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Microscopic investigations into fission dynamics beyond the saddle point
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The real-space density-constrained time-dependent Hartree-Fock-Bogoliubov method is exploited to obtain
the dynamic potential energy and several experimental variables of fission fragments. The resultant predictions
of collective variables, especially the total kinetic energy and total excitation energy of the fission fragments,
finely match the experimental data. It is demonstrated that scission dynamics including the shell effects and
pairing correlations should be the focus of further studies.
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I. INTRODUCTION

The understanding of the nuclear fission phenomena has
been a crucial problem in the fundamental science of nuclear
physics over the past eighty years. Huge efforts have been
pursued by several generations of physicists and the great
progress has been made by both the experimental and the-
oretical studies. However, many crucial facets of the fission
process are not understood at a fundamental level and still
represent one of the most challenging problems in nuclear
science for further explorations [1–6].

From a theoretical point of view, starting from Bohr
and Wheeler’s seminal paper written in 1939 [7], nuclear
fission is considered as an adiabatic process and thus the
adiabatic approximation is extensively used to describe the
fission from the compound states of fissioning nuclei up
to the scission, and even the formations of the fragments.
Within adiabatic approximation, the nucleonic degrees of
freedom are fully equilibrated while the system evolves over
a potential-energy surface (PES) defined by the macroscopic
degrees of freedom such as elongation and mass asymmetry.
Under the adiabatic approximation, various versions of the
macroscopic-microscopic (MM) model [8–10], the stochas-
tic dynamics model [11–15], the time-dependent generator
coordinate method (TDGCM) [16–19] and the adiabatic time-
dependent Hartree-Fock (ATDHF) theory [20–23] have been
proposed and the considerable progresses have been made
with them.

Consider that the minimum average timescale for fission
process is of the order of (20–50) × 10−21 s [24], thus it
seems reasonable to globally treat the fission processes as the
adiabatic processes. However, in the final stages of the fission
process when scission of the neck between the fragments
occurs, fission fragments can experience a rapid change in
shape and thus trigger the nonadiabatic effects coming from
couplings between collective and intrinsic degrees of freedom
[25,26]. It is highly desirable to describe this nuclear scission
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process in a dynamical and nonadiabatic fashion [27], which
is crucial to make reliable predictions about the most im-
portant properties of fission fragments, such as their intrinsic
excitation energies and kinetic energies, their masses, charges,
and shapes.

With the rapid development of energy density-functional
theory [28–31], nonrelativistic and relativistic microscopic
theoretical methods have been used to study the fission
paths and dynamics [26,32–45]. Significant progresses have
recently been made in the realistic calculation of static
potential-energy surface defined in collective space for heavy
nuclear fission such as uranium and plutonium. In the dy-
namic description of the later stages of the fission process,
time-dependent density-functional theory (TDDFT) provides
a self-consistent, elaborate, and promising microscopic frame-
work because it is a fully microscopic and nonadiabatic
method. In this description, the composite fission system
smoothly evolves through a mononucleus into the separated
fragments and the final properties of fission fragments do not
depend on the definition of the scission configuration.

Because the dynamics of the fission process and the influ-
ence of shell effects and pairing correlations are considered
to be essential assets for describing low-energy fission, mi-
croscopic quantum theories are indispensable for a deeper
understanding of the fission mechanisms. The dynamic effects
near scission have been investigated with the time-dependent
Hartree-Fock (TDHF) theory in Refs. [43,46,47]. It is shown
that the most of the excitation energy in the fragments is
generated in the final stage and that quantum shell effects
play a crucial role in the dynamics and formation of the frag-
ments. To consider dynamical pairing correlations, the TDHF
theory including BCS dynamical pairing correlations (TD-
BCS) [48,49] and the time-dependent superfluid local density
approximation (TDSLDA) theory [50,51], which is formally
equivalent to the time-dependent Hartree-Fock-Bogoliubov
theory (TDHFB), have been applied to fission studies. It is
clarified that the most important contributions of pairing to
self-consistent mean-field calculations is the ability of the
system to allow for level crossings which results in fragments
establishing their identity between the saddle and scission
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points [4], and that dynamic pairing promotes asymmetric
fission to accelerate fragmentation formation [48]. However,
it still represents an important challenge to quantitatively
understand the individual properties of fission fragments, in
particular their excitation energy and their spin, with the
microscopic nonadiabatic theory based on time-dependent
density-functional theories.

In this paper, a real-space particle- and pairing-density-
constrained scheme of TDHFB theory [52], abbreviated
rDC-TDHFB in the following, is exploited to study the spon-
taneous fission process of superfluid nucleus 240Pu. Because
the constrained densities in the rDC-TDHFB scheme are the
corresponding instantaneous TDHFB densities at every spe-
cific time, both the nucleus-nucleus interaction potential and
the mass parameter in collective space include the dynamical
effects and various excitations described by the particle and
pairing densities. Therefore, this method could provide a reli-
able description of nuclear fission dynamics.

The rDC-TDHFB is implemented by making use of the
GOGNY-TDHFB code [53,54] for fission [55]. In our calculation,
we formulate RDC-TDHFB numerical scheme into four solvers:
(i) The static HFB code to solve the HFB equations for the HFB
ground state of a nucleus; (ii) the constrained HFB (CHFB) code
to calculate the adiabatic potential in the multidimensional
collective space, (iii) the TDHFB code to simulate the nonadi-
abatic dynamical nuclear processes; and (iv) the RDC-TDHFB

code to extract the dynamical potential and other collective
variables. In all the solvers, the same parameters of the Gogny
D1S effective interaction and the same numerical strategies
are used. The detailed information can be found in our previ-
ous papers [52,55].

It is remarkable to mention that, in this paper, both the
static fission properties by CHFB and the dynamical fission
processes by TDHFB and rDC-TDHFB of fissile nucleus are
treated in self-consistent ways, and rDC-TDHFB helps us
to extract the collective variables including all the dynamics
information contained in the one-body particle and pairing
density distributions.

II. STATIC AND DYNAMIC DEFORMATION PROPERTIES
OF 240Pu

With the aid of our proposed rDC-TDHFB theoretical
framework [52], the adiabatic potential of fission nuclei under
axial symmetry deformation is calculated, which provides the
foundations for subsequent dynamic calculations. Whether
the bimodal fission barrier of actinides can be obtained is
usually the benchmark for testing theoretical models and
calculation codes [56,57]. Considering the abundant experi-
mental and theoretical data available [44,50,51,58–63] and the
weak configuration mixing effect [64], the spontaneous fission
of 240Pu is studied in this paper.

