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Whether quantum chromodynamics (QCD) exhibits a phase transition at finite temperature and density is an
open question. It is important for hydrodynamic modeling of heavy ion collisions and neutron-star mergers.
Lattice QCD simulations have definitively shown that the transition from hadrons to quarks and gluons is a
crossover when the baryon chemical potential is zero or small. We combine the parametric scaling equation of
state, usually associated with the three-dimensional Ising model, with a background equation of state based on a
smooth crossover from hadrons to quarks and gluons. Comparison to experimental data from the Beam Energy
Scan II at the Relativistic Heavy Ion Collider or in heavy ion experiments at other accelerators may allow the
critical exponents and amplitudes in the scaling equation of state to be determined for QCD if a critical point
exists.
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I. INTRODUCTION

The QCD equation of state has been a subject of much
interest and research ever since the discovery of asymptotic
freedom. At very high temperature T and baryon chemical
potential μ it is a weakly interacting gas of quarks and gluons,
while at low T and μ it is a strongly interacting gas of hadrons.
Lattice QCD calculations have shown that the transition from
one phase to the other at T ≈ 155 MeV and μ = 0 is smooth
on account of the fact that the up and down quark masses,
and consequently the pion mass, are not zero [1,2]. However,
numerous model calculations predict the existence of a line
of first-order phase transition terminating in a critical point at
Tc < 155 MeV [3,4]. Such a potential critical point is beyond
the reach of reliable lattice calculations at this time. Existing
approaches include a Taylor-series expansion in powers of
μ/T at μ = 0 [5] and analytic extrapolations from imaginary
to real chemical potentials [6]. The goal of this paper is to im-
prove upon the constructions of the equation of state reported
in Refs. [7,8] which is consistent with (i) lattice QCD for all
T and small μ, (ii) perturbative QCD for large T and/or large
μ, and (iii) a critical point with critical exponents and ampli-
tude ratios from the same universality class as the liquid–gas
phase transition and the three-dimensional (3D) Ising model.
Parameters in this construction can be adjusted to best fit the
experimental data taken during the Beam Energy Scan II at
the Relativistic Heavy Ion Collider (RHIC) or at other heavy
ion accelerators.

The construction introduced here is an improvement over
those proposed in Refs. [7,8], which are based on the work
of Ref. [9], as is ours. However, our construction has several
advantages. First, our construction is directly in terms of the
chemical potential and density. The approach of Refs. [7,8]
is in terms of the magnetic field and magnetization in the
3D Ising model. The mapping from these quantities to the

QCD phase diagram introduces significant uncertainty and
extra parameters with unknown values which our approach
avoids. Second, in our approach the merging is smooth to all
orders, aside from the critical point and its associated line of
first-order phase transition. In contrast, Ref. [8] matched only
to a given order of μ/T in the lattice equation of state Taylor
expansion by equating coefficients of the same order. That can
introduce unwanted and/or unphysical phase structures. Our
background equation of state is more sophisticated than that
used in Ref. [7] as is the switching method between critical
and background equations of state.

The approach espoused in this paper should be viewed
as complementary to that of Ref. [10]. The approach in that
paper is not based on the critical equation of state described
in Ref. [9] but has the same goal of embedding a line of
first-order phase transition ending in a critical point in a back-
ground equation of state.

The outline of this paper is as follows. In Sec. II we sum-
marize the critical equation of state when described in terms
of chemical potential and density. In Sec. III we describe how
to combine the critical part with the background equation of
state. In Sec. IV we discuss the selection of parameters. In
Sec. V we show numerical results. The conclusion is given in
Sec. VI. The Appendix contains some comments on closely
related work in Refs. [7,8].

