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We introduce a global analysis of relativistic heavy ion collisions using TRAJECTUM of a significantly higher
precision and including a new option to vary the normalization of the centrality estimator. We use the posterior
distribution of our parameters to generate a set of high-statistics samples that allows us to make precise
predictions including statistical and systematic uncertainties estimated from the model parameter distribution.
The results are systematically compared with experiment whereby we also include many observables not
included in the global analysis. This includes in particular (extremely) ultracentral anisotropic flow and mean
transverse momentum, whereby we find satisfactory agreement with experiment where data are available. Lastly,
we compute spectra and anisotropic flow for oxygen-oxygen collisions performed at the BNL Relativistic Heavy
Ion Collider (RHIC) and to be performed at the the CERN Large Hadron Collider (LHC) and comment on how
these collisions may inform us on properties of the quark-gluon plasma.

DOI: 10.1103/PhysRevC.106.044903

I. INTRODUCTION

The collisions of heavy ions at the BNL Relativistic Heavy
Ion Collider (RHIC) at Brookhaven, USA and the Large
Hadron Collider (LHC) at CERN have led to an accepted
picture of a short prehydrodynamic phase followed by a rel-
ativistic fluid composed of quark-gluon plasma (QGP) with
remarkably small shear viscosity and finally a cascade of
interacting hadrons [1–5]. An increasingly precise picture of
these phases has recently emerged, including an accurate es-
timate of the temperature-dependent shear viscosity [6–12].
Nevertheless, due to the complicated interplay of the various
stages and corresponding models it has remained challenging
to advance our quantitative understanding of heavy ion colli-
sions.

There are multiple outstanding grand questions in the field
of heavy ion collisions [3], which range from the limits of
hydrodynamics to the behavior of energetic quarks and gluons
as a function of energy scale and coupling constant. Crucial
questions are the nature of the prehydrodynamic phase (both
its lifetime and dynamics [5]), the initial shape of the energy
deposited by the colliding nuclei [13], the behavior of hy-
drodynamics when viscous corrections are (too?) large [14]
or even if hydrodynamics can still make sense if only a few
dozen particles per unit rapidity are produced. All these ques-
tions shed insight on a microscopic description based on QCD
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and can hence, e.g., inform how a strongly coupled QGP can
arise from a theory of quarks and gluons which are free at
asymptotically high energies.

Given our current state of understanding it is often difficult
to shed light on these often quantitative questions by study-
ing a single aspect and linking it to a single measurement.
Instead, for instance, both the viscosities and the initial shape
characteristically alter the (anisotropic) momentum distribu-
tion of the final-state particles. The initial shape and initial
momentum anisotropies furthermore depend on the prehydro-
dynamic far-from-equilibrium stage. It is hence clear that only
a global analysis taking into account all these questions and a
representative set of experimental observables can put strong
quantitative constraints on individual parameters such as the
shear viscosity over entropy density ratio.

The aim of the current work is twofold. First, we would like
to assess our current understanding of heavy ion collisions,
including the systematic uncertainties that necessarily arise
from modeling its different aspects. Modeling uncertainties
are especially well addressed by studying the robustness of
the model under widening of the scope of the model, such that
the model has the flexibility to be closer to reality. At first it
may not be obvious why including more model parameters
can help understanding systematic uncertainties or test the
robustness of the model. Indeed, just adding model parameters
would risk having as many parameters as (effective) data
points, such that the model is basically a phenomenological
fit to the data. On the other hand, it is clear that if a physical
model parameter (say the slope of the specific viscosity η/s as
a function of temperature) is artificially constrained to a spe-
cific value that does not correspond to physical reality this will
worsen the model. In such a case the model is not complete
and this fact has to be taken into account in a larger theoretical
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systematic uncertainty. The easiest method to assess such a
systematic uncertainty, however, is to include the parameter
and vary it within the model. It is in this sense that adding
parameters sheds light on the robustness and uncertainty of
the model.

Recently, this approach of widening the scope of the model
has been implemented for the initial shape [7], the initial
stage [9], allowing the variation of second-order transport
coefficients [9,12], widening the parametrization of the shear
and bulk viscosities [12] and studying several different vis-
cous particlization prescriptions [11,15]. In this work we also
add one parameter (the centrality normalization), but instead
we focus on the existing model and perform a high-statistics
PbPb analysis of the model output at twenty randomly drawn
model parameters from the posterior. This not only allows us
to go beyond the experimental data used in the global analysis,
but also allows an analysis of the systematic uncertainties due
to our uncertainties in the model parameters. Discrepancies
with the detailed experimental comparison then indicate a
lacuna in our current understanding.

A second aim is to highlight smaller collision systems [4].
For this we do a similar analysis, but now for oxygen-oxygen
(OO) collisions [16]. In May 2021, RHIC performed a 16
day run with 402M OO collisions at a nucleon-nucleon col-
lision energy of

√
sNN = 0.2 TeV and LHC has a special run

planned likely in 2024 at
√

sNN = 6.8 TeV. No analyzed data
is yet available and hence, in contrast with the detailed PbPb
analysis (mostly postdictions), the results of the OO analysis
will include only predictions. Moreover, OO collisions are
right at the threshold where a hydrodynamic QGP may well
be present, but significant nonhydrodynamic effects are also
expected. Predictions can hence inform us on which aspects
are consistent with a hydrodynamic QGP.

Our analysis is performed using TRAJECTUM, which is a
new computational code [9,10] to simulate heavy and light
ion collisions that is entirely self-contained (with the ex-
ception of the hadronic gas phase) and includes one of the
most versatile models for both the initial stage (based on the
TRENTo model [6]) and a hydrodynamic phase including
temperature-dependent first-order transport coefficients and
all second-order coefficients. Importantly, it comes with an
analysis routine that is fast and fully parallelizable, thereby
allowing to analyze an unlimited number of events with
methods that are designed to be as close to experimental
measurements as possible.

In this work we present several improvements with regard
to previous work. First of all, the simulation of TRAJECTUM

in this work now has improved precision in its emulation
of heavy ion collisions as a function of the parameter space
whereby emulation uncertainties are now competitive or even
significantly smaller than the corresponding experimental un-
certainties. Second, we introduced a new parameter rescaling
the anchor point (AP) for the 100% centrality point. This has
direct consequences for all noncentral collisions and we show
a significant change in the posterior of for instance the nucleon
width.

Lastly, as stated we present a multitude of predictions (or
postdictions) for lead-lead (PbPb) collisions at the LHC as
well as oxygen-oxygen (OO) collisions at both RHIC and

the LHC. These predictions include a systematic uncertainty
analysis from the full posterior distribution as well as sta-
tistical uncertainties for observables where this is relevant.
Especially interesting are the (extremely) ultracentral results
(down to 0.001% centrality), where measurements are mostly
not available yet. For the OO results we present estimates how
the upcoming experimental results can help in improving our
understanding of the QGP.

II. MODEL

For the heavy ion simulations presented in this work, we
use version 1.1 of the TRAJECTUM code [17]. As TRAJEC-
TUM is described in some detail in Ref. [10], we will only
give a brief outline here, highlighting the changes to the
version of TRAJECTUM presented in Ref. [10]. TRAJECTUM

allows the user to choose different models for the initial con-
ditions, hydrodynamics, and transport coefficients, and also
offers a variety of partial differential equation solvers for
the hydrodynamical evolution. As in Ref. [10] we use the
TRENTo model for the initial conditions, modified with a free
streaming velocity that can differ from the speed of light. For
hydrodynamics we use the 14-moment approximation, with
transport coefficients that allow for temperature dependence
in the shear and bulk viscosity over entropy density ratios, as
in Ref. [8]. The hydrodynamical evolution is solved using the
“fast” version of the MUSCL algorithm [10].

