matter), we have to consider corresponding gẽ2 values.

Similarly, σyy, σxy can be obtained by repeating the same
calculation for E = Eyŷ, and they are related as σxx = σyy,
σxy = −σyx. Longitudinal conductivity along z-axis will re-
main unaffected by the magnetic field, because the Lorentz
force does not work along the direction of the magnetic field.
Hence, the classical expression of the longitudinal conductiv-
ity will be

σzz = gẽ2β

∫
d3k

(2π )3
τc

k2
z

ω2
f0(1 ∓ f0)

= gẽ2β

∫
d3k

(2π )3
τc

k2

3ω2
f0(1 ∓ f0), (19)

For particle and antiparticle cases, the term τc/τB in the
numerator for the Hall component, σ× = σxy = −σyx, has
the opposite sign, resulting in vanishing net Hall conductiv-
ity at the vanishing quark/baryon chemical potential (μ =
0). Here, however, this fact may be difficult to see when
looking at the Eq. (18), because the particle-antiparticle con-
tribution is included in the degeneracy factor g rather than
the sum of their contributions. So, for the Hall conductiv-
ity expression (18), we have to add particle and antiparticle
contributions separately instead of considering two factors for
particle-antiparticle degeneracy. Here, we will concentrate on
the parallel component σ‖ = σxx = σyy and the perpendicular
component σ⊥ = σzz because our current focus is on conduc-
tivity components of RHIC or LHC matter with almost zero
quark/baryon chemical potential, where the Hall component
vanishes.

B. Quantum expressions of electrical conductivity

Here, we will consider the effect of Landau quantization
on the conductivity and see how it differs from CL expres-
sions. The main modification will occur in the dispersion
relation and the phase space integration. As we considered
the magnetic field in the z direction, momentum quantization
will occur in the perpendicular plane, i.e., x-y plane. The
mathematical modifications will be as follows:

ω = (k2 + m2)1/2 → ωl = (
k2

z + m2 + 2l|ẽ|B)1/2
, (20)

2
∫

d3k
(2π )3

→
∞∑

l=0

αl
|ẽ|B
2π

∫ +∞

−∞

dkz

2π
, (21)
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where spin degeneracy 2 in the left-hand side of the last line
will be converted to αl , which will be 2 for all Landau levels
l , except the lowest Landau level (LLL) l = 0, where αl = 1.
In general, one can write αl = 2 − δl,0. Here, we also assume,

roughly, k2
x ≈ k2

y ≈ (
k2

x +k2
y

2 ) = 2l ẽB
2 ; then conductivities can be

expressed as

σ xx = gẽ2β

∞∑
l=0

αl
|ẽ|B
2π

∫ +∞

−∞

dkz

2π

l|ẽ|B
ω2

l

τc

× 1

1 + (τc/τB)2
f0(ωl )[1 − f0(ωl )],

σ zz = gẽ2β

∞∑
l=0

αl
|ẽ|B
2π

∫ +∞

−∞

dkz

2π

k2
z

ω2
l

τc

× f0(ωl )[1 − f0(ωl )]. (22)

Most previous works on Landau quantization [25,27,28,32]
considered only longitudinal conductivity σ zz for l = 0,
known as the LLL approximation. At extremely high mag-
netic fields, this scenario could be realized, in which all
medium constituents occupy the lowest energy level l = 0.
It means that perpendicular motion of medium constituents
completely disappears as kx ≈ ky ≈ 0 at l = 0. Therefore, in
this LLL case, σ xx ≈ σ xy ≈ 0 and σ zz �= 0. However, below
such strong magnetic fields, l > 0 energy levels might have
some non-negligible contributions, and the LLL approxima-
tion is not sufficient enough.

C. Classical and quantum expression of electrical conductivity
under the hadron resonance gas model

Now we will look at the HRG model calculation and see
the transition from classical to quantum. The massless case
is a noninteracting or Stefan-Boltzmann (SB) limit type case,
whereas HRG calculation maps the interacting picture. Neu-
tral hadrons do not have any role in electrical conductivity. So,
for the conductivity calculation, we can classify hadrons into

(1) charged mesons (M), which are basically bosons,
(2) charged baryons (B), which are basically fermions.