II. SCHOFIELD PARAMETRIC SCALING EQUATION
OF STATE

There is a parametrization of the critical, scaling part of
the equation of state which originated more than 50 years ago
[11–13] and was significantly developed more than 25 years
ago [9]. It is

M = m0Rβθ, t = R(1 − θ2), H = h0Rβδh(θ ), (1)
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where the two independent variables are R and θ . The M is
the magnetization (order parameter), t = (T − Tc)/Tc, and H
is the magnetic field. Both m0 and h0 are arbitrary positive
normalization constants. The h(θ ) is an odd function that in
the limit θ → 0 is normalized so that h′(0) = 1. It must be
an analytic function in order to satisfy the requirements of
regularity of the equation of state, sometimes referred to as
Griffiths’ analyticity. To obtain the correct ratios of critical
amplitudes one usually writes

h(θ ) = θ (1 + h3θ
2 + h5θ

4) (2)

and adjusts h3 and h5 accordingly. If we denote the smallest
positive zero of h as θ0, then the range is −θ0 � θ � θ0.
The second independent variable has the range R � 0. The
critical exponents obey the usual equalities α + 2β + γ = 2
and β(δ − 1) = γ . The critical point is at R = 0 where t =
M = H = 0. To describe both T > Tc and T < Tc requires
θ0 > 1. The coexistence curve corresponds to θ = ±θ0, where
H = 0 and M± = ±m0Rβθ0.

The conventional discussion and analysis uses Ising-model
notation and variables. However, one can use any pair of ther-
modynamic variables which are conjugate to each other, as
pointed out in the reviews [14,15]. For a liquid–gas transition
one may choose the density and chemical potential

M → n − nc

nc
= m0Rβθ, H → μ − μc

μc
= h0Rβδh(θ ),

(3)

or the volume per particle and pressure

M → v − vc

vc
= m0Rβθ, H → P − Pc

Pc
= h0Rβδh(θ ). (4)

We choose the former.
The pressure must satisfy the condition (∂P/∂μ)T = n.

This can be accomplished by writing

P − Pc = [μ(R, θ ) − μc]n(R, θ ) − m0h0μcncR2−αg(θ ), (5)

where g satisfies the differential equation

(1 − θ2)g′ + 2(2 − α)θg = (1 − θ2 + 2βθ2)h. (6)

This is the same function g that appears in Ref. [9]. The
constant of integration is fixed by requiring that g be regular
at θ = 1. The solution is

g(θ ) = g0 + g1(1 − θ2) + g2(1 − θ2)2 + g3(1 − θ2)3, (7)

where

g0 = β(1 + h3 + h5)

2 − α
,

g1 = 1 + h3 + h5 − 2β(1 + 2h3 + 3h5)

2(1 − α)
,

g2 = h3 + 2h5 − 2β(h3 + 3h5)

2α
,

g3 = (2β − 1)h5

2(1 + α)
. (8)

The irregular, homogeneous, solution is (1 − θ2)2−α; the co-
efficient is set to zero because it does not contribute to the

critical behavior. The corresponding Helmholtz free energy is

f = μcn + m0h0μcncR2−αg(θ ) − Pc. (9)

Along the coexistence curve θ = ±θ0 and

n − nc

nc
= ± m0θ0(

θ2
0 − 1

)β
(−t )β. (10)

Along the critical isotherm θ = ±1 and

μ − μc

μc
= h0h(1)

mδ
0

sgn(n − nc)
∣∣∣n − nc

nc

∣∣∣δ. (11)

These define the critical exponents β and δ.
The susceptibility is (∂n/∂μ)T = χμμ. At fixed tempera-

ture (1 − θ2)dR = 2Rθdθ . Thus

χμμ = m0nc

h0μc

[
1 − θ2 + 2βθ2

(1 − θ2)h′ + 2βδθh

]
R−γ . (12)

When the critical point is approached from above (t → 0+)
at fixed density nc or chemical potential μc, meaning θ = 0,
then

χ+
μμ = m0nc

h0μc
t−γ ≡ C+t−γ . (13)

When it is approached along the coexistence curve (t → 0−),
meaning θ = ±θ0, then

χ−
μμ = m0nc

h0μc

[
1 − θ2

0 + 2βθ2
0(

1 − θ2
0

)
h′(θ0)

](
θ2

0 − 1
)γ

(−t )−γ

≡ C−(−t )−γ . (14)

The critical exponent is γ and the ratio of critical amplitudes
is

C+
C−

= −h′(θ0)(
θ2

0 − 1
)γ−1(

1 − θ2
0 + 2βθ2

0

) . (15)

The entropy density is most readily computed from s =
−(∂ f /∂T )n. At fixed density βθdR = −Rdθ . Thus

s = m0h0μcnc

Tc
g̃(θ )R1−α, (16)

where

g̃(θ ) = βθg′ − (2 − α)g

1 − θ2 + 2βθ2
= g′ − h

2θ
= βθh − (2 − α)g

1 − θ2
.