This leaves us with the following set of parameters that
are varied in this work. From the boost invariant TRENTo
initial stage, we have the minimal internucleon distance dmin,
the number of constituents nc, and the nucleon width w.
We also have the constituent width v, which is parametrized
by the parameter χstruct, in terms of which v is defined as
follows:

v = vmin + χstruct(w − vmin),

where we fix vmin = 0.2 fm. The constituents in each colliding
nucleon each then source a thickness function with a Gaussian
distribution, where for each individual constituent the norm of
the Gaussian is given by Nγ /nc. Here γ is sampled from a
gamma distribution with width σfluct

√
nc, and N and σfluct are

parameters. In this way, for each nucleus a thickness function
is computed, TA and TB, respectively. The two thickness func-
tions TA and TB so obtained are then combined to form the
initial energy density e according to

eτ =
(T p

A + T p
B

2

)1/p

, (1)

with τ = 0+ the initial proper time and p another parameter.
The prehydrodynamic stage performs free streaming with a

velocity vfs until proper time τfs, which are the two parameters
governing this stage. For the hydrodynamic stage the equa-
tion of state is a hybrid constructed from the HotQCD lattice
equation of state, together with the hadron resonance gas
(HRG) constructed from the chosen particle content [18–20].
We use a temperature dependent shear viscosity over entropy
density η/s that is described by the parameters (η/s)min,
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(η/s)slope, and (η/s)crv through the formula

η/s = (η/s)min + (η/s)slope(T − Tc)
( T

Tc

)(η/s)crv

,

for T > Tc, and η/s = (η/s)min otherwise, with Tc fixed to
0.154 GeV. The analogous parameters for the bulk viscosity
ζ are (ζ/s)max, (ζ/s)width, and (ζ/s)T0 , through the formula

ζ/s = (ζ/s)max

1 + ( T −(ζ/s)T0
(ζ/s)width

)2
.

In addition, we vary the shear relaxation time τπ by setting
τπ sT/η as a temperature independent parameter, and we vary
the second-order transport coefficient τππ by the parameter
τππ/τπ . The final parameter that we vary is the switching tem-
perature Tswitch, which enters in the particlization procedure
(following Ref. [6]). In the following, we will describe the
changes that we made to the model for this work.

A. Oxygen nuclei

To simulate a Pb nucleus, we use a Woods-Saxon distribu-
tion with parameters as given in Refs. [8,21], while enforcing
a minimal distance dmin between nucleons. For a large spheri-
cal nucleus such a model is appropriate, but for smaller nuclei
like O such an approach fails to capture important correlations
between nucleon positions. Indeed, the 16 nucleons in oxygen
tend to group together in four α particles, which potentially
has important consequences for the shape of the geometry.
For this reason, for O we randomly rotate a sampled oxygen
nucleus from a list of 6000 O configurations computed using
effective two- and three-nucleon potentials, which is able to
capture these correlations [22–24]. The difference between a
standard Woods-Saxon distribution and the α-clustered ver-
sion has recently been studied in Refs. [24,25].

B. Continuous number of constituents

In the TRENTo model with substructure [7,26], the num-
ber of constituents nc is a discrete parameter. In a Bayesian
analysis, this can potentially cause problems for the emulator,
since the emulator essentially interpolates between different
design points assuming that the quantities it emulates depend
continuously on the parameters. However, since nc is discrete,
in the TRENTo model the dependence on nc is more like a
stepwise defined function. Especially from nc = 1 to nc = 2
the effect on certain observables can be significant, which can
cause the emulator to be less accurate.

In this work, we resolve this issue by changing the num-
ber of constituents to a continuous parameter. Each sampled
nucleon either uses �nc� or �nc� constituents with probability
such that the average number of constituents equals nc. The
definition agrees with the old definition for integer values of
nc, but for a large number of events this definition indeed leads
to observables depending continuously on nc.

C. UrQMD and SMASH

Whereas [10] used SMASH [27–29], in this work we use
UrQMD [30,31] as a hadronic afterburner. These codes are

both state of the art, and are hence both well suited to be
used in conjunction with TRAJECTUM. Both codes produce
similar results [12], whereby UrQMD leads to somewhat higher
multiplicities (about 1%) and higher 〈pT 〉 for kaons and pro-
tons (about 1.5%). There is no 〈pT 〉 increase for pions, but
low-pT yields (<0.4 GeV) are enhanced by about 1.5%, as
are high-pT (>1.5 GeV) yields. The UrQMD elliptic flow is
also slightly higher (1%) across all centrality classes.

For the PbPb results presented in this work, it will turn
out that the fitted free streaming velocity vfs is substantially
smaller than the previous result obtained in Refs. [9,10] (this
can compensate for higher 〈pT 〉). The fitted minimum shear
viscosity over entropy density ratio (η/s)min is slightly higher
than the result obtained in Refs. [9,10] (this can compensate
for the larger elliptic flow). Even though the differences be-
tween UrQMD and SMASH seem mild they are indeed still the
likely cause of the slightly changed posterior distributions,
especially as the mean transverse momentum is a sensitive
observable that is known experimentally to high precision (see
also Fig. 5 later).. This probably indicates that there is some
work remaining to be done to understand the correct way to
describe the final stages of the collision, but at least between
UrQMD and SMASH the discrepancies are quite mild.

D. Centrality determination

Historically the determination of centrality classes has not
always been clear. Theoretically often the impact parameter of
the collision was used as a probe for centrality, with smaller
impact parameter giving more central collisions. Fluctuations
in geometry and multiplicity give this method a significant
bias and it is therefore much better to order centrality by
the final multiplicity (ordering by initial entropy also gives
reasonable results [32]). TRAJECTUM has the option to specify
several centrality definitions with different pseudorapidity η

and transverse momentum pT cuts to make these as close as
possible to the actual experimental method. In this work we
always work with the standard settings |η| < 2.4 and pT >

400 MeV/c unless otherwise noted.
Experimentally the centrality ordering is usually defined

by the number of tracks at forward rapidity (for ALICE the
V0A and V0C detectors located at pseudorapidity 2.8 < η <

5.1 and −3.7 < η < −1.7, respectively). This can lead to
a problem comparing with theoretical models, which often
work under the assumption of boost invariance and hence
only compute multiplicities at midrapidity. Nevertheless, es-
pecially for PbPb collisions multiplicities at midrapidity are
rather strongly correlated with the V0 amplitudes (see Fig. 15
in Ref. [33]) and unless one looks at rather extreme centralities
the methods should match fairly well. An example of this
is explored in Fig. 16. For pPb collisions this is, however,
completely different and self-correlations in the centrality de-
termination can be important [34].

A single crucial question remains though: when do we
determine that a collision happened? Experimentally this is
far from easy: first of all, the PbPb cross section is completely
dominated by electromagnetic interactions of both charged
nuclei. These interactions lead to the dissociation of a single
(187 ± 12 b) or both (5.7 ± 0.4 b) Pb nuclei [35], which
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is much larger than the estimated hadronic cross section of
7.7 ± 0.6 b. It is also necessary to correct for collisions that
are hadronic but do not leave any tracks in the detector ac-
ceptance. Alternatively, it is possible to fit the multiplicity
distribution with a MC Glauber model and take the 100%
anchor point as given by the model, but this introduces a
theoretical modeling uncertainty. Nevertheless, both methods
agree well, and the final systematic uncertainty is less than
3% [33].

Also theoretically it is not quite clear when a hadronic
collision actually happened. This is usually determined by a
Monte Carlo Glauber model that puts nucleons at fluctuating
positions and then decides in a collision whether two nucleons
collide [36,37]. A nucleus-nucleus collision then occurs if at
least a single nucleon-nucleon interaction happened and hence
at least have two “participants.” A crucial ingredient herein is
the nucleon-nucleon cross section σNN, which also features as
a TRAJECTUM parameter and is usually fixed by the measured
value in pp collisions (at high energies the difference in cross
section between protons and neutrons is negligible). Never-
theless, several options are possible to satisfy the σNN cross
section, and a black-disk approximation (as in the standard
MC Glauber [23,38]) does not lead to the same result as the
TRENTo model with nucleons of size w used by TRAJECTUM.
Since here we work at fixed nucleons with smaller w can
interact with high probability, but this depends strongly on
the impact parameter. Nucleons with large w on the other
hand often do not interact even if they collide at zero impact
parameter (see Ref. [6] for full details).

In TRAJECTUM (as in TRENTo) it is possible that a
nucleon-nucleon interaction happened, but that the switching
temperature is not reached anywhere and no thermal particles
are produced (since the particlization is a Poisson process this
may even happen if Tswitch is reached). Nevertheless, since a
hadronic interaction happened particles realistically should be
produced in a more complete model that takes the QGP corona
into account and hence TRAJECTUM does include these events
in its event list as having zero particles.