The contributions from both types of hadron will be added
up. Under the HRG model, the classical equations (17) and
(19) for perpendicular and parallel components of electrical
conductivity will be modified to

σ xx =
∑
M,B

gẽ2β

∫
d3k

(2π )3
τc

1

1 + (τc/τB)2

k2

3ω2
f0(1 ± f0),

(23)

σ zz =
∑
M,B

gẽ2β

∫
d3k

(2π )3
τc

k2

3ω2
f0(1 ± f0). (24)

Similarly, the quantum expressions (22) will be modified
as

σ xx =
∑

M

gẽ2β

( |ẽ|B
2π

) ∞∑
l=0

αl

∫ +∞

−∞

dkz

2π

(l + 1/2)|ẽ|B
ω2

l

τc

× 1

1 + (τc/τB)2
f0(ωl )[1 + f0(ωl )]

+
∑

B

gẽ2β

( |ẽ|B
2π

) ∞∑
l=0

αl

∫ +∞

−∞

dkz

2π

l|ẽ|B
ω2

l

τc

× 1

1 + (τc/τB)2
f0(ωl )[1 − f0(ωl )], (25)

σ zz =
∑

M

gẽ2β

( |ẽ|B
2π

) ∞∑
l=0

αl

×
∫ +∞

−∞

dkz

2π

k2
z

ω2
l

τc f0(ωl )[1 + f0(ωl )]

+
∑

B

gẽ2β

( |ẽ|B
2π

) ∞∑
l=0

αl

×
∫ +∞

−∞

dkz

2π

k2
z

ω2
l

τc f0(ωl )[1 − f0(ωl )]. (26)

We have tabulated the expression of ωl and αl for various par-
ticle species with their corresponding spin in Table I [42,43].
For the sake of simplicity, we only considered mesons with
spin 0 and 1, as well as baryons with spin 1/2 and 3/2. Higher
spin hadrons are not considered, which may be justified given
their low thermodynamic weight factors due to their large
masses.

Since baryons are fermions, their perpendicular momenta

are k2
x ≈ k2

y ≈ (
k2

x +k2
y

2 ) = 2l ẽB
2 , whereas for the mesons per-

pendicular momenta are k2
x ≈ k2

y ≈ (
k2

x +k2
y

2 ) = (2l+1)ẽB
2 . As a

result, there will be an interesting difference between massless
quark matter and HRG systems. The perpendicular compo-
nent will vanish for quark matter but not for HRG systems
because of nonzero contribution from the charged mesons in
the LLL case. This fact will be illustrated graphically in the
result section.

Here, for the HRG system, we have to take care of the fac-
tors gẽ2 for different hadrons; they are basically multiplication
of degeneracy factor g and the square of their electric charge
ẽ2. For example, a π+ meson with mass 140 MeV, spin 0 has
gẽ2 = 1 × e2; a ρ+ meson with mass 770 MeV, spin 1 has
gẽ2 = 3 × e2; a �++ baryon with mass 1232 MeV, spin 3/2
has gẽ2 = 4 × 4e2, etc.

III. RESULTS

Let us begin with massless quark matter, which can be
considered as noninteracting or Stefan-Boltzmann (SB) limit
type estimations. We will not consider the gluons because
they do not participate in conductivity. Massless quark mat-
ter entails taking into account all degeneracy factors: three
for color degeneracy, 2 for spin degeneracy, two for parti-
cle antiparticle degeneracy, and two for flavor degeneracy
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TABLE I. Particle energy and degeneracy.