The parameter set D1S of the Gogny interaction is adopted
in this paper. The reaction axis in the z direction is de-
scribed by the Lagrange mesh method [53,65] with the mesh
parameters Nz = 49 and �z = 0.91 fm. The space of the
harmonic-oscillator basis functions with respect to the x and y
directions are restricted to nx + ny � 7. The parameters of the

deformation harmonic oscillator are given according to

h̄ω0 = f
41

A1/3
MeV, q = ω⊥

ωz
= 1.43, (1)

To obtain a reasonable ground-state energy of HFB, the
phenomenological parameter f is introduced, and the recom-
mended value is 1.2 [66]. The initial conditions of TDHFB
calculations for dynamical symmetrical and asymmetrical fis-
sions are chosen as the corresponding points to CHFB results
as Q20 = 200 b.

A. Adiabatic potential by constrained Hartree-Fock-Bogoliubov
method

To extract the adiabatic potential in static calculations, we
use the augmented Lagrange method [67,68] to solve the
CHFB equation. The energy density functional is augmented
to contain extra terms corresponding to the constraints upon
the expectation of the multipole moments Q̄μν ,

ε′(q) = ε(q) −
∑
μν

Lμν (〈Qμν〉 − Q̄μν )

+
∑
μν

Cμν (〈Qμν〉 − Q̄μν )2
, (2)

where ε(q) is mean-field energy, q is short for a number of
collective variables, and Q̄μν are the input parameters and
remain constant during the iteration. The Lμν are multipole
Lagrange parameters, and the Cμν are stiffness coefficients
[69]. The Lagrange parameters Lμν are adjusted step by step
in the iterative process in terms of

L(m+1)
μν = L(m)

μν − 2Cμν (〈Qμν〉(m) − Q̄μν ), (3)

where L(m)
μν and 〈Qμν〉(m) are Lμν and 〈Qμν〉 of the mth itera-

tion, respectively. For the first iteration we have L(0)
μν = 0. The

detailed description on the numerical algorithm for updating
the stiffness coefficients Cμν can be found in Ref. [70].

In this work, the constraints of the quadrupole deformation
Q20, triaxiality deformation Q22, and octupole deformation
Q30 are precisely implemented, while the hexadecapole defor-
mation Q40 is free in all fission paths. In addition, the effect
of triaxiality Q22 significantly reducing first fission barrier to
several MeV is also taken into account in the CHFB calcula-
tions [44,46,55].

The adiabatic potential ECHFB(Q20) of 240Pu symmetric
fission path obtained by the CHFB method is shown in Fig. 1.
The two valleys at Q20 = 30 b and 90 b represent the ground
state and isomer state of 240Pu symmetric fission, respectively.
The ground-state energy is Eg.s. = −1794.8 MeV. The heights
of the first and second fission barriers, and the energy of
the isomer state with respect to the ground-state energy, are
denoted EA, EB, and EII, respectively. The values are shown in
Table. I. Such values are comparable with the results obtained
in the previous studies [44,46,61,63] and experimental data
[71]. Note that, at the second barrier, there is a long plateau
in the Q20 = 130–200 b range, which is consistent with the
results of the relativistic mean-field calculation [45] but does
not appear in the Skyrme HFB results in Ref. [44].
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FIG. 1. The adiabatic potential obtained by CHFB method
(dashed line) and the dynamical potential by rDC-TDHFB method
(solid line) of 240Pu spontaneous fission. The point with a black arrow
at Q20 = 200 b is selected as the initial point of dynamical TDHFB
calculation. The red and blue arrows indicate the scission points of
dynamical symmetrical and asymmetrical paths, respectively.

Currently, it is still difficult to exactly determine the mi-
croscopic fission scission point based on density-functional
theory [1]. In this paper, we define the scission point as the
minimum density between the fragments along the princi-
pal axis of the system is less than 0.05 particles/fm3, as in
Ref. [46]. The particle density in the neck region between
the two primary fragments disappears and the nucleon wave
function rearranges in the respective fragments, resulting in
a sudden drop in the adiabatic potential. In the left panels of
Fig. 2(a), we show the profiles of the total density distribution
at Q20 = 220, 330, 350, 360, 370, 380 b in real space for
symmetric fission along the adiabatic potential. With a rapid
disappearance of the neck, the scission occurs at near 380 b.

To avoid high computational cost, we enter the asymmetric
fission path of 240Pu by fixing the elongation Q20 = 200 b
and adding the constraint octupole deformation Q30 from 0
to 22.5 b3/2. The minimum for exploring adiabatic potential
occurs at Q30 = 21.5 b3/2, which is the bottom of the fission
valley. And then the octupole constraint is released so that
the asymmetric fission path of 240Pu is determined by making
small evolutions of the quadrupole constraint from 200 to 0 b
and from 200 to 530 b. The resultant potential curve is shown
in Fig. 1 as the red dashed line. The ground-state energy of

TABLE I. The obtained energies EA, EB, EII, and comparison
with the results obtained in the previous studies [44,46,61,63] and
experimental data [71].

Method EA [MeV] EB [MeV] EII [MeV]

This work (Symm) 8.5 10.3 3.1
This work (Asymm) 8.4 8.1 3.1
HFB, Gogny D1M [63] 9.3 8.4 3.1
HFB, Skyrme SkM* [44] 7.64 6.79 2.68
HF + BCS, Skyrme SkM* [46] 8.25 7.68 3.04
HF + BCS, Skyrme SIII [61] 9 13 4
Experiment [71] 6.05 5.15 2.8

0.00 0.18

Q20 = 380 b

Q20 = 370 b

Q20 = 360 b

Q20 = 350 b

Q20 = 330 b

(a) CHFB Symm

Q20 = 220 b

0.00 0.18

t = 1350 fm/c

t = 1320 fm/c

t = 1290 fm/c

Q20 = 350 b

Q20 = 330 b

(b) TDHFB Symm

Q20 = 220 b

FIG. 2. The profiles of the total density distribution in real space
for symmetric fission along (a) adiabatic CHFB path and (b) dynam-
ical TDHFB path.

the asymmetric path is the same as the symmetric path. EA,
EB and EII values are also shown in Table. I. The results are
qualitatively consistent with those of Gogny HFB and Skyrme
HFB reported in Ref. [44,63]. We can see that the second
barrier is significantly lower than that of symmetric path and
then the potential descends monotonically until the scission
point, indicating that asymmetric fission is more favorable.