While both the theoretical and experimental choices and
procedures are well motivated and studied still some signif-
icant uncertainty remains and also to test the robustness of
the model we decided to introduce a new parameter centnorm

that rescales the centrality classes. This parameter rescales
the α–β percent centrality so that in the model we actually
compute the 0.01αcentnorm–0.01βcentnorm percent centrality
bin. In other words, we perform the computation as if 100%
experimental centrality corresponds to centnorm centrality in
our model.

By including centnorm as a parameter, the uncertainty com-
ing from this issue can be properly taken into account in the
Bayesian analysis. That way, we can see which parameters
correlate with centnorm, and we are also able to fit centnorm.
It is however an interesting question whether in a way we
may be double-counting uncertainties here, since the exper-
imental measurements already contain a contribution in their
uncertainty due to the centrality selection. Since indeed we
will find centnorm to be consistent with 100% (see Sec. III B)
this could motivate to reinstate centnorm = 100% in future
analyses.

Important for the discussion in Sec. II C is that centnorm is
a parameter which enters purely in collecting the results of
the (parallelized) analysis of all events, not the simulation or
analysis. This means that it can easily be turned off at little
extra computational cost, so we have been able to verify that
the difference between this work and that obtained in Ref. [10]
is not due to the inclusion of centnorm (see also Fig. 3 later).

III. PRECISE PbPb RESULTS AND OO PREDICTIONS

A. The design and emulator validation

In this work, we perform a Bayesian analysis of the PbPb
system and subsequently make (predominantly) postdictions
for PbPb and predictions for the OO system. In the end we
also examine how much the precision of the model parameters
can improve by the inclusion of future OO data. To make
this as worthwhile as possible, we want to make the Bayesian
analysis of both the PbPb and OO systems as precise as we
can.

The experimental dataset that we fit to is the same as in
Ref. [9], except that in this work we only fit to PbPb observ-
ables. In particular, we include charged particle multiplicity
dNch/dη at 2.76 [39] and 5.02 TeV [40] and transverse en-
ergy dET /dη at 2.76 TeV [41]. We also include identified
yields dN/dy and mean pT for pions, kaons, and protons at
2.76 TeV [42], as well as pT fluctuations at 2.76 TeV [43].
For integrated anisotropic flow, we include v2{2}, v2{4}, v3{2},
and v4{2} at both 2.76 and 5.02 TeV [44]. We also include pT -
differential observables, in six coarse-grained pT bins with bin
boundaries at (0.5, 0.75, 1.0, 1.4, 1.8, 2.2, 3.0) GeV. With
these pT bins, we include identified transverse momentum
spectra for pions, kaons, and protons at 2.76 TeV [42], as well
as the pT -differential identified anisotropic flow coefficient
v2{2}(pT ) for pions, kaons, and protons at 2.76 TeV, and
v3{2}(pT ) for pions [45]. For the pT -differential anisotropic
flow, we only use bins with good statistical uncertainties,
which are the same as those used in Ref. [9] and indicated
explicitly later in Fig. 2.

The starting point of any Bayesian analysis is Bayes poste-
rior probability density for our parameters

P (x|yexp) = e−�2/2

√
(2π )n det (�(x))

P (x), (2)

with P (x) the (flat) prior probability density and where

�2 = [y(x) − yexpt] · �(x)−1 · [y(x) − yexpt], (3)

with y(x) being the predicted data for parameters x, yexpt the
n experimental data points, and �(x) is the sum of the exper-
imental and theoretical covariance matrices. In principle the
full experimental matrix should be provided by the relevant
experiment, but as this is rarely available we follow the simple
prescription from Ref. [20]. Obtaining the posterior distribu-
tions for our parameters involves a Markov chain Monte Carlo
(MCMC) [46] that evaluates the model many times by use of a
Gaussian Process emulator [20,47,48]. The uncertainty of the
emulator is estimated by the emulator itself and included in
�. For this analysis we use emulators only for the 50 most
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FIG. 1. We show the correlation between our parameters and all observables used for PbPb (top) and OO (bottom left) collisions. Inside
each box different centralities are shown from most central on the left to most peripheral on the right. pT bins are displayed in units of GeV/c.
(bottom right) The figure shows the posterior correlation between dmin and σfluct following from the posterior analysis done in Sec. III B.

significant principal components (PCs) of the experimental
data.

A crucial element in the emulator of a particular PC is the
characteristic length scale it assigns to a parameter: the emula-
tor uses shorter length scales when the PC is more sensitive to
the parameter. This means it has to rely on fewer design points
and hence typically has a larger uncertainty. By restricting the
prior ranges of our parameters it is possible to make PCs less
sensitive (on the domain) and hence a more precise emulator
is expected. The price to pay is of course the smaller domain
of the prior range, but from the previous work [10] it was pos-
sible to tighten the prior range significantly without affecting
our conclusions (our prior ranges can be seen later in Fig. 3).
Compared with [10], we furthermore lowered the statistical
uncertainty by increasing the number of events per design
point from 6k to 15k (for clarity we note that this work does
not oversample hydrodynamic events into several hadronic
events). Given the increase in computation time needed for
this number of events per design point, we lower the number
of design points from 1000 to 750 so that the total computation

time remains manageable. Also, as discussed in Sec. II B, by
making the number of constituents a continuous parameter,
we no longer present the emulator with discontinuities. For
OO collisions we ran the model at 1500 design points with
40k events each.1

One of the first interesting outputs to look for in the re-
sult of all 750 design points is the correlation between the
various parameters and the observables, which is shown in
Fig. 1 for both PbPb (top) and OO (bottom). It can clearly be
seen that total transverse energy, mean transverse momenta,
and (identified) (pT -differential) particle yields correlate pos-
itively with the norm. This makes sense, as the norm directly
controls how much energy is deposited into the initial state.

1The total computational time for the analysis was around 1M CPU
hours, roughly equally divided over PbPb and OO collisions. For
PbPb collisions half of the time was spent on UrQMD (the hadronic
afterburner, we use an η cut of 2.5 for this analysis), whereas for
smaller OO systems almost all time was used by TRAJECTUM.
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FIG. 2. For the same observables as in Fig. 1 we show as a fraction the experimental uncertainty, the validation of the emulator, the average
statistical uncertainty of the model, the range of the model as well as the uncertainty reported by the emulator itself.

As is well known, the shear viscosity reduces all anisotropic
flow coefficients vn{k} and the bulk viscosity suppresses the
mean transverse momentum. As expected a higher switching
temperature increases proton yields. Perhaps unsurprisingly,
the per-nucleon entropy deposition fluctuations σfluct corre-
late strongly with fluctuations of mean transverse momentum
δpT /〈pT 〉. Less obvious is that σfluct also correlates positively
with the most central bin of the anisotropic flow coefficients,
to which we will come back in Sec. IV. The free streaming
velocity vfs is also correlated with the mean transverse mo-
mentum, allowing both (ζ/s)max and vfs to adjust to fit this
observable. However, whereas in PbPb vfs does not have a
correlation with pT -differential anisotropic flow, (ζ/s)max is
moderately correlated, explaining why the inclusion of pT -
differential observables in Refs. [9,10] led to a substantially
lower value for (ζ/s)max than earlier work [6,8,49]. The new
parameter centnorm is clearly more important for peripheral
collisions, especially for the yields. Note however, that for
especially v2 the centrality normalization is (relatively) im-
portant across the entire centrality range, which is explained
by the observation that v2 is strongly centrality dependent
towards central collisions.

A few parameters only have strong correlations with very
few observables. A good example is dmin which strongly influ-
ences the transverse momentum fluctuations. This is however
more heavily influenced by σfluct, so that we will indeed only
find very mild constraints on dmin, albeit stronger constraints
on the correlation between dmin and σfluct (see Fig. 1). Lastly,
a few parameters have only mild correlations, such as τπ and
nc. This will mean that likely high precision will be needed to
get constraints on those parameters. Note, however, that these
figures can still hide important correlations when, e.g., two
parameters interplay with each other.

The correlations for the OO figure show similar character-
istics as the PbPb result, albeit likely showing higher statistical
imprecision for the pT -differential v2 results. It is however
clear that OO collisions due to their smaller size are more
sensitive to the initial stage parameters such as vfs and τfs.