Particle species Spin ωl αl

Baryon 1/2 ωl = (k2
z + m2 + 2l|ẽ|B)1/2 2 − δl0

Baryon 3/2 ωl = (k2
z + m2 + 2l|ẽ|B)1/2 4 − 2δl0 − δl1

Meson 0 ωl = (k2
z + m2 + (2l + 1)|ẽ|B)1/2 1

Meson 1 ωl = (k2
z + m2 + (2l + 1)|ẽ|B)1/2 3 − δl0

(with appropriate electric charge). Though massless s quark
consideration, like that of massless u and d quarks, is a bit
of a rough approximation, QGP can reach these massless
or SB limits at very high temperature limits. Following the
estimation of the massless quark matter case, we will proceed
to HRG calculations, which may effectively be considered
as interacting QCD estimations because their thermodynam-
ics match with lattice QCD (LQCD) thermodynamics data
within the hadronic temperature range. As massless limits of
thermodynamic quantities such as pressure, energy density,
and entropy density are considered reference points of the
upper bound, similarly, the normalized conductivity compo-
nents of massless quark matter can be used as that reference
point here as well. Then, when we calculate HRG estimates
of conductivity components, we will be representing their
interacting estimates, which are expected to be suppressed
from their massless limits within the hadronic temperature
domain, just like thermodynamical quantities. Estimation of
these noninteracting to interacting transformations of conduc-
tivity tensors are well discussed in Ref. [15] using the classical
expressions of massless quark matter and HRG models, given
in Eqs. (17), (19), and (23). However, their transition from
a classical to a quantum picture has never been explored
in previous works using the quantum expressions given in
Eqs. (25) and (26). The purpose of this work is to investigate
this fact. So, to begin, we will investigate the classical to
quantum transition for massless quark matter first, followed
by HRG matter. Throughout the discussion, we will attempt to
visualize all transitions from massless or noninteracting pic-
tures to HRG or interacting pictures, as well as from classical
(CL) to quantum (QM) pictures.

Let us begin by looking at Figs. 1 and 2, which show CL
and QM curves of conductivity components along the T and
B axes, respectively. Using CL Eq. (19), parallel component
of conductivity for massless quark matter will be [13]

σ‖ = 8e2 ζ (2)

3π2
τcT 2, (27)

where ζ (2) = π2/6. As a result, for the massless quark matter
case, σ‖ ∝ τcT 2, so its normalized values σ‖/(τcT 2) will be
constant, as shown by the green dash-dotted horizontal line
in Figs. 1 and 2, which will serve as our reference points like
the SB limit for thermodynamical quantities [15,44]. Next, we
will calculate the deviation from a horizontal line in the high
B and low T domains using QM Eq. (22) of σ‖. This fact is ex-
plored by the QM curves of σ‖: grey double-dash-dotted lines
in Figs. 1 and 2. This deviation increases towards the low T
and high eB domains due to Landau quantization, or, in other
words, due to the transition from integration to Landau level

summation, as denoted in Eq. (21). The QM and CL curves
of σ‖, on the other hand, are merging because integration and
Landau level summation become equivalent in the high T and
low eB ranges. In the left panel of Fig. 10 in Ref. [44], a
similar enhancement for entropy density with respect to SB
limit was found in the low T domain. Therefore, the SB or
massless limits of normalized entropy density (s/T 3) or other
thermodynamical quantities, as well as normalized longitudi-
nal conductivity (σ‖/τcT 2), exhibit the same pattern. For both
cases, their horizontal lines deviate (are enhanced) in the low
T domain due to Landau quantization. This Landau quanti-
zation effect is can be seen in low T and high eB domains,
which is a well-known fact for all thermodynamical quantities
and transport coefficients. Based on this, we can assume that
low T and high eB are quantum domains whereas high T and
low eB are classical domains. So, these enhanced normalized
quantities (s/T 3, σ‖/τcT 2) of massless quark matter may be
realized as an enhancement of their magnetothermodynamical
phase-space in the quantum domain.

