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We investigate the sensitivity of the � directed flow to the � potential in midcentral Au + Au collisions
at

√
sNN ≈ 3.0–30 GeV. The � potential obtained from the chiral effective field theory (χEFT) is used in

a microscopic transport model, a vector version of relativistic quantum molecular dynamics. We find that
the density-dependent � potentials, obtained from the χEFT assuming weak momentum dependence of the
potential, reproduce the rapidity and the beam-energy dependence of the � directed flow measured by the
STAR collaboration in the beam energy scan program. Although the � directed flow is insensitive to the density
dependence of the potential, it is susceptible to the momentum dependence. We also show that a hydrodynamics
picture based on the blast-wave model predicts a similarity of the proton, �, and � directed flows, but the
directed flow of � baryons slightly deviates from other baryons. We also show that the quark coalescence predicts
different rapidity dependence of the directed flows for hyperons. These investigations suggest that measurements
of a wide range of the rapidity dependence of the directed flow of hyperons may provide important information
about the properties of hot and dense matter created in high-energy heavy-ion collisions.

DOI: 10.1103/PhysRevC.106.044902

I. INTRODUCTION

The determination of the nuclear equations of state (EoS) is
one of the most important problems in various fields, in which
the properties of strongly interacting quantum chromodynam-
ics (QCD) matter plays an essential role, such as the dynamics
of heavy-ion collisions [1] or the structure and evolution of
neutron stars [2].

Anisotropic collective flows generated in the high-energy
heavy-ion collision [3] have been extensively investigated to
extract the EoS of the dense QCD matter in a wide range
of the incident energies. The first Fourier coefficient of the
distribution of the azimuth of the hadron momentum (φ)
relative to the reaction plane (�) is called the directed flow,
v1 = 〈cos(φ − �)〉. It is predicted that the slope dv1/dy with
respect to the rapidity (y) near midrapidity may show evi-
dence of a first-order phase transition due to softening of the
EoS in the vicinity of the transition [4–7]. The beam-energy
dependence of the slopes for identified hadrons were mea-
sured by the STAR beam energy scan (BES) programs [8–12],
where the transition of the positive slope to the negative slope
was discovered for both protons and �s at

√
sNN ≈ 10 GeV.

However, theoretical models with a first-order phase transition
predict this transition point at much lower beam energies
[13–16]. A remarkable finding is that almost identical directed
flows are observed for protons and �s. Many questions arise
from the above energy dependence of the directed-flow slope
of protons and �s: Is this an indication of the transition from
hadronic matter to quark matter? Is this also an indication of
the formation of thermalized matter? Can we extract informa-
tion about the � potential in a dense matter?

The proton directed flow in the collision energy range
2 GeV <

√
sNN < 20 GeV was shown to be explained by a

transport model [17] with a purely hadronic EoS. A repulsive
EoS contributes positively to the slope in the early stage
(compression stage) of the collision, while the tilted ellipsoid
of the matter geometry contributes negatively in the late stage
(expansion stage). The sum of these contributions causes the
dv1/dy sign change at

√
sNN � 10 GeV [8–10] because the

compression stages become shorter and the expansion stages
get longer as the beam energy increases.The transition point
is sensitive to the interaction. When only the Boltzmann-type
two-body collisions are included, which corresponds to the
EoS of a free hadronic resonance gas, interactions at the
expansion stage are rather weak, and the transition point shifts
to higher beam energies [14]. However, when mean-field in-
teractions are added to simulate interacting hadronic matter,
transition point shifts to lower beam energies [17].

Thus, we expect that the �directed flow is also sensi-
tive to the � potential in highly dense matter, and the �

single-particle potential U� may be constrained by the � flow.
Specifically, U� from the chiral effective field theory (χEFT)
is promising [18]. This is complementary to the precision
hypernuclear spectroscopy. The χEFT predicts a very strong
repulsion at high densities by the �NN three-body interac-
tions [18]. It is argued that this strong repulsive potential may
solve the hyperon puzzle of the neutron stars, which is one
of the primary problems in the neutron-star physics [19]. �

baryons are expected to appear in the neutron-star matter at
about two to four times the normal nuclear matter density
when only the two-body interactions based on hypernuclear
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data are used. However, hyperons, which soften the EoS, make
it difficult to explain the existence of two-solar-mass neutron
stars. One of the possibilities to avoid the hyperon puzzle is to
suppress � in dense nuclear matter by, for example a strong
repulsive potential for � in dense nuclear matter.

In this work, we will investigate the effects of the � po-
tential on the directed flow by using a microscopic transport
model. One of our purposes is to examine whether the strong
repulsive potential predicted by χEFT can explain the data
of the � directed flow from the STAR collaboration. We are
also interested in whether the directed-flow data can constrain
U� at high densities. A blast-wave analysis with rapidity-
dependent flows on hyperons will be performed as well.