A lower bound for the achievable precision in a Bayesian
analysis is given by the experimental uncertainties on the
data used in the analysis. Often, however, the theoretical

emulation uncertainty is considerably higher. In Fig. 2, we
show the validation of the emulator in this work, which one
can compare with Fig. 4 of Ref. [10]. One can see that both
the statistical and emulator uncertainty have improved in this
work, and for many observables the emulator uncertainty
(which incorporates the statistical uncertainty as well) is now
smaller than the experimental uncertainty, or comparable in
size. This indicates that we are close to the most precise results
which are achievable within the current model given current
experimental uncertainties and the set of observables that we
fit to. One potential issue is that the emulator’s self-reported
uncertainty (indicated in purple) tends to be lower than the er-
ror computed by comparing the emulator prediction to model
computations (indicated in red). This indicates that the emula-
tor may be slightly underestimating the true theoretical error.
Compared with Ref. [10] the ranges of the observables are
also decreased, which reflects the smaller prior ranges on our
parameters. Nevertheless, given the previous analysis we were
able to do so in a manner that still includes good coverage over
the experimental data.

B. Posterior distribution

In Fig. 3, we show the posterior distributions for the pa-
rameters from (2) evaluated using the parallel tempered [50]
emcee code [46] with three temperatures and 300 walkers
applied to experimental data from PbPb collisions at 2.76 and
5.02 TeV. In particular, two different posteriors are shown.
The solid blue lines correspond to a posterior in which
centnorm was varied as a parameter, whereas in the dashed red
lines centnorm is fixed to 100% at the level of the TRAJECTUM

analysis. It can immediately be seen that the preferred value of
centnorm is close to 100%, with a relatively small uncertainty.
This indicates that, within the posterior uncertainties, 100%
centrality in our model corresponds well with the experimen-
tal notion of 100% centrality. Note however, that the posterior
distributions for some observables, such as w or (η/s)crv,
change substantially if centnorm is varied, indicating that small
discrepancies between the model and experimental centrality
determination can have a substantial effect on the posteriors
of those parameters.
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FIG. 3. We show MCMC posterior distributions for our parameters fit to PbPb collisions at collision energies of 2.76 and 5.02 TeV both
with (solid blue) and without (dashed red) a varying centrality normalization centnorm. From the distribution including variations in centnorm

we randomly selected 20 sample points (indicated by colored dots) for which postdictions are shown in Sec. III C.

It is important to note that the red dashed line of centnorm

is not completely flat, even though none of the observables
depend on centnorm (it was fixed to 100%). Nevertheless, the
emulator still associates the 750 design points to a given
centnorm and attempts to find correlations between centnorm

and the observables. Of course we could have explicitly told
the MCMC analysis that our emulator does not depend on
centnorm and that it hence could use a flat prior and posterior.
In this work we chose not to do this to illustrate this effect and
also to verify that indeed the MCMC does not exclude any
of the centnorm prior distribution as should be expected. Also,
for a flat prior and an ideal emulator we would expect to find
the 90% confidence interval to be given by 95 ± 9, which is
indeed very close to the result of 93.8+7.6

−8.8.
Also, compared with Fig. 1 from [9], the posteriors of

many of the parameters have become more constrained, due
to the decreased statistical and emulator errors. This can be
seen in some detail in Table I, where we compare the posterior
including a varying centnorm from this work to the combined
PbPb and pPb posterior from Ref. [9]. Here we define the
improvement I between the two works as

I = σ[9]

σthis work
− 1,

with σ the 90% confidence interval from each respective
work. One can see that the precision in the determination of
both norms N PbPb2.76 and N PbPb5.02 improves substantially

in this work, as well as the switching temperature Tswitch

and the three parameters relating to the shear viscosity over
entropy density ratio η/s. Of particular note is the parameter
controlling the fluctuations in initial entropy deposition σfluct,
which also has greatly improved precision, and which we will
come back to in Sec. IV. Even though the improvement for
τπ sT/η is modest, it is worth noting that, with the present
posteriors, the value obtained from holography [4 − ln(4) ≈
2.61, [51] ] is now clearly favored over the value obtained

TABLE I. Improvement in posterior uncertainty comparing the
posterior including a varying centnorm from this work (solid blue in
Fig. 3) to the combined PbPb and pPb posterior from Ref. [9].

Parameter I [%] Parameter I [%]

N PbPb2.76 50 (η/s)min 50
N PbPb5.02 56 (η/s)slope 97
w −22 (η/s)crv 21
Tswitch 66 (ζ/s)max −19
p 14 (ζ/s)width 40
dmin 22 (ζ/s)T0 18
σfluct 44 τπ sT/η 21
nc 0 τππ/τπ −15
χstruct 22 vfs 33
τfs −17
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FIG. 4. We show MCMC posterior distributions for the nucleon-
nucleon cross section for both 2.76 (left) and 5.02 TeV (right)
collision energies both with (solid blue) and without (dashed red)
a varying centrality normalization centnorm. All are consistent with
the measured values of 61.8 ± 0.9 and 67.6 ± 0.6 mb for 2.76 and
5.02 TeV, respectively [53].

by a weakly coupled computation (5, [52]) for fixed centnorm,
and slightly favored with varying centnorm. As noted before,
the posteriors for vfs and (η/s)min are substantially different
from those obtained in Ref. [9], which is likely due to the dif-
ference between using UrQMD in this work, and using SMASH

in Ref. [9].
In addition to the parameters shown in Fig. 3, in the model

design we also vary the nucleon-nucleon cross-section σNN.
The reason for this is mainly that this does away with the
need to perform separate runs for both collision energies [10].
For a normal MCMC analysis we fix σNN to 63 or 70 mb
(for 2.76 and 5.02 TeV), but it is also possible to attempt to
fit σNN to the available data. This is shown in Fig. 4, where
the analysis shown in Fig. 3 was repeated while allowing
σNN to vary. Two interesting observations can be made. First,
the previously known values of 63 mb (

√
sNN = 2.76 TeV)

and 70 mb (
√

sNN = 5.02 TeV) are compatible with our fits,
both with and without varying the centrality normalization
centnorm. Second, the fit is not very sensitive to the value of
σNN at either collision energy. This indicates that one could
probably produce reasonable predictions for both collision

energies by fixing σNN to a reasonable value compatible with
the fits for both collision energies. It is interesting to see
whether these fits can be made more precise in the future by
including extra experimental data, such as the total hadronic
PbPb cross section.

C. Postdictions with systematic uncertainties

In addition to showing posteriors for the parameters, we
can also use the posterior distributions to compute observables
that we did not use in the fit. To do this, we drew 20 random
sets of parameters (indicated in Fig. 3) from the posterior
and computed our observables for all of them using 0.5M
events per parameter set for PbPb collisions and 1M (2M)
events for OO collisions at

√
sNN of 7 (0.2) TeV. For 7 TeV

collisions we extrapolated the norm N from the 2.76 and
5.02 norms by assuming a power-law scaling, whereas for
0.2 TeV we multiplied the 2.76 norm by 0.497 (this factor
approximates the AuAu multiplicity at 0.2 TeV relatively
well). We used 39.7 and 74.2 for σNN for, respectively, 0.2
and 7 TeV collisions. These 20 sets allow us to estimate a
(one standard deviation) systematic uncertainty coming from
our uncertainties in the model parameters in addition to the
statistical uncertainty that is computed for all observables.
Since we can use considerably more events as compared with
the design points we can also make predictions or postdictions
for more statistically demanding observables. Note that since
we are drawing the parameters from the true posterior, and not
just the one-dimensional (1D) projections shown in Fig. 3, all
of the correlations between the posteriors of the parameters
are automatically taken into account in the prediction.