We also estimated σ‖/τcT 2 for the lowest Landau level
(LLL) approximation by imposing l = 0 in Eq. (22), as shown
in Figs. 1 and 2 by cyan dash-double-dotted lines. An enor-
mous difference between the full Landau level estimation
(brown double-dash-dotted lines) and the LLL approxima-
tion (cyan dash-double-dotted) is visible. As expected, they
are merging into the high eB and low T domains. However,
according to our graphs, this convergence of LLL approx-
imation and actual QM estimation is unlikely within the
range of RHIC/LHC matter, covering T = 0.1–0.4 GeV and

0.1 0.2 0.3 0.4
T (MeV)

0

0.01

0.02

0.03

σ/
τ cT

2

σ⊥: CL
σ⊥: QM
σ||: CL
σ||: QM
σ||: LLL

eB=1mπ
2
, τc=1fm  

FIG. 1. Components of electrical conductivity for massless
quark matter as a function of temperature.
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0.1 11 0

eB/mπ
2

0

0.02

0.04

0.06

σ/
τ cT

2

σ⊥: CL
σ⊥: QM
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FIG. 2. Components of electrical conductivity as a function of
magnetic field for massless quark matter.

eB = (1–10)m2
π . From Fig. 2, we can say that for massless

QGP at T = 0.150 GeV the Landau quantization effect is
noticeable beyond eB = 1m2

π and LLL is not a good approxi-
mation within eB = (1–10)m2

π . As a result, neither the CL nor
the LLL approximation will be valid for estimating conductiv-
ity for RHIC/LHC matter with an expected magnetic field of
eB = (1–10)m2

π . The current work is intended to convey this
message.

The perpendicular conductivity σ⊥, from Eq. (17), can be
simplified for massless quark matter as

σ⊥ = 12
ζ (2)

3π2
τcT 2

∑
f =u,d,s

e2
f

1 + (τce f B/3T )2
, (28)

where e f = + 2
3 e, − 1

3 e, − 1
3 e for f = u, d, s and average en-

ergy of massless quark is used as 3T . To grasp the graphical
nature of σ⊥, we looked at the simple analytic form, which
has an additional anisotropic factor 1

1+(τc/τB )2 with an average
of τB = 3T/(e f B). As a result, the dimensionless value of
σ⊥/(τcT 2) is an anisotropic factor that rises with T and falls
with eB. The solid black lines in Figs. 1 and 2 demonstrate
this fact. In comparison to the CL curves, the QM curves
of σ⊥/(τcT 2) (red dashed line) are suppressed, whereas the
QM curves of σ‖/(τcT 2) (brown double-dash-dotted line) are
enhanced. Landau quantization of the FD distribution, in fact,
always enhances probability in the quantum domain (low T
and high eB), resulting in higher σ‖/(τcT 2). On the other
hand, σ⊥/(τcT 2) face two opposite effects. One is Landau
quantization via FD distribution, for which conductivity in-
creases in the quantum domain, and another is the anisotropic
factor, which is responsible for reducing the conductivity in
the quantum domain. We notice that latter effect is more
dominant and perpendicular conductivity becomes suppressed
in the quantum domain.

Let us now proceed to the HRG model conductivity es-
timation, where all charged hadrons will be included with
their respective statistical weight factors due to their different
mass values. These different statistical weight factors (roughly
e−βm) of the FD and BE distributions will act on baryons

0.06 0.08 0.1 0.12 0.14 0.16 0.18
T (GeV)

0

0.002

0.004

0.006

0.008

0.01

σ/
τ cT

2

σ⊥ :CL
σ⊥: QM
σ⊥: LLL
σ||: CL
σ||: QM
σ||: LLL

eB=1mπ
2
, τc=1fm

FIG. 3. Components of electrical conductivity for HRG matter as
a function of temperature.

and mesons, causing HRG estimations to remain lower than
massless quark matter. According to Fig. 3, in the hadronic
temperature domain T = 0.100–0.170 GeV, σ‖,⊥/(τcT 2) for
HRG estimation, the range is 0.003–0.01, which is signif-
icantly lower than their massless quark matter estimation
(around 0.02). Similar suppression values in thermodynamical
quantities are realized as nonperturbative sources of QCD in
LQCD calculations, which are well mapped alternatively by
the HRG model. Therefore, we can assume that Figs. 1 and
3 reflect the pQCD/massless limits and non-pQCD domains
of conductivity, respectively, in the high and low temperature
domains. This fact is thoroughly examined in Ref. [15] using
CL expressions of the massless and HRG systems. Here, we
concentrate only on its QM modification, and some interesting
results are as follows. QM > CL in the low T and high eB do-
mains for the massless case, but QM < CL for the HRG case
for σ‖/(τcT 2). To understand the suppressed QM values for
HRG estimation, where both bosons and mesons contribute,
their individual investigations will be helpful. That will be
discussed later.