To extract information about the properties of hot and
dense nuclear matter from heavy-ion collisions, we have
to compare theoretical predictions with experimental data.
Nonequilibrium transport theoretical approaches such as
Boltzmann-Uhling-Uhlenbeck [20–24] or quantum molecular
dynamics (QMD) [25–29] type models have been success-
fully used to understand the data. The microscopic transport
models are suitable to extract the EoS from heavy-ion data
[1,7,30–34]. The microscopic transport models combine the
mean-field interaction and the Boltzmann-type collision term
at a semiclassical level. A recent compilation of microscopic
transport models can be found in Ref. [35]. In this paper, we
study the directed flow of � by using the transport model,
a Lorentz-vector version of relativistic quantum molecular
dynamics (RQMDv) [17] in the JAM event generator, and
verify the � potential at high densities. This will be a first
verification of the strong repulsion in the � potential using
heavy-ion data.

This paper is organized as follows. In Sec. II, we introduce
the � potential to be used in the transport model. Section III
briefly summarizes the microscopic transport model RQMDv.
In Sec. V, we compare the beam-energy dependence as well as
the rapidity dependence of the directed flow of protons and �s
with the STAR data. We also discuss the collision dynamics
of how the � directed flow is generated, which is slightly
different from the proton case. As a complementary study,
we present results in a hydrodynamic picture by using the
blast-wave model [36] in Sec. VI. The conclusion and outlook
are given in Sec. VII.

II. � POTENTIAL FROM CHIRAL EFFECTIVE
FIELD THEORY

The � potential at finite density has been studied ex-
tensively in nonrelativistic [37] and relativistic [38] models.
These theories describe the � separation energies of vari-
ous hypernuclei and have been applied to the EoS of the
neutron-star matter. For example, by using the spin-flavor
SU(6) symmetry for the vector coupling, gω�/gωN � 2/3,
one can fit the separation energy data of various hypernuclei
by tuning the scalar coupling. Then one expects that dense
matter EoS with hyperons can be predicted. These simple
treatments of hyperon potentials are found to fail in sustain-
ing massive neutron stars [19], which is now known as the
hyperon puzzle. To solve the hyperon puzzle, many ideas have
been proposed [39], but most of these prescriptions contain

FIG. 1. Normalized baryon density dependence of the single-
particle potentials for �. GKW2 presents the results of the �

single-particle potential with two-body interactions, while GKW3
is obtained by the inclusion of three-body interactions. Dash-
dotted, bold-dashed, and bold-dotted lines correspond to the
momentum-dependent potentials of GKW2+MD1, GKW3+MD2,
and GKW3+MD3, respectively. The dotted line corresponds to the
nucleon single-particle potential multiplied by two-thirds motivated
by the light quark counting.

additional parameters related to the three-baryon interactions
or the density dependence of the interactions, which have not
been constrained by the existing data.

One way to systematically describe many-body interac-
tions is to use the χEFT [40]. The χEFT is based on the chiral
symmetry of massless QCD, and finite quark mass and finite
momentum effects can be introduced systematically by intro-
ducing higher-order diagrams. The χEFT with hyperons in
the leading order (LO) and next-to-leading order (NLO) dia-
grams has been given [41], while the three-baryon interactions
appear in the next-to-next-to-leading order (NNLO) diagrams
for the octet baryons. A part of the NNLO diagrams relevant
to the �NN three-baryon force is included in the calculation
of the � potential in the nuclear matter [42]. With decuplet
baryons, by contrast, a part of three-baryon diagrams can be
evaluated with the low-energy constants (LECs) determined
in the LO and NLO diagrams [43].

As shown in Fig. 1, the � potential in nuclear matter
at the zero momentum of � is computed in the frame-
work of Brückner-Hartree-Fock theory by using the χEFT
in Ref. [18], where the diagrams relevant to the three-body
forces are assumed to be saturated by the decuplet baryon
propagation [43]. The ultraviolet momentum cutoff in the
χEFT was chosen to be λ = 500 MeV/c in [18]. We have
fitted the density dependence of the single-particle � potential
U� from χEFT by using the Fermi momentum expansion of
the potential [44]

Uρ�(ρ) = au + bu4/3 + cu5/3, (1)

where u = ρ/ρ0 is the nucleon density normalized by the
saturation density ρ0 = 0.168 fm−3. The total � potential is
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given by

V�N =
∫

dr
∫

dρ�(r)Uρ�(ρ(r)) =
∫

dr ρ�(r)Uρ�(ρ(r)).

(2)

Thus, single particle potential defined by the derivative with
respect to the phase-space distribution function f (x, p), U ≡
δV/δ f for �, is Uρ� itself. The �� interaction is not included
in the present work, since its effect is small for the directed
flow in the colliding-energy range under consideration. The
nucleon potential is taken from Ref. [17].