The blue dashed lines in Figs. 3 and 4 trace the evolution
of octupole deformation Q30 and hexadecapole deformation
Q40 with respect to Q20 along the asymmetric path. The step
between each cross is 10 b. It is observed that the Q30 evo-
lution in asymmetric valleys is almost identical to that of

044611-3



LIANG TONG AND SHIWEI YAN PHYSICAL REVIEW C 106, 044611 (2022)

FIG. 3. The profiles of octupole deformation Q30 along the asym-
metric fission path. The results of adiabatic CHFB and dynamical
TDHFB calculations compared with the Skyrme HFB result [44].

Skyrme HFB [44]. Since there is no constraint on Q40 in our
calculation, the deviation from the Skyrme HFB result [44]
after 200 b tracks the thinner neck.

It can also be seen from Fig. 1 that the symmetric and
asymmetric paths of the fission nuclei from the ground state
to the isomer state almost overlap, and the mass asymmetry is
mainly formed in the rapid descent of the fission nuclei after
passing the second barrier. The scission of the asymmetric
adiabatic fission occurs in a larger elongation than that of the
symmetric adiabatic fission. In Fig. 5(a), the profiles of the
total density distribution at Q20 = 240, 310, 370, 380, 390,
400 b in real space for asymmetric fission along the adiabatic
path shows that the scission occurs at near Q20 = 390 b.

B. Dynamical potential by rDC-TDHFB method

Considering that the mean-field has no barrier penetration,
the initial condition of TDHFB dynamics calculations for
symmetric and asymmetric paths is selected by CHFB cal-
culations at elongation Q20 = 200 b beyond the outer saddle
point. This choice of the initial condition should be suited
to investigate the role of shell effects at scission. The initial

FIG. 4. The evolution of hexadecapole deformation Q40 along
the asymmetric fission path. The results of adiabatic CHFB and
dynamical TDHFB calculations are compared with the Skyrme HFB
result [44].

0.00 0.18

Q20 = 400 b

Q20 = 390 b

Q20 = 380 b

Q20 = 370 b

Q20 = 310 b

(a) CHFB Asymm

Q20 = 240 b

0.00 0.18

t = 1020 fm/c

t = 960 fm/c

t = 900 fm/c

Q20 = 370 b

Q20 = 310 b

(b) TDHFB Asymm

Q20 = 240 b

FIG. 5. The profiles of the total density distribution in real space
for asymmetric fission along (a) the adiabatic CHFB path and (b) the
dynamical TDHFB path.

energy of symmetric path is ETDHFB = −1784.6 MeV, and
that of asymmetric path is ETDHFB = −1793.6 MeV. The
Gogny D1S effective interaction and all other parameters are
exactly the same as ones used in Sec. II A for the CHFB
calculation. The time step is set to be �t = 0.3 fm/c. We first
perform TDHFB simulation and then carry out rDC-TDHFB
calculation every 100 steps.

We follow the main procedures proposed in Ref. [52] to
implement the density constraints on the TDHFB trajectories
to obtain the dynamical potential of 240Pu. In the rDC-TDHFB
method, the density-constrained many-body states of a system
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are obtained through minimizing

δ〈�|H −
∑

r

λ(r)[ρ(r) − ρ (0)(r, t )]

−
∑

r

λ
(2)
↑↓(r)[κ↑↓(r) − κ

(0)
↑↓ (r, t )]|�〉 = 0, (4)

with H being the HFB Hamiltonian of the system, σ =↑,↓
the z projection of the nucleon spin, ρ (0)(r, t ) and κ

(0)
↑↓ (r, t )

the instantaneous TDHFB particle and pairing densities in
real space, λ(r) and λ

(2)
↑↓(r) the Lagrange multipliers of the

one-body particle and pairing densities, respectively. Conse-
quently, the system goes down to the minimum-energy state
described by the HFB state |�〉 by keeping all the TDHFB
dynamical features, such as the one-body particle and pairing
density distributions and collective deformation.

After rDC-TDHFB calculations, the density-constrained
potential satisfies

EDC(q) = 〈�|H |�〉
〈�|�〉 , (5)

with the density-constrained many-body wave function |�〉
obtained through Eq. (4). Note that, in the realistic imple-
mentation of the iteration, the instantaneous TDHFB wave
functions are used as the initial iteration wave functions and
the iteration process can be accelerated using the modified
Broyden’s method [72,73].

With the aid of the rDC-TDHFB method, we obtained
the dynamical potentials EDC(Q20), represented by solid lines
in Fig. 1. For symmetric fission, the system takes about
1350 fm/c from the initial state to complete fragmenta-
tion and about 1000 fm/c for asymmetric fission. These
two timescales are reasonable compared with the results in
Refs. [43,49,74,75]. The TDHFB theory realizes the dynamic
evolution of all nuclear degrees of freedom without any con-
straint, so that EDC(Q20) changes smoothly when the nucleon
rearrangement approaches the scission point and completely
separates into two fragments.

For symmetric fission, the dynamical potential and adi-
abatic potential are close at the beginning of the evolution
until the sudden drop in the adiabatic potential, as shown
in Fig. 1. Because of the discontinuity of adiabatic potential
near the scission point, there is a large discrepancy between
the dynamical potential and the adiabatic one. This phe-
nomenon can also be seen in the density-constraint calculation
of 258Fm symmetric fission using the HF + BCS method [76].
By comparing Q20 = 220, 330, 350 b in Figs. 2(a) and 2(b),
the evolution of the total density distribution in real space
along the dynamical TDHFB path is basically the same as that
along the adiabatic CHFB path before the sudden drop. The
scission of the TDHFB dynamics occurs near time t = 1350
fm/c, corresponding to Q20 = 530 b [we show the times t =
1290, 1320, 1350 fm/c in Fig. 2(b)], which is obviously larger
than that of the adiabatic path. The dynamic fragments have
a more elongated shape near the scission point, indicating the
importance of microscopic dynamic effects.

For asymmetric fission, there is a visible difference be-
tween the dynamical potential and adiabatic one before the
sudden drop in the adiabatic potential, in Fig. 1. The octupole

TABLE II. The particle numbers of fragments in asymmetric
fission by CHFB and TDHFB calculations.

