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Fermi motion effects in electroproduction of hypernuclei
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In a previous analysis of electroproduction of hypernuclei the cross sections were calculated using the
distorted-wave impulse approximation where the momentum of the initial proton in the nucleus was set to zero
(the “frozen-proton” approximation). In this paper we go beyond this approximation, assuming a nonzero effec-
tive proton momentum due to proton Fermi motion inside the target nucleus, discussing also other kinematical
effects. To this end we have derived a more general form of the two-component elementary electroproduction
amplitude (Chew-Goldberger-Low-Nambu-like) which allows its use in a general reference frame moving
with respect to the nucleus rest frame. The effects of Fermi motion were found to depend on kinematics
and elementary amplitudes. The largest effects were observed in the contributions from the longitudinal and
interference parts of the cross sections. The extension of the calculations beyond the frozen-proton approximation
improved the agreement of predicted theoretical cross sections with experimental data, and, once we assumed
the optimum on-shell approximation, we were able to remove an inconsistency which was previously present in
the calculations.
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I. INTRODUCTION

Studying the production of � hypernuclei provides impor-
tant information on details of the �N interaction, particularly
on its spin-dependent part that is difficult to investigate in
free �N scattering [1]. In fact, the effective �N interaction
can be determined from hypernuclear spectra obtained from
various reactions induced by hadron (mainly π+ and K−)
and electron beams [2]. Moreover, precise measurements of
the production cross sections provide information on the hy-
pernuclear production mechanism and the dynamics of the
elementary production reaction. Whereas γ -ray hypernuclear
spectra are measured with very high precision (a few keV), the
spectra of (e, e′ K+) reactions from nuclei are obtained only
with resolution of several hundreds of keV, which is better
than in the hadron-induced reactions [3] but which still makes
studying the fine splitting within the multiplets problematic.
On the other hand, the reaction spectroscopy allows one to
study also higher energy excited states, e.g., even between
the nucleon emission threshold and the � emission threshold,
which is not possible in γ -ray spectroscopy.

The electroproduction of strangeness is characterized by a
large three-momentum transfer to the � (≈250 MeV/c), large
angular momentum transfer J , and strong spin-flip terms, even
at almost zero production angles [3]. The latter results in the
dominance of the highest-spin states in the multiplets. More-
over, the kaon production occurs on a proton in contrast to a
neutron in the (K−, π−) and (π+, K+) reactions, allowing one
to study different hypernuclei and charge-dependent effects
from a comparison of mirror hypernuclei (charge symmetry
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breaking). An important merit of electroproduction in view
of its theoretical description is that the electromagnetic part
of the interaction is well known. A systematic experimental
study of high-resolution hypernuclear spectroscopy in (e, e′
K+) has been performed in Halls A [4] and C [5] at Jefferson
Laboratory (JLab). However, a reliable analysis of these data
requires good understanding of the dynamics of the process
and uncertainties arising from various approximations in a
model.

Theoretical calculations of the cross sections in photo- and
electroproduction of hypernuclei [6–14] have been performed
in the distorted-wave impulse approximation (DWIA) mainly
assuming that the initial proton is at rest with respect to the
nucleus. This “frozen-proton” approximation made it possible
to use the nonrelativistic two-component Chew-Goldberger-
Low-Nambu (CGLN) form of the elementary-production
amplitude in the proton laboratory frame [8], which signif-
icantly simplifies the calculations. However, as the proton
is moving inside of the nucleus with a momentum about
150 MeV/c (in 12C), which is comparable to a momentum
transfer of about 250 MeV/c, it is advisable to estimate ef-
fects arising from this proton Fermi motion. Note that, to
this end, in the approaches with a nonrelativistic shell-model
description of the nuclear structure, one needs to derive the
two-component form of the elementary electroproduction am-
plitude for a moving proton, i.e., the CGLN-like form in
a general Lorentz frame moving with respect to the target-
nucleus center of gravity.

The Fermi motion was included, e.g., in the elastic scatter-
ing of protons [15] and pions [16] from nuclei, via full folding
(Fermi averaging) in the first-order optical potential. Note that
here one needs an off-energy-shell extension of the elemen-
tary amplitude, which introduces additional uncertainty in the
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calculation. Fermi motion effects were found to be important
in calculating the cross sections in pion photoproduction off
10B [17]. On the other hand, in the DWIA analysis of the (K−,
π−) reaction on 12C [18] it was shown that accounting for the
Fermi motion results only in a few percent reduction of the
cross sections for hypernuclear production. The effects from
motion of the target nucleon were also included in the DWIA
calculations of the cross section in the (π+, K+) and (K−, π−)
reactions on the 12C target, assuming optimal Fermi averaging
of the on-shell elementary amplitude [19]. This averaging of
the amplitude leads to improvement in the data description. A
Fermi averaged amplitude was also used in the study of for-
mation of p-shell hypernuclei in the (K−, π−) reactions [20].
Nonlocalities in photoproduction of hypernuclei arising from
Fermi motion were included in Refs. [7,10] using relativistic
nuclear models. These effects were found to make changes of
about 20% (and more) in the cross sections for the high-spin
transitions which dominate in a multiplet [7].