In the calculation of collective flows, the momentum de-
pendence of the potential is known to be important. We
introduce the Lorentz-vector–type momentum-dependent po-
tential [45] for �

U μ
m�(ρ, p) = C

ρ0

∫
d3 p′ p∗′μ

p∗0′
f (x, p′)

1 + [(p − p′)/μ]2
, (3)

where p∗μ = pμ − U μ and p∗0 =
√

m2
N + p∗2 from the

mass-shell constraint. Some expressions for the momentum-
dependent vector potential U μ in the cold nuclear matter
are summarized in the Appendix. We note that two-range
Lorentzian-type momentum-dependent potential does not
change the accuracy of the fitting. The potential parameters
a + b + c, C, and μ are fixed by fitting the optical potential
Uopt to the momentum dependence of the � single-particle
potential [42]. The optical potential Uopt is defined by the
difference of the single-particle energy and the kinetic energy
[see Eq. (A7) in the Appendix]. The parameters a, b, and c in
the density-dependent part of the potential are then obtained
under the constraint of a + b + c, which is already determined
by the momentum-dependent part of the potential. The po-
tential in Ref. [42] is obtained by the decuplet saturation, but
incorporates fewer diagrams than Ref. [18].

We consider three types of momentum dependence. MD1
and MD2 momentum-dependent potentials are obtained by

FIG. 2. Momentum dependence of the � optical potentials at the
normal nuclear density. Dash-dotted, dashed, solid, and dotted lines
correspond to MD1, MD2, MD3, and two-thirds of nucleon potential
parametrizations, respectively.

fitting the χEFT result of Ref. [42] up to the momentum of
2.5 fm−1 � λ (cutoff) at the normal nuclear density assuming
the range parameter μ = 3.23 fm−1. This range parameter is
motivated by the nucleon potential in Ref. [17]. To construct
a weaker momentum-dependent potential, MD3 momentum-
dependent potential is obtained by solving the system of
equations for C, μ, and a + b + c:

Uopt (ρ0, p = 0 fm−1) = −30 MeV, (4)

Uopt (ρ0, p = 1 fm−1) = −23.4 MeV, (5)

Uopt (ρ0, p = 1.7 GeV) = 0 MeV. (6)

Equation (5) is the condition to reproduce the results of
Ref. [42] up to the momentum of 1 fm−1, which is around 40%
of the cutoff. The results of fitting parameters are summa-
rized in Table I. The Taylor coefficients for U� = Uρ� + U 0

m�

around the normal nuclear density,

J� = U�(u = 1), (7)

L� = 3ρ
∂U�

∂ρ

∣∣∣
ρ0

, (8)

K� = 9ρ2 ∂2U�

∂ρ2

∣∣∣
ρ0

, (9)

are also summarized in Table I.
We show the density dependence of the � single-particle

potential in Fig. 1. We show the results for the cases where
only the two-body interaction is included (GKW2) and the
three-body interactions are also included (GKW3). GKW3
predicts much stronger density dependence than GKW2.
Since the cutoff of 500 MeV/c is adopted and the Brückner-
Hartree-Fock calculation using the χEFT interaction is found
to be unstable at ρ/ρ0 � 3.5 in [18], we have fitted to the
upper and lower bound curves in the range ρ/ρ0 � 3, and the
average of these results is shown as fit results. We note that
the GKW3 potential suppresses the appearance of � hyperons
in neutron matters, and thus, one may avoid the softening
of the equation of state. As a comparison, two-thirds of the
nucleon single-particle potential is plotted in Fig. 1, which is
often assumed in the transport models as a simple recipe for
implementing � potential.

Figure 2 shows the optical potentials with the MD1, MD2,
and MD3 parameter sets by the dash-dotted, dashed, and
solid lines, respectively. For comparison, two-thirds of the
nucleon optical potential (MS2 × 2/3) is plotted by the dot-
ted line, which is small compared to the prediction by the
χEFT theory.

In the calculation of the heavy-ion collisions, we assume
that all hyperons (�(∗), 
(∗), �(∗),�) are assumed to feel the
same potential as �, and all nonstrange baryons (N (∗),�(∗))
are assumed to feel the same potential as N . Then, the nucleon
density (ρ) in Eqs. (1), (2), and (3) is replaced with the net
nonstrange baryon density, and the � density (ρ�) is replaced
with the net-hyperon density. Different potentials for different
hyperon species will be discussed elsewhere.
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TABLE I. Parameter set of the single-particle � potential U� in Eqs. (1) and (3) and the Taylor coefficients for U� around u = 1 in Eqs. (7),
(8), and (9).