ZH NH ZL NL

CHFB 50.90 82.04 43.10 63.96
TDHFB 52.31 82.82 41.69 63.18

deformation Q30 and hexadecapole deformation Q40 evolution
of the dynamical path are shown by the red solid lines in
Figs. 3 and 4. From Q20 ≈ 260 b (t ≈ 500 fm/c), the evolu-
tion of Q30 and Q40 along the dynamical TDHFB path deviates
from the adiabatic CHFB path. Compared with adiabatic ap-
proximation, this time is too short for the fission system to
find the lowest point of the potential-energy surface, revealing
a strong nonadiabatic effect during this process. Figure 4 and
the comparison of Q20 = 240, 310, 370 b in Figs. 5(a) and
5(b) further confirm that the evolution of the total density
distribution in real space along the dynamical TDHFB path
has a thinner neck than that along the adiabatic CHFB path
before the sudden drop. The scission point of the TDHFB
dynamics occurs near time t = 1020 fm/c, corresponding to
Q20 = 493 b [we show the times t = 900, 960, 1020 fm/c in
Fig. 5(b)].

The difference in the particle number of asymmetric fis-
sion fragments between CHFB and TDHFB calculation under
the condition of axial symmetric deformation also indicates
the nonadiabatic effect. To calculate the particle number of
asymmetric fragments, we introduce a section (neck) plane at
a point on the z axis of the fissioning nucleus following the
separation method in Refs. [77,78]. The section plane is set
at the point where the density of the left fragment is equal to
the density of the right one. We have to keep in mind that this
method may collapse when the overlap of the two subsystems
is very large. In such a case, it is unreasonable to separate
the highly composite system into two parts. However, in this
paper, the TDHFB simulations of fission dynamics are started
from the point beyond the outer barrier where the fission-
ing nucleus is rather largely deformed (i.e., Q20 ≈ 200 b) as
shown in Figs. 2 and 5. Therefore, in this paper, the separation
method should be reasonable and safe to use.

The resultant proton and neutron numbers of heavy and
light fragments (ZH, ZL and NH, NL) are given in Table II. The
heavy fragment of asymmetric fission calculated by adiabatic
CHFB method is very close to 132Sn because 132Sn is a doubly
magic nucleus. However the fragments obtained by TDHFB
dynamics are near to 135Te and 105Mo. The main reason might
be that the result of TDHFB depends on the selection of the
starting point (between saddle and scission points) of dynam-
ical calculations [79].

The preparation of dynamical potential with multiple dy-
namic effects facilitates the effective division of internal
excitation energy and deformation energy in the fission pro-
cess and further reveals the properties of fission fragments.
This will be further discussed in Sec. IV.

At the end of this section, let us emphasize that the
rDC-TDHFB method can help us to calculate the dynamical
potential-energy surface and to clarify realistic fission paths,
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which include the dynamical effects and various excitations
described by TDHFB. Furthermore, there is a consensus that,
in the descending stage beyond the saddle point, one can
expect nonadiabatic effects due to level crossings. However,
to what extent do nonadiabatic effects significantly influence
our understanding of the fission dynamics? The study in this
section may provides us some enlightenments.

III. ROLES OF PAIRING DYNAMICS

Pairing correlations might play important roles in the dy-
namics of nuclear deformation [75,80–83]. And fission does
not occur on a reasonable timescale in pure TDHF at low
energies [47]; adding pairing via TDBCS [48,49] or TDHFB
[51] lubricates the dynamics. However, the importance of
pairing correlations in the description of fission processes is
still not well understood.

In most previous works, the dynamics of fission processes
are described with the Skyrme effective nucleon-nucleon in-
teraction (Skyrme-TDHF or Skyrme-TDHFB), within which
the isospin-symmetric density-dependent pairing coupling
constant

geff (r) = g

{
1 − η

[
ρ(r)

ρ0

]}
(6)

is introduced for the particle-particle channel since the char-
acteristic of zero-range interaction of Skyrme force. ρ(r) and
ρ0 are the total and saturation nuclear densities. The exten-
sive phenomenological information gathered so far for ground
states of nuclei fails to point to a well-defined value of the
parameter η. It has been demonstrated by Ref. [50] that the
fission dynamics depends strongly and nonmonotonically on
the parameter η. On the top of this, it is also necessary to set
an appropriate cutoff energy in the pairing part because the
zero-range interaction is assumed in the Skyrme force [84].

In contrast with the Skyrme HFB, in the HFB calculations
with the Gogny interaction (Gogny-HFB), the particle-hole
channel and the particle-particle channel are treated on an
equal footing. In the Gogny-(TD)HFB, a practical cutoff of
the energy range of the physical space is introduced naturally
from the terms with the Gaussian functions of the Gogny in-
teraction. Therefore, the Gogny interaction is suitable for the
formulation of the self-consistent TDHFB framework com-
bined with a practical numerical method for integrating the
TDHFB equations [53,55].

To explore the role of pairing dynamics, we first extract the
pairing energy

Epair = 1

4

∑
αβγ δ

v̄αβγ δκ
∗
αβκγ δ, (7)

where v̄αβγ δ represents the Gaussian part of the two-body
matrix elements, and καβ is the pairing tensor, respectively.
The results for symmetric and asymmetric fission of 240Pu are
shown in Figs. 6 and 7. Compare with adiabatic CHFB calcu-
lations, the pairing energy of TDHFB is obviously weaker in
the whole-mentioned Q20 range. The reduction of the pairing
correlations in TDHFB calculations results from the internal
excitation because level crossings during the dynamic fission
are taken into account in TDHFB theory.

FIG. 6. Pairing energy of the symmetric fission. The vertical
dotted line denotes the scission point ls of dynamical symmetrical
fission

We note here that the pairing energy of asymmetric fission
with TDHFB does not monotonically change, as shown Fig. 7.
The l1 and l2 points indicated by the two vertical dotted lines
in Fig. 7 are around the scission point of CHFB potential
and the dynamical scission point in the asymmetric fission,
respectively. At the l1 and l2 points, the TDHFB pairing en-
ergy is in the large values. We show in the following that
this phenomenon is mainly related to the nucleon transfer in
asymmetric fission. For the following discussions, it will be
convenient to keep in mind that Q(l1 )

20 of the l1 point is a little
less than the Q20 of the scission point in CHFB potential, and
the l2 point corresponds to the dynamical TDHFB scission
point exactly, as in Fig. 1.