The first such prediction is shown in Fig. 5, where we show
identified particle yields and mean transverse momenta for
PbPb collisions at

√
sNN = 5.02 TeV together with experi-

mental results from ALICE [54]. Note that, as in Ref. [9],
at 5.02 TeV we only used charged particle multiplicity and
integrated as well as pT -differential vn{k} in the fit, so these
particle identified multiplicities and 〈pT 〉 are true postdictions
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FIG. 5. We show identified particle yields dN/dy (left) and mean pT (right) for pions, kaons, and protons at midrapidity as a function of
centrality for PbPb collisions at

√
sNN = 5.02 TeV compared with colored ALICE data points [54] (also shown in the model/data ratio). The

bands represent systematic uncertainties (1σ ) in the TRAJECTUM parameters (see Fig. 3) and the gray points show statistical uncertainties.
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FIG. 6. We show identified particle yields dN/dy (left) and mean pT (middle) for pions, kaons, and protons at midrapidity as a function
of centrality for OO collisions at

√
sNN = 7 TeV and mean pT at

√
sNN = 0.2 TeV (right). The bands represent systematic uncertainties (1σ )

around the median (shown dashed) in the TRAJECTUM parameters (see Fig. 3) and the gray points show statistical uncertainties.

(the equivalent 2.76 TeV data was used in the fit, however).
The identified particle yields are consistent with the experi-
mental data with the exception of the protons to which we will
get back when we discuss the full spectra around Fig. 10. The
mean proton transverse momentum is above the experimental
data, but still consistent within two standard deviations when
taking into account our systematic uncertainty.

It is also interesting to examine observables which are
currently not measured, as this allows us to make novel
predictions. In Fig. 6, we show the same observables as in
Fig. 5, but for OO at

√
sNN = 7 TeV and 0.2 TeV instead

of PbPb at
√

sNN = 5.02 TeV. This is the (approximate) col-
lision energy at which RHIC and the LHC collide the OO
system. We are able to predict the identified particle yields to
around 10% precision, and the mean transverse momenta to
around 2%–3%.

We use transverse momentum fluctuations of charged par-
ticles in PbPb collisions at

√
sNN = 2.76 TeV in the fit, but

the experimental data for this observable is not available at√
sNN = 5.02 TeV. In the left panel of Fig. 7, we show the

TRAJECTUM prediction not only for charged particles, but also
for pions, kaons, and protons (see also Refs. [55–57] for
other predictions or postdictions). For protons, the transverse
momentum fluctuations are predicted with 5%–15% precision
(statistics dominated, see the gray statistical uncertainties),
depending on centrality, whereas the other three are predicted
to less than 5%. Curiously, the identified transverse momen-
tum fluctuations do not seem to be ordered according to mass,
but rather the kaon transverse momentum fluctuations are the
largest. The middle and right panels of Fig. 7 show the same
observables, but this time for OO at

√
sNN = 7 TeV (middle)

and
√

sNN = 0.2 TeV (right), which are the collision energies
at which the LHC and RHIC, respectively, collide oxygen
nuclei. One can see that the centrality dependence is weaker
in OO from what it is in PbPb. Also, the uncertainties in OO
are substantially larger than in PbPb, but still the precision for
charged particles is less than 10% for most centralities.

An interesting family of observables which we did not use
in the fit are the event plane angle correlations. In Fig. 8,
we show 〈cos[4(�2 − �4)]〉SP, 〈cos[8(�2 − �4)]〉SP and
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FIG. 7. We show transverse momentum fluctuations of charged particles, as well as pions, kaons, and protons, all at midrapidity, as a
function of centrality. This is done for PbPb collisions at

√
sNN = 5.02 TeV (left), as well as OO collisions at

√
sNN = 7 TeV (middle) and√

sNN = 0.2 TeV (right). The bands represent systematic uncertainties (1σ ) in the TRAJECTUM parameters (see Fig. 3) and the gray points show
statistical uncertainties.
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FIG. 8. We show event plane correlations 〈cos[4(�2 − �4)]〉SP, 〈cos[8(�2 − �4)]〉SP and 〈cos(2�2 + 3�3 − 5�5)〉SP of charged particles
as a function of centrality for PbPb collisions at

√
sNN = 5.02 TeV compared with colored ATLAS data points at

√
sNN = 2.76 TeV (left) [58].

We also show predictions for 〈cos[4(�2 − �4)]〉SP for OO at
√

sNN = 7 TeV (right). The bands represent systematic uncertainties (1σ ) in the
TRAJECTUM parameters (see Fig. 3) and the gray points show statistical uncertainties.

〈cos(2�2 + 3�3 − 5�5)〉SP for PbPb at
√

sNN = 5.02 TeV in
the left panel. We compare the theory prediction to data at√

sNN = 2.76 TeV because this measurement is not available
at

√
sNN = 5.02 TeV. What makes these observables interest-

ing is that they are not obviously related to the observables
which we used in the fit, but we still describe them with
an accuracy that can be even smaller than the experimental
uncertainty. This means that, at least within our model, the
event plane angle correlations are related to the observables
that we do use in the fit in a nontrivial way, so that they
can be completely described in terms of these simpler ob-
servables. In the right panel of Fig. 8, we make a prediction
for 〈cos[4(�2 − �4)]〉SP for OO at

√
sNN = 7 TeV. For cen-

trality bins up to about 30% centrality we are able to make
a prediction with a precision of about 10%, with precision
deteriorating for more peripheral collisions due to our limited
statistics.

In the fit, we have used integrated anisotropic
flow coefficients vn{k} at both

√
sNN = 2.76 TeV and√

sNN = 5.02 TeV, with centrality bins bounded by
(0, 5, 10, 20, 30, 40, 50, 60, 70)%, statistics allowing.
In the left panel of Fig. 9, we show the TRAJECTUM results for√

sNN = 5.02 TeV using finer centrality bins. One can see that
we obtain good precision, around 5%–10% for most centrality
bins. For most centralities, we also have excellent agreement
with ALICE data, with the largest deviations being around 2σ

in v2{2} and v2{4} for centralities from 50% to 70%. In the
middle and right panels, we again show predictions for OO
collisions at

√
sNN = 7 TeV (middle) and

√
sNN = 0.2 TeV

(right). We obtain predictions with a precision of less than
10% for most flow coefficients, with v3{2} and v4{2} being
less precisely predicted for peripheral collisions. This can
be understood, however, as v3{2} becomes very small for
peripheral collisions, while v4{2} is very small for every

FIG. 9. We show integrated anisotropic flow coefficients vn{k} of charged particles at midrapidity as a function of centrality for PbPb
collisions at

√
sNN = 5.02 TeV compared with colored ALICE data points [60] (left), predictions for OO collisions at 7 TeV (middle) and 0.2

TeV (right). The bands represent systematic uncertainties (1σ ) in the TRAJECTUM parameters (see Fig. 3) and the gray points show statistical
uncertainties.
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FIG. 10. We show the identified transverse momentum spectra for pions (left), kaons (middle), and protons (right) at midrapidity for
different centralities for PbPb collisions at

√
sNN = 2.76 TeV compared with colored ALICE data points [42]. The bands represent systematic

uncertainties (1σ ) in the TRAJECTUM parameters (see Fig. 3). We note as opposed to our 5.02 TeV results these spectra are generated using the
emulator and hence also contain an uncertainty due to the emulator.

centrality class. Also note that the systematic uncertainties
in all three panels include values where vn{k} < 0, whereas
from its definition vn{k} is either positive real or the kth
root of a negative number. To make sense of the complex
values, we redefine vn{k} as ṽn{k} = sgn(vn{k}k )|vn{k}|. This
essentially rotates the complex values to the negative real
axis while keeping the real ones unchanged, making ṽn{k}
real in all cases. In Fig. 9, wherever vn{k} becomes complex,
we therefore show ṽn{k} instead. We note that v2{4} in PbPb
collisions also becomes complex for centralities smaller than
4% [59] (see also Ref. [10]), but our current simulation does
not have sufficient statistics to fully probe this regime.

D. pT -differential predictions

In addition to the various pT -integrated observables
discussed above, we also compute several pT -differential
observables. In Fig. 10, we show identified transverse mo-
mentum spectra for pions (left), kaons (middle), and protons
(right), for PbPb at

√
sNN = 2.76 TeV. Note that, in contrast

to the other figures described in this section, the contents of
Fig. 10 were not made using a high-statistics run, but instead
come from evaluating the emulator which was used to perform
the Bayesian analysis. Whereas deviations from the model
with the experimental data is typically small (around 10%), it
is clear that especially for more off-central collisions we have
too few high-pT pions. This could indicate that perturbative
QCD processes (which are only power-law suppressed at high
pT as opposed to the exponential Boltzmann suppression)
become more important towards more peripheral collisions.
Also mostly at peripheral collisions we have too many kaons
as well as high-pT protons.