Model a (MeV) b (MeV) c (MeV) C (MeV) μ (fm−1) J� (MeV) L� (MeV) K� (MeV)

GKW2 (2-body) −154.9 142.4 −21.4 − − −33.83 −1.825 356.0
GKW3 (2+3-body) −80.1 0.16 50.4 − − −29.55 12.34 504.8
GKW2+MD1 3.54 58.99 1.911 −104.3 3.23 −30.12 −10.18 334.3
GKW3+MD2 58.8 −42.60 59.71 −116.2 3.23 −29.41 7.916 515.0
GKW3+MD3 −1.072 −69.58 71.58 −54.993 1.124 −30.00 8.740 517.2

III. RELATIVISTIC QUANTUM MOLECULAR DYNAMICS

We implement the above-mentioned potentials in the form
of Lorentz-vector potential in the relativistic quantum molecu-
lar dynamics (RQMDv) approach developed in Ref. [17]. The
RQMDv equations of motion for the ith particle having the
position qμ

i and the momentum pμ
i [46,47] is given by

dqμ
i

dt
= v

∗μ
i −

∑
j

v∗ν
j

∂Vjν

∂ piμ
,

d pμ
i

dt
=

∑
j

v∗ν
j

∂Vjν

∂qiμ
, (10)

where v
∗μ
i = p∗μ

i /p∗0
i . The density-dependent part of the vec-

tor potential is defined by using the baryon current [48,49]

V μ
ρi = Bi

Vρi(ρBi )

ρBi
Jμ

i , (11)

where Vρi is the density-dependent (Skyrme-type) potential
for baryons. In this work, we use the MS2 EoS in Ref. [17]
for nonstrange baryons. For � and other hyperons, we use
Uρ� in Eq. (1). The invariant baryon density ρBi = √

Jμ
i Jiμ is

obtained from the baryon current Jμ
i :

Jμ
i =

∑
j 
=i

B j

pμ
j

p0
j

ρi j, (12)

where the sum runs over all the nonstrange baryons, Bj is the
baryon number of the jth particle, and ρi j is the so-called
interaction density (i.e., the overlap of density with another
hadron wave packet)

ρi j = γ j

(4πL)3/2
exp

(
q2

Ri j/4L
)
, (13)

where γ j = p0
j/mj , and q2

Ri j is the squared distance in the rest
frame of the particles j,

q2
R,i j = (qi − q j )

2 − [(qi − q j ) · u j]
2, u j = p j/mj . (14)

This is used in the relativistic Landau-Vlasov model
[50], in which Gaussian-shaped test particles are used to
solve the relativistic Boltzmann-Vlasov equation. We use
the following vector-type momentum-dependent one-particle
potential for �:

V μ
mi(pR,i j ) = C

ρ0

∑
j 
=i

pμ
j

p0
j

ρi j

1 − [pR,i j/μ]2
(15)

with the parameters determined in the previous section. The
two-body relative momentum squared, p2

R,i j , in the rest frame
of the particle j is used for the argument of the momentum-
dependent potential.

IV. NUMERICAL IMPLEMENTATION

We use the JAM event generator to simulate high-energy
heavy-ion collisions. Particle productions are modeled by the
excitation of hadronic resonances at low energies and by string
formation at higher energies as used in the standard micro-
scopic transport models [24,27,51–54]. JAM1 [53] has been
rewritten in the C++ language as JAM2.

The vector potentials for � described above have been
implemented in the JAM2.1 Monte Carlo event generator [55].
Other updates from the version JAM2.0 [17] are as follows:
1) PYTHIA 8 [56] library is updated to version 8.307.2) Poten-
tials for leading baryons are included during their formation
time with the reduced factor: 2/3 for baryons with original
diquarks and 1/3 for original quarks. 3) Collision time and or-
dering time has been modified following the work in Ref. [57].

V. RESULTS

We compute the directed flow v1 = 〈cos φ〉, where φ is the
azimuthal angle measured from the reaction plane, and the
angle brackets indicate an average over particles and events.
The STAR data [10] in midcentral Au + Au collisions at√

sNN = 3–30 GeV from the BES program are compared with
the result from the RQMDv mode in JAM2.1. We chose
the impact parameter 4.6 < b < 9.4 fm for the midcentral
Au+Au collisions. Gaussian width L = 2.0 fm2 in Eq. (13)
is used in the calculations.

First, we compare the directed flow v1 of protons and �

assuming that the � potential is two-thirds of the nucleon
potential based on the light quark contents of nucleon and
� [58]. In Fig. 3, we show the directed flow of protons and
� in midcentral Au+Au collisions at

√
sNN = 3.0–19.6 GeV.

To see the effects of potentials, we plot the cascade model
predictions by dotted lines, in which only collision terms are
included. It is clearly seen that the cascade model under-
estimates the proton directed flow at lower beam energies√

sNN < 11.5 GeV and overestimates it at higher beam en-
ergies

√
sNN > 11.5 GeV. In contrast, the � flow is always

underestimated in the cascade model indicating the lack of
pressure arising only from the two-body collisions. Inclusion
of the potential interaction significantly improves the descrip-
tion of the directed flow for both protons and �s, and a

044902-4



DIRECTED FLOW OF � IN HIGH-ENERGY … PHYSICAL REVIEW C 106, 044902 (2022)

FIG. 3. RQMDv calculations of directed flows of protons (left
panels) and � (right panels) in midcentral Au + Au collisions at√

sNN = 3.0–19.6 GeV are compared with the STAR data [10–12].
The dotted lines show the results from the Cascade mode (without
potential effects), while solid lines show the results from the RQMDv
mode with the MS2 EoS.

good agreement with the STAR data [10] is obtained, where
we use the soft momentum-dependent potential (MS2) from
Ref. [17]. As demonstrated in Ref. [17], the transition from a
negative to a positive slope of the proton directed flow is un-
derstood by an interplay between the positive flow generated
during the compression stages and the negative flow generated
dominantly in the expansion stages due to the tilted expansion.
When collision energy is low, positive flow wins because of
a longer compression time, while with increasing collision
energy compression stage becomes shorter, and the expansion
stage becomes longer, which results in the net negative flow.
The turning point from a positive to negative slope strongly
depends on the strength of the interaction.