In heavy-ion fusion reactions, the relation between pairing
correlations and multinucleon transfer has been investigated
by the TDHF + BCS method with the frozen occupation
approximation [85] and the TDHFB theory [86,87]. It is
concluded that pairing correlations can effectively enhance
two-nucleon transfer in the fusion dynamics. However, in
fission dynamics, the relation between pairing correlations

FIG. 7. The same as Fig. 6 but for the 240Pu asymmetric fission
path. The l1 point is around the scission point of the CHFB potential
and the l2 point corresponds to the dynamical scission point in the
asymmetric fission, as in Fig. 1. At the l1 and l2 points, the TDHFB
pairing energy is in the large values.
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FIG. 8. The evolution of the proton and neutron number differ-
ences (a) �N + �Z , (b) �Z , and (c) �N with respect to Q20. The
solid-dot lines are of TDHFB and the dashed lines of CHFB. The l1

and l2 lines are the same positions as in Fig. 7. The l (p)
2 and l (n)

2 lines
indicate the positions where protons and neutrons stop to transfer in
TDHFB, respectively.

and nucleon transfer is not well understood and is still under
investigation.

In the potential curves calculated by CHFB, the symmetric
and asymmetric fission paths divide beyond the outer sad-
dle point, say, the descent from saddle to scission. In this
dynamical process, the main contributions of pairing to self-
consistent mean-field calculations is the ability of the system
to allow for level crossings, which break down the adiabatic
approximation at level crossing and results in fragments es-
tablishing their identity. Therefore, the pairing energy can be
considered to play an important role in the odd-even effect
of the fission yields and the odd-even effect can be attributed
to the pair-breaking effect. Similar to the fusion reactions,
the characteristics of pairing energy in Figs. 6 and 7 might
be understood from the view of the nucleon transfer effect.
With the aid of the neck plane defined in Sec. II B, we calcu-
lated the numbers of nucleons transferring between two sides
of the neck plane of asymmetric fission dynamics during the
descending process from the saddle to scission. The results are
given in Fig. 8, where

�Z = ZH − ZL, �N = NH − NL. (8)

ZH, ZL and NH, NL are the numbers of protons and neutrons in
the heavy and light parts, respectively. �N + �Z in Fig. 8(a)
gives the difference in the total number of nucleons between
heavy and light fission fragments.

The two extreme points l1 and l2 in Fig. 8 correspond to
the two valleys of the TDHFB dynamic pairing energy curves
in Fig. 7. The l (p)

2 and l (n)
2 lines indicate the positions where

protons and neutrons stop to transfer in TDHFB dynamics,
respectively. The result shows a much different picture of nu-
cleon transfer between adiabatic CHFB and dynamic TDHFB

FIG. 9. Pairing energy of (a) protons and (b) neutrons of the
240Pu asymmetric fission dynamics. The solid-dot lines are of TD-
HFB and the dashed lines of CHFB.

calculations. In the CHFB calculation, from Q20 = 200 b until
the CHFB scission point, neutrons continuously transfer from
light fragment to heavy fragment, but protons first transfer
from heavy fragment to light fragment and then in the opposite
direction. When Q20 increases further from the CHFB scission
point, a large number of both neutrons and protons suddenly
transfers from heavy fragment to light fragment. Finally, both
�N and �Z tend to their constant, unchanging values. The
resultant fragments are 240Pu → 132Sn + 108Ru. This can be
interpreted as an effect of the spherical magic proton shell in
tin isotopes.

Now let us see the interesting picture of nucleon transfer
in TDHFB calculation. From the initial point (Q20 = 200 b)
of TDHFB to the l (p)

2 and/or l (n)
2 points, the nucleons are con-

tinuously transferred between the heavy and light fragments.
Finally, there is one proton transferred from the heavy nucleus
to the light nucleus, but no neutron transferred. When Q20

is larger than Q20(l (p)
2 ) and/or Q20(l (n)

2 ), there is no nucleon
exchanged between heavy and light fragments. The resultant
fragments are 240Pu → 135Te + 105Mo. Here it might be in-
teresting that Q20(l (p)

2 ) is smaller than Q20(l (n)
2 ).

To understand this phenomenon, we show the evolution of
proton and neutron pairing energies along 240Pu asymmetric
fission dynamics with respect to Q20 in Fig. 9 and the corre-
sponding spin-orbit energies in Fig. 10. There are also much
differences of pairing and spin-orbit energies between CHFB
and TDHFB calculations. By examining Figs. 8–10, the neu-
tron pairing comes into play earlier, because the existence of
the Coulomb barrier makes proton transfer more difficult than
neutron. With the dynamic evolution to l1 line, the number of
proton and neutron transfers from the heavy nucleus to light
nucleus reaches the maximum, and the proton pairing energy
increases significantly while the neutron pairing energy does
not. The positions l (p)

2 and l (n)
2 of proton and neutron frag-

ments separation also surprisingly correspond to valleys of the
proton and neutron pairing energies, and asymmetric fission
completes the rearrangement of the nucleon number.

In Fig. 10, the CHFB spin-orbit energies of protons and
neutrons largely change in the region Q20(l (p)

2 ) < Q20 <
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FIG. 10. Spin-orbit energies of (a) protons and (b) neutrons of
the 240Pu asymmetric fission dynamics. The solid-dot lines are of
TDHFB and the dashed lines of CHFB.

Q20(l (n)
2 ), comparatively, the TDHFB spin-orbit energies

change smoothly. This result might be ascribed to the fact
that single-particle level crossings are prohibited in the CHFB
theory. Due to this restriction, the shell effect in CHFB sim-
ulations is much stronger than that in dynamical TDHFB
calculations, thus the resultant heavy fragment of asymmetric
fission by the adiabatic CHFB method is very close to the
magic nucleus.

In the end, there is strong dependence of fission on the
dynamics of shell and pairing effects. To obtain the physical
insights on the role of multinucleon transfer in fission process,
we may need to understand its mechanism more deeply from
the microscopic-level dynamics.

IV. FRAGMENTS PROPERTIES

The scission dynamics is arguably one of the least under-
stood processes in fission. A long-term challenge of fission
studies is to obtain a more realistic description of the evo-
lution of the fissioning nucleus into fragments, especially in
the region where nascent fragments appear near and beyond
scission. The time-dependent method should be an ideal tool
to study the latter stage of fission, including scission and
postscission dynamics, as it is a fully microscopic and nona-
diabatic approach [4,5].