To understand the detailed cyclotron motions of different
charged hadrons, we have calculated their average cyclotron

0

5

 10

 15

 20

0  0.5 1  1.5 2  2.5 3

τ B
 (

fm
)

m (GeV)

FIG. 4. Average values of inverse cyclotron frequency τB (in fm)
for different hadrons.
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FIG. 5. Components of electrical conductivity as a function of
magnetic field in the HRG model

time period (inverse of cyclotron frequency)

τB(m) = ωav

|ẽ|B = 1

|ẽ|B

∫
d3k ω f0(m)∫
d3k f0(m)

, (29)

which is plotted against the mass (m) axis in Fig. 4. Differ-
ent points represent different hadrons with their respective
masses. It is obvious that τB will increase with m and decrease
with ẽ, as shown by the graphs. The majority of hadrons with
charges |ẽ| = |e| lie within a specific slope of τB vs m, while
a few deviate due to their charges |ẽ| > |e|. As a result, higher
charged, lighter mass hadrons will play an important role in
the suppression of σ⊥ via the anisotropic factor 1

1+(τc/τB )2 .
We plotted σ⊥ and σ‖ as a function of magnetic field in

Fig. 5 at T = 0.150 GeV and τc = 1 fm for CL, QM, and
LLL cases in the HRG system. Table II summarises the
key findings by comparing the HRG estimations in Figs. 3
and 5 with massless quark matter estimations in Figs. 1
and 2. This applies to the hadronic temperature range T ≈
0.100–0.170 GeV with experimentally expected magnetic
field range eB ≈ (0–10)m2

π , and is more effective in the
quantum domain, i.e., low T and high eB zone. When we
individually analyze proton and pion matter contributions, we
can understand why massless quark matter and HRG matter
outcomes are quite different from one another. These are
discussed in the next paragraphs for the case of σ‖ only.

The tabulated outcome indicates that the quantum effects
on the pion (π ) and proton (p) are exactly opposite due to
their corresponding bosonic and fermionic distribution func-

TABLE II. Comparison between QM and CL estimations for
different cases.

Medium σ‖(T, B) σ⊥(T, B)

Massless quark matter QM > CL QM < CL
HRG matter QM < CL QM > CL
Proton matter QM > CL QM < CL
Pion matter QM < CL QM > CL
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eB/mπ
2

10
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σ ⊥
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π+

P

T=0.150GeV, τc=1fm

FIG. 6. Perpendicular component of electrical conductivity as a
function of magnetic field for pion and proton

tions, respectively. Moreover, the qualitative results of HRG
and pion matter are identical, which indicates that mesons
dominate over baryons in the estimation of HRG. Mesons
are expected to dominate in the HRG estimations due to their
higher thermodynamical probabilities as a result of their low
masses. Here, we explore this fact graphically for one of the
components of conductivity, σ⊥. In Fig. 6, we have plotted
σ⊥/(τcT 2) as a function of eB/m2

π for a pion (upper panel) and
a proton (lower panel) at T = 0.150 GeV and τc = 1 fm. We
find that the conductivity for π+ is much higher than that of p,
which is because of the small mass of the pion. Although the
QM results for the pion case (red dashed line) are larger than
the CL results (black solid line), the difference is negligible. In
contrast, the opposite ranking is clearly observed in the proton
case. The magnetothermodynamical phase spaces of the pion
and proton, which are bosons and fermions, are enhanced and
suppressed, respectively, due to their (Landau) quantized BE
and FD distribution functions. Figure 7 provides a detailed
description of how pion and proton matter is either enhanced
or suppressed in QM results compared to CL results. Here,
we have plotted (σ QM