In the standard hadronic transport model, leading hadrons
within a formation time can scatter under reduced cross

FIG. 4. Rapidity dependence of the directed flows of � in mid-
central Au + Au collisions at

√
sNN = 4.5 GeV is compared with

the STAR data [11]. The dotted lines show the results from the
potential GKW2, while the solid lines show the results from GKW3.
The dashed line corresponds to the results of the MS2 nucleon
potential with the factor of 2/3, which shows similar results from the
GKW3+MD1 potential (dash-dotted line). The GKW3+MD2 result
is shown in the bold-dotted line.

sections to account for the correct Glauber-type multiple
scattering [27,51]. We apply a similar idea to the potential
[59]: we introduce potentials for the leading baryons within
a formation time with reduced strength. The leading-baryon
potential predicts a more positive directed flow during the
compression stages at

√
sNN > 5 GeV, where the string for-

mation is dominant over the resonance production for the
particle productions. The potential of the leading baryons
improves the description of the directed flow around

√
sNN =

7.7 GeV compared to the previous study because the string
formation is dominated, and the colliding energy

√
sNN =

7.7 GeV is still in the baryon stopping region.
The STAR data show that the turning point of the proton

directed flow, as well as its shape, are the same as that of �

flow, which is reproduced in the calculations. The identical
nature of the directed flow of baryons including strangeness
is a remarkable finding. If � directed flow may reveal to be
similar to the proton directed flow, it may be evidence of
the creation of a deconfined state. We note that a multiphase
transport (AMPT) model predicts that the � directed flow at
midrapidity is the same as the � flow [60]. A prediction for the
� directed flow within the RQMDv approach will be reported
elsewhere.

In Fig. 4, we compare the � directed flow at 4.5 GeV for
different � potentials parametrized in the previous section.
First, we observe that momentum-independent potentials,
both GKW2 (dotted line) and GKW3 (solid line), agree with
the experimental data. Thus, the � directed flow is not very
sensitive to the density dependence of the potential within
the density dependence given in Ref. [18]. We omitted the
results of GKW2+MD1 because it gives give almost the
same results as GKW3+MD2. In contrast, � directed flow
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FIG. 5. Rapidity dependence of the directed flow of � in midcen-
tral Au + Au collisions at

√
sNN = 3.0–19.6 GeV from RQMDv are

compared with the STAR data [10–12]. The solid, dashed, and dotted
lines presents the result from MS2+GKW3, MS2+GKW3+MD1,
and MS2+GWK3+MD2 EoS, respectively.

is sensitive to the momentum dependence of the potential.
A strongly momentum-dependent potential GKW3 + MD2
shows a smaller � directed flow, while a weakly momentum-
dependent potential GKW + MD3 predicts the same directed
flow as the one in which 2/3 of nucleon potential is as-
sumed for �. We have checked that these features hold at√

sNN = 11.5 GeV. We note that the AMPT-hadron cascade
(HC) model can reproduce the � directed flow [61] with
the momentum-independent Skyrme potential. Currently, we
assume that all hyperons feel the same potential. As a future
work for a detailed study, it would be important to use differ-
ent hyperon potentials [62] for discussing the 
 or � directed
flows.

In Fig. 5, the directed flows of � in midcentral Au + Au
collisions at

√
sNN = 3.0–19.6 GeV are compared with the

STAR data for different scenarios of the � potentials. The
directed flow from the momentum-independent potential for
� (GWK3) and the weakly momentum-dependent potential
(MD3) show large v1, especially at backward and forward
rapidities, while the strongly momentum-dependent potential
(MD2) shows small v1. Thus, the momentum dependence of
the � potential is sensitive to the directed flow for a wide
range of incident energy. Our calculations support the weak

FIG. 6. Time evolution of the sign-weighted integrated directed
flow v∗

1 for nonstrange baryons (red) and hyperons (blue) at midra-
pidity |y| < 0.5 (dotted) and forward-rapidity 0.5 < |y| < 1.5 in
midcentral Au + Au collision at 7.7 GeV. The upper panel shows the
results from the MS2+GKW3 EoS, while the lower panel is obtained
by using the MS2+GKW3+MD2 EoS.