In this paper we study effects of Fermi motion of the
initial proton in DWIA calculations of the cross sections in
12C(e, e′K+)12

�B. In order to avoid uncertainties related to
an off-energy-shell extension of the elementary amplitude,
constructed for production on a free proton [21,22], the am-
plitude is considered on-shell in the optimal factorization
approximation. This approach was already used in our pre-
vious calculations [4,12,14] and here we just go beyond the
frozen-proton approximation. We also suggest a solution with
an “optimum” proton momentum which allows us to use the
on-shell amplitude, fulfilling simultaneously energy conserva-
tion in the many-body system. The Fermi-motion effects will
be demonstrated on the angle and energy-dependent cross sec-
tions and the new results will be also compared with available
experimental data and our previous results from Ref. [4].

Including the elementary amplitude for a nonzero pro-
ton momentum required derivation of the two-component
form of the amplitude in a general reference frame. This
two-component, CGLN-like form of the covariant ampli-
tude derived in the field-theoretical framework [21,23] is
necessary because the nuclear and hypernuclear structure is
described in the nonrelativistic quantum-mechanical frame,
e.g., in the shell model. To our knowledge, such a general two-
component amplitude for electroproduction of pseudoscalar
mesons is not available in the literature and therefore we have
derived the formulas ourselves.

The paper is organized as follows: in the next sec-
tion, we briefly describe the formalism of DWIA and the
two-component elementary amplitude in a general reference
frame. Results showing the Fermi motion effects in the cross
sections are discussed in Sec. III. In this section we also
provide updated theoretical predictions for the 12C, 9Be, and
16O targets in comparison with the data and previous results
published in Ref. [4]. A summary and conclusions are given
in Sec. IV. More details on the formalism, formulas, and
derivations are given in Appendices A–C.

II. FORMALISM

In this section we provide a basic formalism of the DWIA
suitable for description of electroproduction of hypernuclei.

pK

pΛ
pp

PA PH

q

pc

FIG. 1. A schematic representation of the amplitude for pho-
toproduction of a hypernucleus (H ) induced by virtual photons in
the plane-wave impulse approximation. The energy-momenta of the
nucleus, denoted by A, and of the hypernucleus, denoted by H , are
marked with capital letters P = (E , �P) and those of intermediate
systems with lowercase letters.

A. Optimal factorization approximation

Production of hypernuclei by a virtual photon associated
with a kaon in the final state,

γv(q) + A(PA) −→ H (PH ) + K+(pK ), (1)

where the corresponding four-momenta are given in the
parentheses, can be satisfactorily described in the impulse
approximation (IA) where the elementary reaction takes place
on individual protons bound in the nucleus, as shown in
Fig. 1. This approach is justified because the photon and
kaon momenta are supposed to be rather high (≈1 GeV),
e.g., in the JLab experiments [4,5], and this clearly sepa-
rates the elementary production (the 2-body process) from the
many-body reaction (1). The cross section for production of
the ground and excited states of a hypernucleus depends on
the many-particle matrix element between the nonrelativistic
wave functions of the target nucleus (�A) and the hypernu-
cleus (�H ),

Mμ = 〈�H |〈χK |
Z∑

j=1

Ĵμ( j) |χγ 〉|�A〉, (2)

where χK is taken as a kaon plane (PWIA) or distorted
(DWIA) wave function and Ĵμ( j) is an elementary operator
for � production on the jth proton. In the one-photon ap-
proximation without Coulomb distortion of initial and final
electrons, the virtual-photon wave function χγ is taken as
the plane wave. Due to the symmetry of the nuclear wave
function, we can replace the sum over all protons with Z Ĵμ,
where Z is the atomic number of the target nucleus. Denoting
the intermediate momenta of the proton and � as �pp and �p�,
respectively, the momentum transfer as �� = �q − �pK , and con-
sidering translational invariance, we introduce the elementary
amplitude Jμ( �pK , �q, �pp):