In our previous paper [52], we have shown that the
rDC-TDHFB could provide a reliable description of nuclear
reactions where the pairing effects play one of the central roles
in the nuclear property. Because the constrained densities
in the rDC-TDHFB scheme are the corresponding instan-
taneous TDHFB densities at every specific time, both the
nucleus-nucleus interaction potential and the mass parameter
in collective space include the dynamical effects and various
excitations described by the particle and pairing densities.

In this section, with the help of rDC-TDHFB scheme,
we extract some collective variables from the results of the
microscopic dynamic TDHFB calculations.

FIG. 11. The collective kinetic energies of the 240Pu symmetric
and asymmetric fission paths.

A. Collective kinetic energy

The effective capture of the collective kinetic energy of the
fragments is an important step in the microscopic density-
functional theory. In principle, the solutions of both TDHF
and TDHFB equations satisfy the equation of continuity if the
two-body interactions are local [23,88]. In the framework of
the TDHFB theory, we adopt the expression of the particle
current as

j(r) = 1

2i

∑
αβ

ραβ [φα (r) �∇φ∗
β (r) − φ∗

β (r) �∇φα (r)]δσασβ
, (9)

where the density matrix ραβ is constructed from the V matrix
in the TDHFB theory. Note that this particle current, defined
by the matrix V , contains all the dynamical effects and the
pairing correlations in the sense of the TDHFB theory. The
collective kinetic energy of the system can be expressed as

Ekin = h̄2

2m

∫
j2(r)

ρ(r)
d3r. (10)

Figure 11 shows Ekin with respect to Q20 of the 240Pu
symmetric and asymmetric fission paths. In the process from
the initial point of TDHFB dynamics to the l1 point, the sym-
metric fission takes 1140 fm/c, while the asymmetric fission
takes a little shorter time as 810 fm/c. At the l1 point, Ekin

is 4.5 MeV for the symmetric fission, and 2.5 MeV for the
asymmetric fission. For symmetric fission, Ekin is 26.1 MeV
at the ls point for complete fragmentation. For asymmetric
fission, the Ekin of the heavy fragment is lower than that of
the light fragment. Ekin increases monotonically and rapidly
in the region after the l1 point, with a value of 25.2 MeV at
the l2 point. In this case, the values of the heavy and light
fragments here are 11.0 and 14.2 MeV, respectively.

The collective kinetic energy Ekin in Eq. (10) also can be
approximately given in a classical form as follows:

Ekin = 1
2μv2

coll, (11)

where μ represents the reduced mass of the fission sys-
tem. With this approximation, the collective acceleration can
be obtained by taking the time derivative on both sides of
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FIG. 12. The collective acceleration of the 240Pu symmetric and
asymmetric fission paths. The vertical axis is scaled by a factor of
10−4.

Eq. (11) as

acoll = 1

μvcoll

dEkin

dt
. (12)

Here we have ignored the contributions related to the time-
dependent effect of the reduced mass μ because our numerical
results show that in the descending process, μ slowly changes
with respect to time in both symmetric fission and asymmetric
fission, and 1

2
dμ

dt v2
coll is several orders of magnitude smaller

than dEkin
dt in the dynamical fission process. The collective

acceleration with respect to Q20 is shown in Fig. 12. It is
clear that the symmetric fission is increasingly accelerated
since its acceleration increases smoothly up to the scission ls
point. The asymmetric fission dynamics can be decomposed
into three stages. The first stage in Q20 < l1 is an extremely
slow overdamped process, the second one in l1 < Q20 < l2 is
a significantly increasingly acceleration and neck disappears,
and, finally, in the third stage Q20 > l2, the heavy and light
fragments are separated from each other by Coulomb repul-
sion.

In our calculations, between the initial point of TD-
HFB dynamics and l1 point, the collective speed vcoll/c ≈
0.002–0.004 is very consistent with the values reported in
Ref. [51] and significantly smaller than the Fermi velocity
vF/c ≈ 0.25. The authors of Refs. [50,51] considered this
result as the microscopic justification for the assumption of
the overdamped Brownian motion model [14] and partially
to the scission-point model [89–91], because in both these
phenomenological models, it is assumed that the preformed
fission fragments are in thermal equilibrium and that the col-
lective energy flow is either vanishing or very small.

However, according to our results in Figs. 11 and 12,
the collective kinetic energies of the 240Pu symmetric and
asymmetric fission reach ≈25 MeV at the scission points l2
and/or ls. It is obvious that the nucleus is accelerated in the
descent from saddle to scission. In this sense, we think that
the assumption of overdamped Brownian motion might be
still questionable for symmetric fission and for the second and
third stages of the asymmetric fission dynamics.

FIG. 13. The internal excitation energy E
∗
int of the 240Pu symmet-

ric and asymmetric fission paths.

Here, it is worthwhile mentioning that the studies in
Refs. [50,51] are based on the TDHFB method as in this
paper. The reason why the different collective kinetic energies
are obtained, in our understanding at this moment, may result
from the different effective nucleon-nucleon interactions that
are used in the two simulations, SeaLL1 and SkM∗ function-
als in Refs. [50,51] but Gogny force in our simulation, as
mentioned in Sec. III. From a theoretical point of view, it is
valuable to leave this subject for the further investigations.

B. Internal excitation energy

In nonadiabatic time-dependent approaches to fission, as
TDHFB used in this paper, scission automatically occurs at
some time of the time evolution of the compound nucleus as
the result of the competition between nuclear and Coulomb
forces. Owing to the conservation of total energy in TDHFB,
the fragments are automatically in an excited state [1]. Ac-
cordingly, the internal excitation energy can be obtained as

E∗
int = ETDHFB − EDC − Ekin, (13)

where the dynamical potential EDC is obtained with the help
of the rDC-TDHFB method, and the collective kinetic energy
Ekin by Eq. (10). The result E∗

int is shown in Fig. 13 with
respect to the deformation Q20 and in Fig. 14 with respect to
the evolution time, respectively.