momentum dependence for the � potential. The momentum
dependence of the � potential deserves further investigation.
A measurement of the � directed flow in the large rapidity
region at higher beam energies

√
sNN > 5 GeV further offers

constraints on the momentum dependence of the � potentials.
To understand the collision dynamics for the � directed

flow, we plot in Fig. 6, the time evolution of the sign-weighted
integrated directed flow

v∗
1 =

∫ ymax

ymin

dy v1(y)sign(y) (16)

of nonstrange baryons and hyperons for both midrapid-
ity |y| < 0.5 and forward-backward rapidity 0.5 < |y| < 1.5
in midcentral Au + Au collisions at 7.7 GeV. The up-
per and lower panels show results from the GKW3 and
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FIG. 7. The slopes of directed flow at midrapidity for protons
(upper panel) and � (lower panel) in midcentral Au + Au col-
lisions at

√
sNN = 3.0 − 27.0 GeV are compared with the STAR

data [10–12]. Cascade mode and RQMDv with MS2 EoS re-
sults are expressed by squares and triangles, respectively. GKW3,
GKW3+MD1, and GKW2+MD2 results for the slope of directed
flow for � are represented by circles, open squares, and diamonds,
respectively.

GKW3+MD2 potentials, respectively. At midrapidity, both
nonstrange baryons and hyperons show a similar behavior;
a positive directed flow is generated during the compression
stages and then decreases due to the negative directed flow in
the tilted expansion stages. In contrast, hyperon directed flow
at forward-backward rapidity show a different behavior than
the nonstrange baryons: the directed flow of forward hyperons
decreases more than the nonstrange baryons. This is because
most of the hyperons are produced in the hot region of matter,
while many nucleons exist close to the spectator region where
the effect of tilted expansion is weaker than the hot region.

Figure 7 presents the beam-energy dependence of the slope
of the directed flow dv1/dy at midrapidity for protons (upper
panel) and �s (lower panel) together with the STAR data
[10–12]. The slope F is obtained by fitting the rapidity y de-

pendence of the directed flow by v1(y) = Fy + F3y3 over the
region |y| < 0.8. Cascade mode (no potential) predicts a posi-
tive slope for protons at

√
sNN < 30 GeV as is consistent with

other transport model calculations [14]. The inclusion of the
potential interaction significantly generates a strong positive
slope at lower beam energies, while it generates a large nega-
tive slope at higher beam energies. The slope of the � directed
flow becomes negative even for Cascade mode at

√
sNN >

10 GeV. This is because �s scatter less than nucleons due to
the smaller cross sections. We see that the potential effect on
the � flow is significant for lower beam energies. The beam-
energy dependence of the slope of the � flow is well described
by the RQMDv model with the momentum-independent
GKW potential or weakly momentum-dependent potential
MD3 at

√
sNN = 3.0–27.0 GeV. RQMDv with momentum-

dependent potential predicts less slope at 3.0 GeV. As it has
been demonstrated in Ref. [63], the Gaussian width controls
the interaction range of potentials in the QMD approach,
where smaller width enhances the sideward flow 〈px〉. We
have checked that the directed flow is enhanced with the width
of L = 1.0 fm2. However, this value does not reproduce the di-
rected flow at the other beam energies unless other parameters
are not tuned at the same time. It is left for future study to
understand the directed flow of � at 3 GeV.

VI. RAPIDITY DEPENDENCE OF FLOW IN
NON-BOOST-INVARIANT BLAST-WAVE MODEL

The blast-wave model has been used to analyze the ef-
fect of transverse expansion on the observables such as the
transverse momentum spectra and the elliptic flow. In this
section, we investigate the implication of the similarity
of the � flow with the proton flow discovered by the
STAR collaboration within a hydrodynamic scenario by us-
ing the blast-wave model. The blast-wave analysis provides
a complementary study to the nonequilibrium microscopic
transport approach RQMDv. It should be emphasized that
the blast-wave model provides a simple fitting of spectra and
anisotropic flows, but does not provide detailed information
about the dynamical aspects of nuclear collisions, while the
microscopic transport model of the RQMD model does.

A. Blast-wave model

The non-boost-invariant formula for the blast-wave model
can be found in Ref. [36]. It is shown that both transverse
momentum and rapidity distributions in Au + Au collisions at
the BNL Alternating Gradient Synchrotron energies and Pb +
Pb collisions at the CERN Super Proton Synchrotron energies
are well fitted by the model [64]. Applications to the elliptic
flow at midrapidity can be found in Refs. [65–67]. A simple
formula for the directed flow was proposed in Ref. [68]. We
apply the non-boost-invariant blast-wave model of Ref. [36]
to compute the rapidity dependence of the anisotropic flows,
which may be obtained as

vn(y) = Vn(y)

V0(y)
(17)
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with

Vn(y) =
∫ 2π

0
dφ cos(nφ)

∫ ηmax

−ηmax

dη

∫ R(η)