(17)
Note that the entropy at the critical point is zero in this
rendering of the equation of state. The heat capacity is cV =
T (∂s/∂T )n, whence

cV = m0h0μcnc

Tc

[
(1 − α)g̃ − βθ g̃′

1 − θ2 + 2βθ2

]
[1 + R(1 − θ2)]R−α.

(18)
When the critical point is approached from above the singular
part is

c+
V = −m0h0μcnc

Tc
(2 − α)(1 − α)g(0)t−α ≡ A+t−α. (19)
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FIG. 1. The critical curve for the Schofield scaling equation of
state. The dot indicates the location of the critical point.

When it is approached along the coexistence curve the singu-
lar part is

c−
V = −m0h0μcnc

Tc

(2 − α)(1 − α)(
θ2

0 − 1
)2−α

g(θ0)t−α ≡ A−(−t )−α.

(20)
The critical exponent is α and the ratio of critical amplitudes
is

A+
A−

= g(0)

g(θ0)

(
θ2

0 − 1
)2−α

. (21)

Consider the numerical parameters involved. The critical
exponents are universal and taken to be β = 0.3264 and γ =
1.2371, resulting in α ≈ 0.1101 and δ ≈ 4.7901 [16,17]. The
ratios of critical amplitudes are also universal. The values
h3 = −0.762 and h5 = 0.008, frequently used in the liter-
ature, result in θ0 ≈ 1.154, C+/C− = 4.764, and A+/A− =
0.5302. The latter ratios are entirely consistent with published
results [9,18,19]. For comparison, the mean-field approxima-
tion has α = 0, β = 1/2, γ = 1, and δ = 3. In the mean-field
approximation, C+/C− = 2, and there is a discontinuity in cV

but no divergence.
Figure 1 shows the coexistence curve in the T/Tc = 1 +

(1 − θ2)R versus μ/μc plane. Figure 2 shows isotherms of

P − Pc

h0μcnc
= hRβδ + m0(θh − g)R2−α

versus n/nc = 1 + m0θRβ . This dimensionless plot depends
only upon the numerical value of m0. For the density to
always be positive requires m0 < (θ2

0 − 1)β/θ0 ≈ 0.604. For
this illustration we chose m0 = 0.2.

III. INCLUDING THE BACKGROUND

The parametrized critical equation of state needs to merge
into the background equation of state away from the critical
line in the T versus μ plane. There is no unique way to
accomplish this, and there is no broadly agreed upon method
in the literature. In this section we propose one such method,
but it is not the only one.

FIG. 2. Isotherms of pressure versus density for the Schofield
scaling equation of state. The only parameter is m0 = 0.2.

We express the temperature and chemical potential in terms
of the variables R and θ , as in the scaling equation of state,
with the explicit inclusion of the coexistence curve described
by the function μx(T ) by

T − Tc

Tc
= t = R(1 − θ2),

μ − μx(T )

μc
= h0Rβδh(θ ). (22)

The first obvious attempt to include the background is to write
the pressure as the sum of background plus critical as

P(μ, T ) = PBG(μ, T ) + P∗(R, θ ), (23)

where PBG(μ, T ) is a smooth function of μ and T and

P∗(R, θ ) = P0+ h0μcn0Rβδh+ m0h0μcn0R2−α[θh(θ )− g(θ )]
(24)

is the contribution from the critical part of the equation of
state. The functions h(θ ) and g(θ ) are the same as before. It
differs from the Schofield critical equation of state described
in the previous section by the replacements of Pc with P0 and
nc with n0. The contribution to the pressure from the critical
part of the equation of state at the critical point is P0, which
could be positive or negative.