Figure 11 shows the same quantities as Fig. 10, but now for
PbPb at

√
sNN = 5.02 TeV. In this figure, the high-statistics

run was used to provide the TRAJECTUM prediction. Again
the precision is around 10%, but here deviations from the
experimental data are much larger, especially as the exper-
imental uncertainty has decreased significantly with respect
to 2.76 TeV data. Given that we did not fit to the spectra
at

√
sNN = 5.02 TeV, this is not too alarming, but it does
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FIG. 11. We show the identified transverse momentum spectra for pions (left), kaons (middle), and protons (right) at midrapidity for
different centralities for PbPb collisions at

√
sNN = 5.02 TeV compared with colored ALICE data points [54]. The bands represent systematic

uncertainties (1σ ) in the TRAJECTUM parameters (see Fig. 3) and the gray points show statistical uncertainties.
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FIG. 12. We show the identified transverse momentum spectra for pions (left), kaons (middle), and protons (right) at midrapidity for
different centralities for OO collisions at

√
sNN = 7 TeV (top) and

√
sNN = 0.2 TeV (bottom). The bands represent systematic uncertainties

(1σ ) in the TRAJECTUM parameters (see Fig. 3) and the gray points show statistical uncertainties.

indicate that including these measurements in a future fit is
likely to improve constraints. We also show predictions for
identified transverse momentum spectra for OO in Fig. 12,
where we show pions (left), kaons (middle), and protons
(right) at

√
sNN = 7 TeV (top) and

√
sNN = 0.2 TeV (bottom).

The precision of the predictions depends on centrality and

collision energy, but is around 10%–30% for most centrality
and pT bins.

Lastly, Fig. 13 shows the identified pT -differential
anisotropic flow coefficient v2{2}(pT ) for pions (left), kaons
(middle), and protons (right), for PbPb at

√
sNN = 5.02 TeV.

Depending on centrality and transverse momentum, the
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FIG. 13. We show the identified pT -differential anisotropic flow coefficient v2{2}(pT ) for pions (left), kaons (middle), and protons (right)
at midrapidity for different centralities for PbPb collisions at

√
sNN = 5.02 TeV compared with colored ALICE data points [61]. The bands

represent systematic uncertainties (1σ ) in the TRAJECTUM parameters (see Fig. 3) and the gray points show statistical uncertainties.
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FIG. 14. We show a zoom of Fig. 9 (left) together with data from
ALICE [60].

precision ranges from around 5% to 10%. The largest relative
deviations from experimental data can be seen in the 0%–1%
centrality bin (this particular centrality bin was not used in
the fit), but in absolute terms these still agree within two
standard deviations. The only serious deviations are the over-
estimations of the elliptic flow for high-pT pions and kaons
for centralities bigger than 40%. This could again indicate the
importance of pQCD contributions, as those contributions are
expected to decrease the flow coefficients vn. The agreement
of the proton v2{2} is however impressively precise over the
entire range of centralities (up to 70%) and transverse momen-
tum probed.

IV. PREDICTIONS FOR ULTRACENTRAL COLLISIONS

Ultracentral collisions in the 0%–1% centrality class are
rare events whereby the nuclei collide head-on and further-
more fluctuate specifically to have a high multiplicity. These
collisions hence probe a special part of heavy ion collision
physics, and have been historically difficult to describe accu-
rately. A relatively famous example is the v2-v3-ultracentral
puzzle, which states that it is difficult to simultaneously de-
scribe both v2 and v3 in the 0%–1% centrality class [13,62–
64], but also for mean transverse momentum there are theoret-
ical predictions [65]. The interesting observation in the latter
work is that for extremely ultracentral collisions (0%–0.01%
centrality) the size of the plasma is limited by the radius of
the colliding nucleus and the increase in multiplicity is solely
sourced by an upward fluctuation in the initial temperature.
The increase in temperature increases the final radial flow and
hence leads to an increase in 〈pT 〉.

In Fig. 14 we show TRAJECTUM postdictions for vn{k}
as compared with ALICE measurements [60] [this figure is
a zoom of Fig. 9 (left)]. This yields an excellent fit to the
experimental data [60], even though these particular central-
ity classes were not used in the Bayesian model. The v2-v3

puzzle is usually stated as a puzzle on the ratio, since it is
often straightforward to reduce or increase the magnitude of
both by modifying the shear viscosity. This, however, would

modify the vn{k} for higher centrality classes and we use our
parameters within the posterior range that are constrained by
such data. In that case it can be challenging to fit the absolute
magnitude of both v2 and v3 (indeed, Ref. [64] is off by
many standard deviations for v2{2}, while the v2{2}/v3{2}
ratio is consistent with data within a single standard devi-
ation). We remark that both Refs. [32] and [8,20] have an
excellent description of the 0%–5% centrality class of both
v2{2} and v3{2} so we regard it as likely that they will also
describe the ultracentral centrality classes. The good fit of the
Magma model [63], however, likely does not survive a full
hydrodynamic simulation [13].

It is an interesting question why TRAJECTUM would ob-
tain a better ultracentral description than e.g., v-USPhydro in
Ref. [64], especially as the latter work uses the same initial-
state model (TRENTo) and furthermore attempted some
important changes to resolve the puzzle (albeit unsuccess-
fully). For this question we performed a simple TRENTo
simulation [7,26] using our MAP settings from Ref. [9] to
obtain the spatial anisotropies ε2 and ε3, here defined by the
initial energy density through [26]

εn =
∣∣∣∣
∫

rdrdφrneinφe∫
rdrdφrne

∣∣∣∣. (4)

We furthermore show three variations obtained by setting the
number of constituents to nc = 1 as well as rescaling σfluct

by a factor
√

3. We note that ε2 and ε3 correlate very well
with v2{2} and v3{2}, respectively [10,13,66]. We hence see
in Fig. 15 that while the influence of σfluct is moderate over
the complete centrality range (left panel) the contribution be-
comes relatively important in ultracentral collisions (middle
and right panels) because of the small absolute magnitude of
ε2 and ε3 in ultracentral collisions. The subnucleonic struc-
ture, varied by varying nc is however only important for very
peripheral collisions and more so for ε3 than for ε2. To de-
scribe the ultracentral v2{2} it is hence essential to estimate
σfluct accurately, which in TRAJECTUM is done by including
transverse momentum fluctuations in the Bayesian analysis
(see also Sec. III A and [20]). This can likely explain the
difference with Ref. [64], which used an older Bayesian anal-
ysis [6] without transverse momentum fluctuations. Similar
to the event plane angle correlations we hence see again the
power of a full global analysis that links heavy ion physics
across observables.

Several observables have not been measured in the ultra-
central region, including the mean transverse momentum as
advocated in Ref. [65]. In Fig. 16 we show the 〈pT 〉 for in-
creasingly ultracentral collisions together with the multiplicity
as well as the anisotropic flow coefficients vn{2}. All these
observables are statistically relatively cheap to compute, but
we note that to obtain results for the 0%–0.001% centrality
class it was still necessary to obtain 33M TRENTo events for
each of the 20 parameter sets and subsequently sample the
0%–0.01% highest entropy events with a 100 times higher
rate with respect to the other events (as stated, we used 0.5M
hydro events in total). As expected, the multiplicity increases
relatively steeply towards more central events. This increase
can in principle be compared with the multiplicity beyond the
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FIG. 15. We show a simple TRENTo simulation of the initial eccentricities ε2 (left, middle) and ε3 (right), where in the middle panel we
show a zoom of the panel on the left together with ε3 for comparison (black dot-dashed). In addition to the maximum a posteriori (MAP)
values, we show results where σfluct was rescaled by a factor

√
3, as well as results where the number of constituents nc was set to 1. As insets

we also show ratios of these variations with respect to the MAP settings. One can see that σfluct has a large influence on both ε2 and ε3, which
is part of the resolution of the ultracentral v2 to v3 puzzle [13,62–64].