0
rdr

×
∫

m⊥dm⊥α exp

(
μ − α cosh ρ

T

)
In(β ), (18)

where α = m⊥ cosh(y − η), β = p⊥ sinh(ρ)/T , η =
tanh−1(z/t ) is the space-time rapidity, and ρ = tanh−1 v⊥
is related to the collective transverse fluid velocity v⊥. The
chemical potential for the baryon with the baryon number
B and the strangeness S is fixed by μ = BμB + SμS . The
η-dependence of the radius is taken to be

R(η) = R0

√
1 − η2

η2
max

. (19)

We make an ansatz for the shape of the directed flow neglect-
ing the higher-order flows 1

ρ(η, φ, r) = ρ0(η, r)[1 + ρ1(η) cos φ], (20)

where ρ0 controls the transverse radial flow profile, and its
dependence on the radius r and space-time rapidity η is
assumed to be

ρ0(η, r) = ρ0

(
r

R0

)√
1 − η2

η2
max

. (21)

We assume the following shape for the directed flow
coefficient:

ρ1(η) = aη + bη3 + cη5. (22)

Figure 8 shows the blast-wave fits of the rapidity depen-
dence of the directed flows for protons, �s, �s, and �s
together with the STAR data for 3 GeV (upper panel) and
11.5 GeV (lower panel). We here considered common param-
eters of the profile and the flow for different hadrons assuming
that the hadrons fully thermalize to have a common freeze-
out temperature and obey a single collective flow. For more
realistic calculations, we could use different kinetic freeze-out
temperatures for the multistrange hadrons because they are
likely to decouple from the system earlier than nonstrange
baryons [69,70].

We fixed the parameters as ηmax = 1.1, μB = 0.7 GeV,
μS = 0.06 GeV, T = 0.08 GeV, ρ0 = 0.7, a = 0.8, b = 1.0,
and c = 5.0 for 3 GeV, and ηmax = 1.645, T = 0.12 GeV,
ρ0 = 0.8, μB = 0.2 GeV, μS = 0.06 GeV, a = −0.05, b =
0.05, and c = 0.1 for 11.5 GeV. It is seen that the blast-wave
model predicts that the hyperon directed flows show similar
rapidity dependence except at a very large rapidity. We see
that the rapidity dependence of the � baryon reveals the
mass effect slightly. For a more detailed analysis, we need
to include the contributions from hadron resonances, which is
left for future work.

1For example, the second-order flow can be added ρ2(η) cos 2φ

with ρ2(η) = a2 + b2η
2 + c2η

4 to investigate the rapidity depen-
dence of the elliptic flow.

FIG. 8. Blast-wave model fit of the rapidity dependence of the
directed flows of protons (solid line) and hyperons, � (dotted),
� (dashed), and � (dash-dotted) in midcentral Au + Au collisions at√

sNN = 3.0 and 11.5 GeV to the STAR data [10,12].

B. Quark recombination

We now consider the directed flow in the quark recombina-
tion model within the blast-wave model. Within the δ-function
approximation (the limit of the zero-momentum spread of
quark momentum fractions) for the hadron wave function,
and neglecting higher order anisotropic flows, baryon directed
flows from quark recombination are given by [71–73]

vB
1 (y) = va

1 + vb
1 + vc

1 + 3va
1v

b
1v

c
1

1 + 2va
1v

b
1 + 2vb

1v
c
1 + 2vc

1v
a
1

, (23)

where va,b,c
1 are the directed flows of valence quarks. If va

1 =
vb

1 = vc
1 (≡ v

q
1 ) and v

q
1 � 1, we have a simple quark scaling

of the flow

vB
1 (y) = 3v

q
1 , (24)

where the quark flow v
q
1 is calculated using the quark momen-

tum being one-third of the baryon momentum: pq = pB/3.
In Fig. 9, we compare the rapidity dependence of the

directed flows of protons and various hyperons within
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FIG. 9. Quark recombination model fit of the rapidity depen-
dence of the directed flow for protons and hyperons. The parameters
of a = −0.13, b = 0.06, and c = 0.12 are used. The STAR data are
taken from [10].

the quark recombination model. We assumed the con-
stituent quark masses mu = 0.336 GeV, md = 0.34 GeV, and
ms = 0.486 GeV. The quark recombination predictions are
consistent with the STAR data for protons and �s at |y| < 1.0.
However, it predicts different rapidity dependence for differ-
ent hyperons. The mass effects on the rapidity dependence of
the flow come from the longitudinal momentum of quarks,
which is computed by one-third of the baryon momentum:

pq,z = (m⊥ sinh y)/3, where m⊥ =
√

m2
h + p2

h,⊥ denotes the

transverse mass of the hadron. Thus, for larger hadron mass
mh, we pick larger rapidity of quarks, which makes the dif-
ferent rapidity dependence of the directed flow of hyperons.
The data for � and � at larger rapidities may be useful
to distinguish the quark coalescence from other pictures by
seeing the rapidity dependence of quark degrees of freedom.