Two immediate problems arise: P∗ is not an even function
of μ, and it generally does not vanish in the vacuum T = n =
0. To address these problems we multiply P∗ by the window
function

W (μ, T ) = exp

[
−

(
μ2 j − μ

2 j
x (T )

c∗μ
j
cμ j

)2]
, (25)

where j is a positive integer and c∗ is a number which controls
the extent of the critical region. This suppression factor intro-
duces no additional critical behavior. It goes to zero faster than
any finite power of μ as μ → 0 and therefore does not affect
any of the susceptibilities at μ = 0. Note that W (μ = μx ) = 1
and that ∂W/∂μ(μ = μx ) = 0. It is an even function of μ. So
far we have assumed that μ � 0 which is the typical situation
in heavy ion collisions and neutron stars. If μ < 0 then one
simply changes the signs of μ, μx(T ), and μc on the left side
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of Eq. (22). Hence P(−μ, T ) = P(μ, T ). In what follows we
take j = 2.

It is worth noting that Ref. [8] deals with these problems in
a different way. In that approach a Taylor expansion in powers
of μ/T is performed about μ = 0. Terms up to a finite order
are reshuffled between the background lattice equation of state
(calculated at μ = 0) and the critical equation of state. Then a
symmetrization is done to ensure that the pressure is an even
function of μ. That procedure limits how large μ/T can be
before unphysical behavior is manifest in the equation of state.

The pressure is taken to be

P(μ, T ) = PBG(μ, T ) + W (μ, T )P∗(R, θ ), (26)

and so the density is

n =
(

∂P

∂μ

)
T

= nBG(μ, T ) + W n∗ + ∂W

∂μ
P∗, (27)

where

n∗ =
(

∂P∗
∂μ

)
T

= n0(1 + m0Rβθ ). (28)

Along the coexistence curve θ = ±θ0, T � Tc, and nBG(T ) ≡
nBG(μx(T ), T ). The critical density is nc = nBG(μx(Tc), Tc) +
n0 because R = 0 at the critical point. If we want a symmet-
rical, inverted U shaped curve in the T versus n plane, as
approximately seen in the liquid-gas carbon dioxide [14] and
argon [20] phase diagrams, then μx(T ) should be determined
by the condition nBG(μx(T ), T ) = nc − n0 when T � Tc. In
that case the densities along the coexistence curve are

nl (T ) = nc + m0n0θ0Rβ, ng(T ) = nc − m0n0θ0Rβ, (29)

where nl denotes the high-density (liquid) phase and ng de-
notes the low-density (gas) phase. Hence the critical behavior
is

n − nc

n0
= ± m0θ0(

θ2
0 − 1

)β
(−t )β. (30)

Along the critical isotherm θ = ±1 and

μ − μc

μc
= h0h(1)

mδ
0

sgn(n − nc)
∣∣∣n − nc

n0

∣∣∣δ. (31)

The susceptibility is (∂n/∂μ)T = χμμ. From Eq. (27) there
are five independent terms.

χμμ = W

(
∂n∗
∂μ

)
T

+ · · · (32)

The displayed term is the most divergent one near the critical
point. From Eq. (12) this leads to

χμμ = W
m0n0

h0μc

[
1 − θ2 + 2βθ2

(1 − θ2)h′ + 2βδθh

]
R−γ + · · · . (33)

When the critical point is approached from above (t → 0+)
at fixed density nc, meaning θ = 0, then the susceptibility
diverges as

χ+
μμ → m0n0

h0μc
t−γ ≡ C+t−γ . (34)

When it is approached along the coexistence curve (t → 0−),
meaning θ = ±θ0, then it diverges as

χ−
μμ → m0n0

h0μc

[
1 − θ2

0 + 2βθ2
0

(1 − θ2
0 )h′(θ0)

](
θ2

0 − 1
)γ

(−t )−γ

≡ C−(−t )−γ . (35)

The critical exponent is γ and the ratio of critical amplitudes
is

C+
C−

= −h′(θ0)(
θ2

0 − 1
)γ−1(

1 − θ2
0 + 2βθ2

0

) . (36)

This is exactly the same as for the critical equation of state.
The entropy density can be calculated from the pressure as

s =
(

∂P

∂T

)
μ

= sBG + W s∗ + ∂W

∂T
P∗. (37)

This has no singularities of course. They arise from higher-
order derivatives in the critical part of the equation of state. In
this case that means s∗. It can be computed by taking the ratio
of

dP∗ = h0μcn0[βδRβδ−1hdR + Rβδh′dθ ]

+ m0h0μcn0[(2 − α)(θh − g)R1−αdR

+ (θh′ + h − g′)R2−αdθ ] (38)

to

dT = Tc[(1 − θ2)dR − 2Rθdθ ], (39)

subject to the condition

dμ = μ′
x(T )dT + h0μc[βδhRβδ−1dR + h′Rβδdθ ] = 0.