Compared with Fig. 11, it can be seen that the value of Ekin

is twice as much as that of E∗
int near both dynamical scission

points ls and l2. At the l1 point, E∗
int is 1.9 MeV for symmetric

fission and 5.5 MeV for asymmetric fission. It is also clear
that most of the internal excitation energy is produced in the
extremely large deformation of the fissioning system and in
the later stage of the scission process (around the scission
point and beyond). A remarkable feature is that, around the
dynamical scission point (ls) of the symmetric fission, Epair

changes smoothly and moderately in Fig. 6, however, around
both the adiabatic and dynamical scission points (l1 and l2
points) of the asymmetric fission, the pairing energy Epair

change quickly and reach the maximal values in Fig. 7. This
result can serve as the microscopic justification for the nona-
diabatic assumption in the scission dynamics beyond the outer
barrier. In this dynamic process, the dynamical potential EDC
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FIG. 14. The internal excitation energy E
∗
int with respect to time

of the 240Pu symmetric and asymmetric fission paths.

quickly goes down (in Fig. 1), the deformed composite system
and the nascent fragments are highly excited (in Figs. 13 and
14), and the deformation is accelerated (in Fig. 12).

With the aid of our rDC-TDHFB method, we can extract
the excitation energy of the primary fragments. After the two
fragments completely separate (beyond the scission) and the
nuclear attraction between the fragments vanishes, the con-
served energy of the system can be split as

ETDHFB = E [H] + E [L] + Ecoul, (14)

where E [H] and E [L] represent the total energy of heavy and
light fragments, respectively, Ecoul is the mutual Coulomb re-
pulsion between two fragments. By performing rDC-TDHFB
calculations for each fragment, the dynamical potentials

EDC = EDC[H] + EDC[L] + Ecoul (15)

can be obtained after removing the collective kinetic energy
and internal excitation energy at the instantaneous TDHFB
wave functions. Then, the internal excitation energy of each
fragment is calculated as

E∗[H/L] = E [H/L] − Ekin[H/L] − EDC[H/L], (16)

where Ekin[H/L] represents the collective kinetic energy of
the heavy or light fragments. The sum of the internal excita-
tion energies of the heavy and light fragments is numerically
equal to the internal excitation energy of the system in Eq. (13)
at the same specific time during the TDHFB trajectory.

Our results show that E∗[H] is smaller than E∗[L] during
the whole evolution process. At the l2 point in Fig. 13, E∗[H]
is 5.1 MeV and E∗[L] is 7.1 MeV. The heavy fragment is
nearly spherical and has lower excitation energy, while the
light fragment is highly deformed and has a higher excitation
energy. It is interesting that this result seems to support the
conclusion of Ref. [92] but is qualitatively different from the
previous results reported in Refs. [50,51]. In our understand-
ing, this result is reasonable because the fission process might
be an isoentropical rather than isothermal process because
the nuclear system may not have sufficient time to thermalize
before undergoing fission.

TABLE III. The ground-state energy Eg.s. of TDHFB calcu-
lations, the energies EDC of rDC-TDHFB calculations for each
fragment and the deformation energy Edef at the scission point of
240Pu symmetric and asymmetric fragments. All energies are in MeV.

Fragment Eg.s. EDC Edef

Symm 120
47 Ag −999.7 −989.1 10.6

Asymm 135
52 Te −1118.8 −1121.2 −2.4

105
42 Mo −880.1 −868.6 11.5

C. Deformation energy

The deformation energy of the nascent fragments at the
scission point is considered as the main source for the respec-
tive excitation in low-energy fission, such as spontaneous or
thermal-neutron-induced fission. As fission fragments gradu-
ally recover their ground-state deformations, the deformation
energy becomes an important part of the available excita-
tion energy and carries an important information on how the
fissioning system evolves along the different paths on the
potential-energy surface.

In this paper, the deformation energy Edef is defined as the
difference between EDC of the rDC-TDHFB calculations and
the HFB ground-state energy Eg.s. of each fragment. When
the rDC-TDHFB scheme is applied to each fragment, all the
internal excitation energies are removed and the deformation
is preserved at that time. Because the fragments in the two-
fragment pathway do not have an integer particle number, as
shown in Table II, we applied Gogny-HFB code to deduce the
ground states of the fission fragments with the nearest integer
particle number (as done in Refs. [46,47,50,51], for example)
under the same deformation harmonic-oscillator parameters.
The results are presented in Table III. In combination with the
real-space total density distributions shown in Figs. 2(b) and
5(b), it is obvious that the resultant fragments of symmetric
fission and the light fragment of asymmetric fission have large
deformation energy and therefore are largely deformed, while
the heavy fragment remains nearly spherical with relatively
small deformation energy. This result is reasonable because
135
52 Te is close to the doubly magic nucleus 132Sn, but 120Ag
and 105Mo are far away.

We should note here that, because our focus in this paper
is on the dynamics, we take the mass numbers as the nearest
integer to the actual (noninteger) particle numbers for the fis-
sion fragments. The code Gogny-HFB has thus been applied
to deduce the ground states of the fission fragments to the
nearest integer particle number. In this case, Eg.s. and EDC

are calculated for different neutron and proton numbers in Ta-
ble III. This is also the reason Eg.s. > EDC for fragment 135

52 Te.
To evaluate Edef listed in Table III, it would be instructive to
project the individual fragments onto a good particle number
[48,93–95].

We have computed the proton number Z and neutron
number N distributions of the fragments in Table III by us-
ing particle number projection techniques [48,93–95]. As an
example, the proton number Z and neutron number N dis-
tributions of the heavy fragments (Z = 52.31, N = 82.82)
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FIG. 15. Proton and neutron number distributions in the
fragments.

of 240Pu asymmetric fission are shown in Fig. 15. The most
probable heavy fragment is 135

52 Te, with the nearest integer
particle number to the actual particle numbers of heavy frag-
ment. The other six fragments are 136

52 Te, 136
53 I, 137

53 I, 134
52 Te,

137
52 Te, 135

53 I, in the order of the descending probabilities. The
ground-state energies Eg.s. of these six fragments are listed
in Table IV. For the heavy fragment of 240Pu asymmetric
fission, the ground-state energies of heavy fragments have
around ≈2 MeV difference when using the nearest integer
particle number instead the actual particle numbers of heavy
fragments.

D. Total kinetic and excitation energies

Most of the energy released in fission appears in the form
of the total kinetic energy (TKE) and total excitation energy
(TXE) of the fission fragments. The value of TKE and TXE
would significantly influence the multiplicity of evaporated
neutrons, particle evaporations, and gamma emissions either
before scission or from the separated fragments. Therefore,
many efforts have been made to predict the exact values of
TKE and TKE, as described in several review articles [1–5].
However, different models predict different values, and it is
therefore an important challenge to fission theory to improve
the calculations of the collective variables at scission.