VII. SUMMARY

We have investigated the rapidity and beam-energy depen-
dence of the � directed flow from heavy-ion collisions at√

sNN = 3.0–30.0 GeV within a nonequilibrium microscopic
transport model JAM/RQMDv with different assumptions of
the � potentials. The RQMDv results agree with the STAR
data on the beam-energy and rapidity dependence of the �

directed flow. We compared the density- and momentum-
dependent � potentials calculated from χEFT with two- and
three-body interactions, which suppresses the appearance of
� hyperons in neutron stars. It is found that three-body in-
teractions do reproduce the � directed flow for a wide range
of beam energies as well as the rapidity dependence. This is
the first examination of the strong repulsion of the � potential
in nuclear matter from the heavy-ion data. However, at the
same time, we found that the directed flow of � can also
be reproduced by the � potential only with the two-body
interactions having a weaker repulsion at high densities. On
the other hand, the � directed flow is strongly affected by the

momentum dependence, especially in a large rapidity region.
Most of �s are produced in a dense part of the matter and
more susceptible to a tilted expansion of matter than the
nucleons. Thus, the STAR BES data do not strongly constrain
the density dependence of the � potential by the directed flow,
but the momentum dependence of the hyperon potential may
be fixed by the directed flow data.

As a complementary study, we analyze the directed flow by
the blast-wave model, which provides an insight into spectra
from a hydrodynamic picture. The blast-wave model predicts
similar rapidity dependence of the directed flow for protons,
�s, and �s, while � directed flow shows a slight deviation
from other hyperons due to a heavier mass. On the other hand,
quark coalescence predicts large mass effects at forward-
backward rapidities in the rapidity dependence of the hyperon
directed flows because of kinematical effects: the longitudinal
momenta of quarks become large for heavy baryons.

Systematic studies of directed as well as elliptic flows of
hyperons, �, �, and �, may provide further constraints for
the EoS of highly dense matter including strangeness.
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APPENDIX: MOMENTUM-DEPENDENT VECTOR
POTENTIAL IN THE NUCLEAR MATTER

We consider the vector-type density-dependent potential
U μ

ρ and momentum-dependent potential U μ
m in the nuclear

matter. For the momentum-dependent vector-potential imple-
mentation, the energy density of the system has the following
form [45]:

ε =
∫

d3 p

(
e∗ + U 0

m − 1

2

p∗
μ

e∗ U μ
m (p)

)
f (p) +

∫ ρ

0
U 0

ρ (ρ ′)dρ ′,

(A1)

where kinetic energy and momentum are defined as e∗ =√
m2

N + p∗2 and p∗μ = pμ − U μ = pμ − U μ
ρ − U μ

m . Let us
consider the terms∫

d3 p

e∗ p∗ · Um =
∫

d3 p

e∗
d3 p′

e∗′ p∗ · p∗′ f (x, p′)
1 + [(p − p′)/μ]2

(A2)
and

e∗ =
√

m2
N + (p − Uρ (ρ) − Um(p))2. (A3)

Because of the rotational invariance in the nuclear matter, the
spatial part of the density-dependent potential is zero, Uρ =
0, and the momentum-dependent part of the vector potential
must have the following form:

U μ
m = (U 0

m, Um) =
(

U 0
m,

p
p

Um(p)

)
, (A4)
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where p = |p|, and thus p∗ = p(1 − Um(p)/p). The energy
density for the nuclear matter at zero temperature is given by

ε =
∫ p f

0
d3 p

(
e∗+1

2
U 0

m − 1

2
(p − Um)Um

)
+

∫ ρ

0
U 0

ρ (ρ ′)dρ ′,

(A5)

where e∗ =
√

m∗2 + (p − Um)2. After performing the angular
integral,

Um(p) = 2π
μ2

p

∫ p f

0
d p′ p′ p∗′

e∗′

(
A

4pp′ ln

∣∣∣∣A + 2pp′

A − 2pp′

∣∣∣∣ − 1

)
,

(A6)

where A = p2 + p′2 + μ2. The optical potential is defined
as the difference between the single-particle energy and the

kinetic energy:

Uopt (ρ, p) = p0−
√

m2
N + p2 = e∗ + U 0

ρ + U 0
m−

√
m2

N + p2.

(A7)

The nonrelativistic limit is obtained by taking Um(p) = 0. To
avoid another integral, the pressure at zero temperature can
be calculated by using the energy density and single-particle
energy p0:

P = ρ2 ∂

∂ρ

(
ε

ρ

)
= ρ

∂ε

∂ρ
− ε = ρ p0(p f ) − ε. (A8)

The incompressibility is given by

K = 9ρ
∂ p0

∂ρ
= 9ρ

[
p∗

f

e∗
f

(
p f

3ρ
− ∂Um

∂ρ

)
+ ∂U 0

ρ

∂ρ
+ ∂U 0

m

∂ρ

]
.

(A9)

We obtained K numerically by using a finite difference with
the fourth-order accuracy.
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