(40)
After some algebra, and using Eq. (6), one arrives at

s∗ = m0h0μcnc

Tc
g̃(θ )R1−α − μ′

x(T )n∗. (41)

The singular part of the heat capacity is then computed from
T (∂s∗/∂T )n. Now

dn∗ = m0n0(Rβdθ + βRβ−1θdR). (42)

When setting dn = 0, with dR → 0 and dθ → 0, the most
important term is dn∗ as can be seen from the equations for
n, dT , dμ, and dn∗. This means effectively that n∗ is constant
when taking the derivative. Hence the results are the same as
for the purely critical part of the equation of state, namely, that
when the critical point is approached from above, with θ = 0
and R → 0, the singular part of the heat capacity is

c+
V = −m0h0μcn0

Tc
(2 − α)(1 − α)g(0)t−α ≡ A+t−α, (43)

and when it is approached along the coexistence curve the
singular part is

c−
V = −m0h0μcn0

Tc

(2 − α)(1 − α)(
θ2

0 − 1
)2−α

g(θ0)t−α ≡ A−(−t )−α.

(44)
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The critical exponent is α and the ratio of critical amplitudes
is

A+
A−

= g(0)

g(θ0)

(
θ2

0 − 1
)2−α

. (45)

IV. PARAMETER SELECTION

Apart from the choice of the background equation of state
there are seven free parameters: Tc, μc, P0, h0, m0, n0, c∗. Of
course, none of these parameters are universal. We take Tc and
μc as the most interesting and fundamental.

The parameter P0 may be positive or negative, and can be
adjusted to produce the desired critical pressure

Pc = PBG(μc, Tc) + P0. (46)

The parameter n0 must be positive and can be adjusted to
produce the desired critical density

nc = nBG(μc, Tc) + n0. (47)

It also determines the critical entropy density as

sc = sBG(μc, Tc) − μ′
x(Tc)n0. (48)

It follows that the critical energy density is

εc = −Pc + Tcsc + μcnc. (49)

The parameter m0 then determines the strength of the line
of first-order phase transition. Along the coexistence curve the
baryon density difference is


n = 2m0n0θ0Rβ, (50)

the entropy density difference is


s = −μ′
x(Tc)
n, (51)

and the energy density difference is


ε = [μx(T ) − T μ′
x(Tc)]
n. (52)

The critical amplitudes for the heat capacity are pro-
portional to h0. The critical amplitudes for the baryon
number susceptibility are inversely proportional to h0. The
reason for the latter is the thermodynamic identity χB =
n/(∂P(n, T )/∂n) combined with the fact that the piece of the
pressure responsible for the critical behavior is proportional to
h0 (24).

Finally, the parameter c∗ determines the extent of the criti-
cal region about the coexistence curve.

V. NUMERICAL RESULTS

Any physically reasonable background equation of state
may be used. The approach taken in this paper does not
depend on any particular one. For the sake of illustration, the
background equation of state we use involves interpolating
between the pressure of a point hadron resonance gas and the
pressure obtained from perturbative QCD [21]. To interpolate,
a switching function S(T, μ) is used which takes values be-
tween 0 and 1 and determines the pressure contributed by each
phase. The background pressure is then

PBG(T, μ) = S(T, μ)Pq(T, μ) + [1 − S(T, μ)]Ph(T, μ).
(53)

FIG. 3. The critical curve as described in the text. The critical
temperature is taken to be 120 MeV and the critical chemical po-
tential is taken to be 750 MeV. The dot indicates the location of the
critical point.