“knee” in the V0 amplitude in Ref. [33], which is also shown
in the figure for 2.76 TeV collision energy [33] (for 5.02 TeV
the V0 distribution suffers from pileup in this region and is
harder to compare). Note that our model in this work is boost
invariant and it is hence appropriate to compare our midra-
pidity multiplicity and midrapidity centrality selection (|η| <

2.4) with the ALICE V0 distribution (which uses the multi-
plicity and the amplitude for the centrality selection both at
forward rapidity). Ultracentral multiplicity has also been stud-
ied at RHIC [67], although here it is problematic that the

STAR data are only available in raw form (the V0 data are
also raw, but as a ratio with the 1%–2% class detector effects
should be suppressed). In the right panel of Fig. 16 we find
that there is no significant change in any vn{2} (with n � 4)
downwards of 0.5% centrality.

The mean transverse momentum in extremely ultracentral
collisions is especially interesting, since for these centrality
classes the initial volume is approximately constant [65]. If
one furthermore assumes that the total energy E and entropy
S per unit rapidity are approximately conserved then the
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FIG. 16. (top) We show the mean transverse momentum for charged pions, hadrons, kaons and protons normalized to its value in the
5%–10% centrality class towards extremely ultracentral collisions (left, see also [65]) and similarly for the multiplicity at midrapidity (middle,
we normalize with the 1%–2% class and uses dN/dy and dN/dη for identified and unidentified hadrons respectively) and the vn{2} coefficients
(right, not normalized). While the 3% difference for protons for the mean transverse momentum naively amounts to an effect that is within
the systematic uncertainty the normalization with the 5%–10% class should allow much of the systematics to cancel, such that with the high
luminosity delivered to ALICE this measurement is likely feasible. The vn{2} do not decrease further towards extremely ultracentral collisions,
indicating that the QGP never becomes perfectly spherical. (bottom) Instead of our standard centrality measure (charged multiplicity with
pT > 400 MeV and |η| < 2.4 we show the same figures for a |η| > 2.0 cut, which is similar to the forward V0 centrality definition typically
used by ALICE. By construction the effect on the multiplicity is now smaller (since we select in a different rapidity range), but an even greater
reduction is found for the 〈pT 〉. Even bigger effects from the centrality measure can be expected for models that do not assume boost invariance.
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FIG. 17. We show some 1D posterior distributions for the 20
Bayesian analyses including OO simulated data (solid, colored)
together with the posterior distributions including only PbPb data
(dashed, black). We show the nucleon substructure parameter χstruct

(left) and the minimum of the shear viscosity to entropy density ratio
(η/s)min (right). It can be seen that the distributions for (η/s)min are
all fairly close together, whereas those for χstruct show more varia-
tion. For χstruct, the distribution is usually narrower than the PbPb
result, which can be easily seen because the peaks of the normalized
distributions are taller than the PbPb result.

increase in 〈pT 〉 is directly related to the increase in e/s,
with e and s being the initial energy and entropy densities
that can potentially be interpreted as being directly related to
the temperature. In reality the energy per rapidity decreases
due to longitudinal work and entropy increases due to viscous
corrections. Our results from the 1%–2% centrality class to
the 0.1%–0.2% centrality class show an increase of the 〈pT 〉
for charged hadrons from approximately 715 to 724 MeV,
which is in agreement with Ref. [65]. We note that, curiously,
there is a small but significant decrease in the pion 〈pT 〉 going
from centrality 5% to the 1%–2% class.

It is an interesting question how the extremely central
observables are affected by a centrality selection which is
different from the rapidity region where the observable is
measured. This avoids autocorrelation effects from (rare) fluc-
tuations and is typically what is done in experiment by, e.g.,
the ALICE forward V0 detector. To simulate this we redid our
computation with a centrality measure given by the multiplic-
ity at |η| > 2.0 (we cut of the particlization at |η| = 2.5 in our
simulations, so we cannot use the “true” V0 ranges) and show
this in the bottom row of Fig. 16. As expected, the increase in
multiplicity is now weaker, since the multiplicity observable
now decorrelates with the centrality selection. The reduction
of the ultracentral effect on the 〈pT 〉 is even stronger, which
can likely be explained because the dependence of 〈pT 〉 on
centrality is much weaker than for the multiplicity. Note that
our hydrodynamic model assumes longitudinal boost invari-
ance, so any dependence on the centrality selection is due to
thermal sampling during the particlization. Realistically the
plasma itself also fluctuates (see, e.g., Refs. [68,69]), which
would lead to stronger effects from the centrality selection
than in our boost invariant model. To avoid this it is likely
essential for extremely ultracentral observables to use the

same centrality rapidity interval as in which the measurement
is made (as in the top row of Fig. 16).

V. BAYESIAN ANALYSIS USING OO SIMULATED DATA

In the previous section, we showed several predictions for
the oxygen runs at the LHC and RHIC. While this is very
interesting and important because it allows for a good test
of the current model, one can answer an additional question.
Assuming, as we have been so far, that the soft sector of
OO collisions can be described by the same hydrodynamical
model as for PbPb, one can wonder whether the addition of
OO data can improve the constraints on the parameters such
as those obtained from PbPb alone.

One might hope that OO yields constraints orthogonal to
those already given by PbPb because OO is a much smaller
system, but it is not a priori obvious that this is indeed the
case. In this section, we obtain an answer to this question by
using simulated data for OO at

√
sNN = 7 TeV generated by

the model itself (this is similar to a closure test [9–12]). We
perform Bayesian analyses for 20 different sets of simulated
data, where the simulated data come from high-statistics runs
of the model itself using the parameters indicated in Fig. 3.
Since we assume consistency between OO and PbPb, the
“true” value should be one of the points in the posterior of our
fit to PbPb data, so it makes sense to use parameter settings
which are randomly drawn samples from the posterior (see
Fig. 3). We have to make an additional assumption on the
uncertainty of the simulated data. Estimates for the statisti-
cal and systematic uncertainties of the OO observables we
would like to include in the fit have recently become avail-
able [16,70,71], but here we make the simplifying assumption
that the relative experimental errors are the same as for the
corresponding observables in PbPb. The observables we have
used in the simulated data OO fits are the same as those used
in the fit using only PbPb experimental data, except that for
pT -differential anisotropic flow we have only used the bins
bounded by (0.5, 0.75, 1, 1.4) GeV/c, and we only fit pion
v2{2}(pT ) (as shown in Fig. 1).

In Fig. 17, we compare the results of the fit which only
includes the PbPb experimental data to the 20 fits which also
include simulated data for OO, where in both cases we use
the fits that also vary centnorm. In the left panel, we show
the posterior distribution of the χstruct parameter, whereas on
the right we show (η/s)min. There are two interesting obser-
vations. First, comparing the PbPb fit to the simulated data
fits, one can see that the simulated data fits are narrower and
shifted for χstruct and virtually unchanged for (η/s)min. This
implies that the determination of χstruct becomes more precise
with the inclusion of simulated data, indicating that, under the
assumptions we made, the inclusion of real OO data would
also improve the precision of the fits. The second observation
is that the χstruct distributions do not all have their peak in the
same place, whereas the (η/s)min distributions are almost on
top of each other. Recall that the parameters for the simulated
data are drawn randomly from the PbPb posterior. This means
that, as one can see in Fig. 3, the true parameter values for the
simulated data points are spread evenly according to the PbPb
posterior distribution. Naively, one might think that the fits to
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FIG. 18. For each parameter in our model, we show the original PbPb fit (black), as well as the results for the 20 fits which include the
OO simulated data (colored). The horizontal position of the PbPb data point is given by its mean, whereas the horizontal positions of the data
points which include the simulated data are given by their true values. We also show a linear function fit to the simulated data points (dotted)
as well as a line with slope 1 (solid). The value of the slope of the linear function is also quoted, together with the improvement of the posterior
uncertainty.

the simulated OO data should show reconstructed values cen-
tered around the true values, and therefore one may wonder
why the simulated data posteriors for (η/s)min are spaced so
close together. The explanation for this is that, while for the
simulated OO data we know the true parameters, this is not
true for the PbPb data, which are still taken from the actual
experiments. Both the PbPb data and the OO simulated data
pull on the parameters, and the relative strengths of the pulls
of each dataset determine the final posterior distribution. This
leads us to the interpretation that the pull of OO on (η/s)min

is small relative to that of PbPb, whereas for χstruct the pull of
OO is larger.