With the adiabatic methods, the calculation of TKE
strongly depends on the criterion used to define scission
configurations and therefore there are large uncertainties of
the predicted values of TKE and TXE [36]. But, with the
nonadiabatic TDDFT approaches, calculation of TKE and
TXE is more rigorously defined since there is no need to
characterize scission (the nucleus “automatically” splits as a
function of time) and to disentangle the fragments. Under the

TABLE IV. The ground-state energy Eg.s. of the fragments with
good particle numbers

Fragments 136
52 Te 136

53 I 137
53 I 134

52 Te 137
52 Te 135

53 I

Eg.s. (MeV) −1121.1 −1128.5 −1131.4 −1115.9 −1124.1 −1125.4

help of TDDFT theory, TKE and TXE have been extracted in
Ref. [43] with TDHF and in Ref. [51] with TDHFB.

In this paper, with the results of the collective kinetic en-
ergy reported in Sec. IV A, we calculated the TKE of 240Pu
symmetric and asymmetric fission by summing up the collec-
tive kinetic energy and mutual Coulomb repulsion between
two fragments when the nuclear attraction between the two
fragments vanishes. The result is presented in Table V. The
result of our asymmetric fission TKE perfectly agrees with the
experimental value 184.8 ± 1.7 MeV obtained by averaging
the data sets available in Refs. [58,96,97].

The total excitation energy TXE consists of the following
three parts,

TXE = E
∗
adiab + E

∗
int + Edef , (17)

where the adiabatic excitation energy E
∗
adiab = Eg.s. − E0 is

the energy difference between the ground state of the parent
nucleus Eg.s. and the initial state of TDHFB dynamics E0. The
internal excitation energy E

∗
int and deformation energy Edef

are given in Secs. IV B and IV C. Compare the calculations
in Ref. [43] with TDHF and [51] with TDHFB, calculations
of TKE, E

∗
int and Edef in this paper are based on rDC-TDHFB

method in a self-consistent way.
We note here that, as shown in Figs. 2 and 5, there are

considerable shape elongations of the nascent fragments at
scission point calculated by TDHFB dynamics. The asso-
ciated deformation energy of fragments is included in EDC

because EDC is calculated with rDC-TDHFB by constraining
the dynamical densities. E

∗
int defined in Eq. (13) does not

include the deformation energy of fragments. Therefore, the
deformation energy, which largely contributes to the TXE, has
to be considered in Eq. (17) [98,99].

The results of TXE is 24.1 MeV for symmetric fission
and 20.1 MeV for asymmetric fission. Such values are very
close to the average TXE ≈26 MeV expected from empirical
arguments in thermal fission of 240Pu [100]. For asymmetric
fission, when the excitation energy during the adiabatic pro-
cess E

∗
adiab is not considered, the excitation energy of heavy

and light fragments derived entirely from nonadiabatic dy-
namics is 2.7 and 18.6 MeV. This interesting result may help
us to elucidate the controversy on the excitation energy sort-
ing mechanism and equilibrium characteristics in superfluid
fission dynamics [1,5,92]. To this end, more microscopical
TDHFB calculations are needed. We will leave the discussion
of this subject to our following presentation.

Finally, we present the main results of this section in
Table V. Compare with the relevant works in Refs. [36,51],
our predictions of TKE and TXE finely match the experi-
mental data, which might be attributed to the fact that our
calculations are based on rDC-TDHFB method in a very self-
consistent way.

V. SUMMARY

Nuclear fission is a very complex quantum many-body
problem in which all the nucleons are equally involved in the
large-amplitude collective dynamics, specially, in the scission
process. There is a fundamental relation between the “macro-
scopic classic” nuclear collective motion and “microscopic

044611-11



LIANG TONG AND SHIWEI YAN PHYSICAL REVIEW C 106, 044611 (2022)

TABLE V. The ground-state energy Eg.s. and the initial energy ETDHFB of 240Pu symmetric and asymmetric fission TDHFB dynamics. The
adiabatic potential ECHFB, dynamic potential EDC, collective kinetic energy Ekin, Coulomb energy Ecoul, excitation energy during the adiabatic
evolution, E

∗
adiab, internal excitation energy E

∗
int , and deformation energy Edef at the scission points. The TKE and TXE of both fission paths.

All energies are in MeV.

Eg.s. ETDHFB ECHFB EDC Ekin Ecoul E
∗
adiab E

∗
int Edef TKE TXE

Symm −1794.8 −1784.6 −1848.9 −1823.8 26.1 154.5 −10.2 13.1 21.2 180.6 24.1
Asymm −1794.8 −1793.6 −1847.5 −1831.0 25.2 158.8 −1.2 12.2 9.1 184.1 20.1

quantum” single-particle effects. To understand the fission
dynamics, we have to make classification of how the col-
lective state is realized out of the microscopic single-particle
motions.

In this paper, as an effort, a real-space particle- and pairing-
density-constrained scheme rDC-TDHFB is used to extract
the collective variables from the basic TDHFB calculations.
Because the constrained densities in the rDC-TDHFB scheme
are the corresponding instantaneous TDHFB densities at ev-
ery specific time, all the resultant collective variables, such
as, energy potential, collective kinetic energy, internal excita-
tion energy and deformation energy of the nascent fragments,
etc., include the dynamical effects and various excitations
described by the particle and pairing densities. Therefore this
method could provide a reliable description of nuclear fissions
where the pairing effects play one of the central roles in the
nuclear property.

We have applied our proposed rDC-TDHFB scheme to
analyze the fission dynamics of actinides nuclei (240Pu, as
an example). The energy potential, collective kinetic energy,
internal excitation energy, and deformation energy of the
nascent fragments are extracted on the basis of the dynam-

ical TDHFB calculations, accordingly. The main results are
listed in Table V. It is plausible that our predictions of col-
lective variables, especially the total kinetic energy and total
excitation energy of the fission fragments, finely match the
experimental data.

However, it is no doubt that even over more than 80 years
since the discovery of fission, a full microscopic description
remains a challenging subject for modern fission theory and
experiment provides often only indirect and hard-to-quantity
insights. Many basic questions are still to be answered [1–6].
Among the unclear problems, scission dynamics and the
fragments properties should receive much more attention in
further studies.
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