The function S(T, μ) must be smooth so as not to introduce
unwanted phase transitions, and at T = μ = 0 we would like
it to approach zero faster than any finite power of T and/or
μ. This is so all derivatives of S vanish at that point, which
ensures all thermodynamic observables approach their low
energy density values. This function is

S(T, μ) = exp

[
−

(
T 2

T 2
s

+ μ2

μ2
s

)−2
]
. (54)

The parameters Ts = 145.33 MeV and μs = 3πTs, along with
two parameters in the QCD running coupling, are determined
by fitting to lattice pressure and trace anomaly results for
100 � T � 1000 MeV and μ = 0.

From here on we choose Tc = 120 MeV, μc = 750 MeV,
P0 = 0.05Pc, n0 = 0.1nc, m0 = 0.5, h0 = 0.2, and c∗ = 0.7.
For a given critical point (μc, Tc), the critical density is
nc = nBG(Tc, μc) + n0. To calculate the pressure at a par-
ticular point (μ, T ), we first calculate μx(T ) by solving
nBG(T, μx(T )) = nc − n0. This must be done numerically, but
is not difficult. Since nBG is monotonic in both T and μ, it has
one solution for each temperature.

The function μx(T ) is shown in Fig. 3. As noted in
Ref. [10], this function must be smooth and defined for
all temperature, not just for T � Tc, in order to avoid un-
wanted singularities. The critical density turns out to be
nc = 1.31 fm−3. To calculate the entropy, we also need the
derivative of μx(T ), which can be calculated directly from the
background via

μ′
x(T ) = −χBG

T μ (T, μx(T ))

χBG
μμ (T, μx(T ))

. (55)

Now the equation of state can be expressed in terms of θ

and R rather than T and μ. So we must use Eqs. (22) to get
these new variables. Once again, this must be done numer-
ically, but the scaling equation is constructed so as to give
a unique solution everywhere except along the coexistence
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FIG. 4. The function θ as described in the text. The critical tem-
perature is taken to be 120 MeV and the critical chemical potential is
taken to be 750 MeV.

curve. Expressing Eqs. (22) only as a function of θ we get

h0h(θ )

|1 − θ2|βδ
=

∣∣∣∣T − Tc

Tc

∣∣∣∣
∣∣∣∣μ − μx(T )

μc

∣∣∣∣
−βδ

sgn(μ − μx(T )),

(56)
which can be solved for θ and then for R while accounting for
a number of special cases:

(i) when T = Tc, θ = sgn(μ − μc);
(ii) when T > Tc and μ = μx(T ), θ = 0;

(iii) when T < Tc and μ = μx(T ), θ is undefined but goes
to ±θ0 when approached from above and below the
coexistence curve, respectively;

(iv) T = Tc and μ = μc is the only point where θ = R =
0.

The function θ (T, μ) is shown in Fig. 4.
Figure 5 shows isotherms of pressure versus density. There

is a small residual effect of the critical point above Tc. This

FIG. 5. Isotherms of pressure versus density. The critical density
is nc = 1.31 fm−3. The dashed curve is the result of including the
factor (57) in the window function.

FIG. 6. The coexistence curve as described in the text. The crit-
ical temperature is taken to be 120 MeV and the critical chemical
potential to be 750 MeV. The critical density is nc = 1.31 fm−3.

is natural. If desired, this residual effect can be reduced by
modifying the window function in such a way that it decreases
with temperature when T > Tc, not just with distance from
the curve μx(T ). The dashed curve is the result of including a
factor of

1 − exp[−(t0/t )2] (57)

in the window function for t > 0 with t0 = 0.15. Figure 6
shows the coexistence curve in the temperature versus density
plane. As discussed in Sec. III, it is symmetric about the
critical density.

Figure 7 shows the baryon number susceptibility as a func-
tion of the reduced temperature t . It has the same value in both
the high density (liquid) and low density (gas) phases.

It is interesting and worthwhile to plot contours of the
window function in the T versus μ plane. Figure 8 shows
contours of 0.9, 0.5, and 0.1. These extend to arbitrarily high

FIG. 7. The baryon number susceptibility as a function of re-
duced temperature t . The critical temperature is taken to be 120 MeV
and the critical chemical potential to be 750 MeV.