⊥ − σ Cl
⊥ )/σ QM

⊥ × 100% as a function of
eB/m2

π for HRG (black solid line), π+ (red dotted line), and
p (blue dashed line) matter. Notice that below eB = 1m2

π

the deviation is less than 1%. For the HRG result, deviation
increases slowly with the magnetic field, reaches a maximum
of ≈3%, and then decreases to 0% at eB ≈ 10m2

π , and further
increase of magnetic field will start the suppression. Even
though the CL result for the pion and proton deviates from
the QM result, they follow a similar trend, and their combined
effect is reflected in the HRG result. Within the magnetic field
range eB = (0–10)m2

π and temperature T = 0.150 GeV, the
contribution from mesons become larger than that of baryons,
and as a result the HRG results exhibit effectively bosonic
quantum modification. That is why HRG results are the op-
posite of those of massless quark matter, which are subjected
to fermionic quantum modification.
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FIG. 7. Percentage deviation of classical estimation of conduc-
tivity from that of quantum estimation, as a function of magnetic
field. Deviation = (σ QM

⊥ − σ Cl
⊥ )/σ QM

⊥ .

IV. SUMMARY

In summary, we have explored comparative estimations
of classical and quantum expressions of electrical conduc-
tivity in the presence of a magnetic field. We first obtained
the results for the massless quark gluon plasma, and then
we used HRG model calculations to obtain the results for
interacting QCD. In the presence of a magnetic field, there
will be three components: parallel, perpendicular, and Hall.
At zero quark/baryon chemical potential, the medium carries
an equal number of opposite electrical charges, so the Hall
conduction will disappear. In both classical (without consider-
ing Landau quantization) and quantum pictures, parallel and
perpendicular conductivity become different in the presence
of the external magnetic field. Conductivities change from
being isotropic to anisotropic with a low to high magnetic field
in both the CL and QM cases. In Refs. [15], the classical esti-
mation of conductivity tensors for massless quark matter and
HRG matter is thoroughly discussed. The goal of the current
work is to discover their quantum extension by introducing
Landau quantization. Our estimation is limited to the hadronic
temperature domain T = 0.100–0.170 GeV and the magnetic

field domain eB = (0–10)m2
π . The findings are summarizedas

follows:

(i) QM enhancement is observed in parallel/longitudinal
conductivity for massless quark matter and proton
(baryonic) matter in the presence of a magnetic field.

(ii) QM suppression is observed in perpendicular/
transverse conductivity for massless quark matter and
proton (baryonic) matter in the presence of a magnetic
field.

(iii) QM suppression is observed in parallel/longitudinal
conductivity for pionic (mesonic) matter and HRG
matter in the presence of a magnetic field.

(iv) QM enhancement is observed in perpendicular/
transverse conductivity for pionic (mesonic) matter
and HRG matter in the presence of a magnetic field.

The QM effects in bosons and fermions are different
because of their corresponding BE and FD distribution func-
tions, which also serve to reveal the effect of Landau level
summation in two different ways. Additionally, we have
demonstrated that, for the ranges of temperature and mag-
netic field under consideration, the lowest Landau level
approximation of the HRG estimation is in no way a good
approximation. In the presence of a magnetic field, full Lan-
dau level summation is recommended for the quantum version
of HRG estimations. Therefore, the current work, for the
first time, suggests a non-negligible quantum effect in the
estimation of the transport coefficient for HRG matter, which
may also be applicable to other HRG-based phenomenology.
In Refs. [27,37], where a quasiparticle-based model (effec-
tive fugacity quasiparticle model) was used to estimate the
transport coefficients, a similar effect of Landau quantization
for QGP medium was also found. The current work only
considered the electrical conductivity, but we anticipate it will
be applicable to other transport coefficients such as shear and
bulk viscosity, thermal conductivity, as well as other HRG-
related phenomenology that may be investigated in the future.
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