Figure 18 explores these two observations for all the
parameters in our model. The black points indicate the expec-
tation value and precision of the parameter using just the PbPb
experimental data. In color, we show the various fits using the
20 OO simulated data sets as well as PbPb experimental data,
where the horizontal position corresponds to the true param-
eter value that was used to generate the particular simulated
OO data set. Also shown is the slope of a linear function fit
to the OO simulated data fits. If the parameter can be fully
constrained by OO data with much higher precision than from
PbPb data one would expect a slope of unity, whereas if PbPb
data are more constraining one would expect a slope closer to
zero. The slope hence quantifies the discussion above about
the relative pull of the OO simulated data compared with the
PbPb data. In addition, we show the improvement I in the size
of the standard deviation of the simulated data posteriors with
respect to the PbPb posterior, where we define I as

I = σPbPb/〈σPbPb + OO〉OO simulated data sets − 1,

where the average is taken over the posteriors of all OO
simulated data fits, and σ denotes the standard deviation of the
posterior. As we can see, the uncertainties in most parameters
decrease modestly with the inclusion of OO simulated data,

as can be seen by the relatively small but mostly positive
values for the improvement. This indicates that, under the
assumptions mentioned in this section, the inclusion of real
OO experimental data in future analyses could be beneficial
to the precision of the analyses. We can also see that the
correlation varies from parameter to parameter, indicating the
different relative pulls between PbPb and OO data. Let us also
note that correlations between parameters are important. The
parameter dmin is not used in OO collisions, however, its de-
termination does benefit from the inclusion of OO simulated
data. The reason for this is that it turns out that dmin is strongly
correlated with σfluct (see Fig. 1), which is also improved by
the addition of OO simulated data. Through the correlation,
an improvement in one of the two parameters then translates
into an improvement in the other as well.

VI. DISCUSSION

We performed a Bayesian analysis where we fit PbPb ex-
perimental data to a sophisticated theoretical model, where we
substantially reduced the statistical and emulator errors with
respect to Refs. [9,10]. This results in reduced uncertainties in
the posterior distributions for the varied parameters. By sam-
pling 20 random parameter sets from the resulting posterior
and performing high-statistics runs for each parameter set, we
subsequently were able to make precise pre- and postdictions
for both PbPb and OO collisions. Because the parameter sets
with which these results were computed are randomly drawn,
we are able to assign systematic errors to the results which
arise because of the uncertainty in the parameters, whereby
this also fully incorporates correlations between the parame-
ters.

An interesting result from these high-statistics runs is a
possible resolution of the ultracentral v2 to v3 puzzle. It turns
out that, to correctly describe v2{2} and v3{2} for ultracentral
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PbPb collisions, the magnitude of initial-state per-nucleon
fluctuations in entropy deposition σfluct is important. Given
that mean transverse momentum fluctuations δpT /〈pT 〉 are
sensitive to σfluct (see Fig. 1), including δpT /〈pT 〉 in the set
of observables used to fit the parameters improves the results
for ultracentral v2{2} and v3{2} as well.

We then used the 20 randomly chosen parameter sets
as simulated data to test what the effect of adding future
OO data at

√
sNN = 7 TeV would be on the precision of

Bayesian analyses. This showed that such an addition would
most often yield an improvement in the precision of the
extracted parameters, albeit most often a moderate improve-
ment and unfortunately no significant improvement for first-
or second-order hydrodynamic transport coefficients. One
should, however, keep in mind that this is true working under
the assumption that OO can be described by the same hydro-
dynamical model that also describes PbPb. This assumption
can be violated by several causes related to the smaller size of
the OO system, such as the need to simulate hard processes
in addition to hydrodynamics, or that OO should be sim-
ulated using (3 + 1)D hydrodynamics instead of (2 + 1)D.
The presented precision of our OO predictions, following
from simply assuming the TRAJECTUM model, will hence be
an extremely interesting test. Even if it may not improve
the precision of the parameters much we like to point out
that the parameters are already rather precise and corrobora-
tion of the model using OO collisions will be a significant
achievement which increases the trust in the precision of the
model.

It was mentioned above that one reason one might expect
that OO yields constraints orthogonal to those obtained from
PbPb is that OO is a much smaller system. A valid point one
might raise is why we are then comparing PbPb and OO to
PbPb alone, and not PbPb, pPb, and OO to PbPb and pPb.
After all, pPb is also a small system, so one might expect that
any constraints obtained from OO can also be obtained from
pPb. In Refs. [7,9,10], the analysis also included pPb data, and
there were actually extra constraints obtained by including
pPb in the analysis. In this work, however, with the substantial
improvement in precision of the emulator, this is no longer the
case, and inclusion of pPb data actually makes the obtained
fits less precise. Most likely the reason is the difficulty fitting
the complete pPb spectrum to high precision, which then
pushes the MCMC algorithm to regions in parameter space
where the emulator uncertainty is largest. According to Bayes
theorem, this is indeed the region that is then most likely
(since other regions would be ruled out). Nevertheless, from
a modeling point of view this may not be wanted and the
next necessary step would be to either improve this emulator
artifact, or to improve the model itself (likely along the lines
of Ref. [72]). Both options would be profoundly interesting,
but are left for future work. This same issue could mean
that the predictions for, e.g., the OO spectra from Fig. 12
are less reliable than they seem, although we stress that the
OO system is significantly larger than pPb and especially the
centrality dependence is more robust to model than a pPb
collision [73].

Arguably the most interesting future avenue of research
in the context of this work is the future measurements of

the OO observables we predict. RHIC performed OO col-
lisions at

√
sNN = 0.2 TeV in May 2021 and LHC has

a special OO run planned in 2024 (likely at
√

sNN =
6.8 TeV). It will be interesting to see how well our pre-
dictions compare with experimental data because this will
shed light on how well small systems can be described using
hydrodynamics.

In the context of the global analysis used in this work
it is useful to comment on the strengths and weaknesses
of such Bayesian analyses. Given the many unknowns in
the current standard model of heavy ion collisions [3]
and their complicated interplay in describing a wealth of
experimental data, the advantage of a global analysis is
quite straightforward. In particular, the emulator allows a
direct modeling of the full nonlinear interplay on all ob-
servables and the Bayes formula can assess the parameter
space that gives the best fit to the data. Weaknesses are
also relatively clear. When using a model that is not en-
tirely adequate to describe the complete relevant physics,
the Bayes formula will push the posterior parameter range
into regions that give the “best fit” but do not necessarily
reflect the underlying physics. To avoid this situation we
need a sufficiently versatile model that can realistically model
the observables we wish to describe, and this can require
many parameters, which degrades the predictiveness of the
model.

Another potential weakness is the fact that the results of
a global analysis depends on the scope of the data used. An
example we saw here is that one of the first such analy-
sis (Ref. [6]) did not use pT fluctuations and consequently
does not describe the ultracentral v2{2} well (see Sec. IV).
A newer example is Ref. [74], where it was found that the
nucleus-nucleus cross section as an observable has profound
consequences for the nucleon size. As such it is important in
global analyses to include a wide variety of observables and
collision systems and study the effects of them on the analysis.
The current work does not, for instance, include data taken
at RHIC (see, however, Refs. [12,48]), which is an important
open avenue for future inclusion.

There are also several ways in which we can further
improve our model. One is the lowering of our theoretical
uncertainties. From Fig. 2, it is clear that, while in the present
analysis most observables have statistical and emulator un-
certainties small enough that the experimental uncertainty
dominates, this is not true for all observables, especially
for the anisotropic flow observables. Since quite a few of
our parameters influence anisotropic flow (see Fig. 1), it is
reasonable to assume that improved statistical and emulator
uncertainty in anisotropic flow observables would result in
improved posterior estimates for these parameters as well.

Another improvement that will be done in future work is
a more general initial stage. The free streaming picture of
the initial stage used in this work assumes zero coupling,
whereas models assuming strong coupling, such as AdS/CFT,
yield a qualitatively different plasma just after the initial stage.
Also, while the TRENTo formula interpolates between a wide
range of model behavior, there are certain model features
which it cannot describe, such as binary scaling. In future
work we will attempt to address both these issues. Finally,
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it could be interesting to add different particlization methods,
as was explored in Refs. [11,12], as only including a single
particlization method might bias the results.
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