044901-6



EXTENDING A SCALING EQUATION OF STATE TO QCD PHYSICAL REVIEW C 106, 044901 (2022)

FIG. 8. Window function contours without the factor of (57).

temperature because Eq. (25) depends on distance from the
curve of μx(T ). Figure 9 shows the same contours but with
the inclusion of the factor (57) which decreases the window
function and monotonically reduces the contribution from the
critical part of the equation of state above Tc.

VI. CONCLUSIONS

In this paper we propose a way to merge the Schofield
critical equation of state with a smooth background equa-
tions of state which has a smooth crossover from hadrons
to quarks and gluons. The method is generic and can be
done with any physically reasonable background equation
of state. If there is a critical point, one can go around it
without crossing the line of first-order phase transition. This
means that there is a residue of the hadronic equation of
state on the high-density side and a residue of the quark-
gluon equation of state on the low-density side of that line.
Like the approach taken in Ref. [8] our results reported here
match smoothly onto lattice QCD simulations at μ = 0. The
advantage of the approach taken here is that the equation

FIG. 9. Window function contours with the factor of (57).

of state is not limited to small values of the chemical po-
tential because it is not based on an expansion in terms of
μ/T for the background. It also has the advantage of hav-
ing a coexistence curve which has a symmetric inverted-U
shape in the T versus n plane. The Appendix points out that
the approach taken in Refs. [7,8], which relates Ising-model
and liquid-gas phase-transition variables in a way different
than ours, yields an order parameter with critical exponent β

which is not the baryon density but a linear combination of
baryon and entropy densities. The “Schofield approach” and
the novel approach taken in Ref. [10] are alternative ways of
embedding critical behavior in a smooth background equation
of state. The goal, of course, is to use such equations of
state in hydrodynamic simulations of heavy ion collisions in
order to infer whether there is critical behavior. They can
also be used in numerical simulations of neutron-star mergers
where significantly high energy densities are expected to be
achieved.

Further challenges, such as including not just the chemical
potential for baryon number but also for electric charge and
strangeness, and using a background equation of state which
includes more realistic attractive and repulsive nuclear inter-
actions at low temperature, will be explored elsewhere.
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APPENDIX

To translate Ising-model variables into QCD variables
Refs. [7,8] perform the rotation

T − Tc

Tc
= w[ρ sin α1R(1 − θ2) + h0 sin α2Rβδh(θ )],

μ − μc

μc
= −w[ρ cos α1R(1 − θ2) + h0 cos α2Rβδh(θ )],

(A1)

where w, ρ, α1, and α2 are constants. The standard para-
metric scaling equation of state summarized in Sec. II has
wρ sin α1 = 1, sin α2 = 0, cos α1 = 0, and w cos α2 = −1.
The motivation for this rotation is that otherwise the coex-
istence curve would be μx(T ) = μc for all T � Tc. This is not
what is observed in real atomic systems nor what is expected
in QCD. The reasonable assumption in those papers was that
α2 − α1 = 90◦ so that the axes are perpendicular. The specific
choice made in Ref. [8] was α1 = 3.85◦.

One consequence of this rotation is that the order parameter
is not the density, but a specific linear combination of the
density and entropy density [22]. In the notation of that paper
the order parameter for T � Tc is

 = (n − nc)

(
∂μ

∂ζ

)
τ

+ (s − sc)

(
∂T

∂ζ

)
τ

, (A2)
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where

τ = R(1 − θ2), ζ = h0Rβδh(θ ). (A3)

Then

 = w[−μc cos α2(n − nc) + Tc sin α2(s − sc)] (A4)

and

|| ∼ (−t )β (A5)

along the coexistence curve. This is a natural consequence of
the rotation because n and μ are conjugate variables, as are s
and T .

The approach we follow is represented by Eqs. (22).
Near the critical point one can approximate μx(T ) by μc +
μ′

x(Tc)(T − Tc) where μ′
x(Tc) is finite and negative. Then

T − Tc

Tc
= τ,

μ − μc

μc
≈ ζ + Tcμ

′
x(Tc)

μc
τ, (A6)

and so  = μc(n − nc). Comparing Eqs. (A1) and (A6) re-
sults in either α2 = 0 or α2 = π near the critical point. In
either case

tan α1 = −μc

Tc

1

μ′
x(Tc)

> 0, (A7)

with ρ arbitrary.
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