〈 �pK , �p�|Ĵμ| �q, �pp〉 = (2π )3 δ(3)( �p� − �pp − ��)Jμ, (3)

which has to be expressed in the two-component form to
match it with the nonrelativistic nuclear and hypernuclear
wave functions in Eq. (2). Similarly, we introduce the hyper-
nuclear production amplitude Tμ( �pK , �q, �PA):

Mμ = (2π )3 δ(3)( �PH − �PA − ��) Tμ. (4)
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In the nucleus rest (laboratory) frame, this amplitude is

Tμ = Z
∫

d3ξ� d3ξp exp (iB �� · �ξ�) χ∗
K ( �pKH , B�ξ�)

×
∫

d3 pp

(2π )3
exp[i �pp · (�ξ� − �ξp)] Tr

[
Jμ( �pK , �q, �pp)

×
∫

d3ξ1 · · · d3 ξA−2 
∗
H(�ξ1, . . . , �ξA−2, �ξ�)

× 
A(�ξ1, . . . , �ξA−2, �ξp)

]
. (5)

where B = (A − 1)/(A − 1 + m�/mp), ξ ’s are the Jacobi co-
ordinates, and χ∗

K describes the kaon distortion (χ∗
K = 1 in

PWIA) that depends on the kaon relative momentum with
respect to the hypernucleus, �pKH . The trace is over the proton
and � spin as Jμ is the 2 × 2 matrix in that space. The integral
over the proton momentum �pp includes averaging over the
Fermi motion of the target protons inside the nucleus. How-
ever, we can assume that a dependence on �pp in the amplitude
Jμ is much smoother than that in the phase factor weighted
by the nuclear wave functions, and take the elementary am-
plitude out of the integral for some effective (optimal) value
of �pp; i.e., we can replace Jμ( �pK , �q, �pp) with Jμ( �pK , �q, �peff ).
The integration over �pp then gives a δ function which allows
integration over �ξ�. Finally we arrive at an expression for the
laboratory amplitude in the optimal factorization approxima-
tion (OFA) (see also [15]):

Tμ = Z Tr

[
Jμ( �pK , �q, �peff )

∫
d3ξ e(iB ��·�ξ ) χ∗

K ( �pKH , B�ξ )

×
∫

d3ξ1 · · · d3 ξA−2

∗
H(�ξ1, . . . , �ξA−2, �ξ )

× 
A(�ξ1, . . . , �ξA−2, �ξ )

]
, (6)

where we omit a subscript at the integration variable �ξ (as
�ξp = �ξ�) and �peff is an effective proton momentum. Recall
that �ξ is the relative particle-core coordinate.

In the previous calculations, see, e.g., Refs. [4,8,13], the
effective momentum was set to zero in the so-called frozen-
proton approximation. This choice provides us with a simple
expression for the two-component (CGLN) elementary am-
plitude in the proton laboratory frame; see Eq. (4.3) in [8].
Here the CGLN amplitude consists only of six structures. In
the more general case with a nonzero �peff one needs a more
general CGLN-like form. In the next section we are going
to derive this form, which will allow us to go beyond the
frozen-proton approximation.

B. Two-component elementary amplitude

Here we will present the two-component formalism for
kaon electroproduction, but it can be also applied for elec-
troproduction of any pseudoscalar meson.

The invariant amplitude of K+ production on a free proton
induced by a virtual photon,

γv(q, ε) + p(pp, ηp) −→ �(p�, η�) + K+(pK ), (7)

can be expressed via six gauge invariant (GI) operators

Mμεμ = ū(p�, η�) γ5

6∑
j=1

M j A j (q
2, s, t ) u(pp, ηp), (8)

where, in the one-photon approximation, the electron part
enters via the four-vector εμ = e

q2 ū(p′
e) γμu(pe) and the mass

of the virtual photon is q2 < 0. Dirac bispinors ū� and up with
spin projections η� and ηp are for the � and proton, respec-
tively. The scalar amplitudes Aj are functions of Mandelstam
variables s = (q + pp)2 and t = (q − pK )2 and describe the
reaction dynamics. They are obtained from a decomposition
of contributions from Feynman diagrams [21,23]. The GI
operators M j , composed of q, pp, p�, εμ, and γ matrices, as-
sure that the invariant amplitude (8) fulfills the Ward identity
M · q = 0. Formulas for M j are given in Eqs. (17) of
Ref. [23]. Specific expressions for the scalar amplitudes
Aj (s, t ) and more details on the formalism in photo- and
electroproduction of kaons can be found in Refs. [21,23].

The invariant amplitude (8) can be used to calculate ob-
servable quantities of the process (7) in any reference frame
but it cannot be directly used to calculate the many-particle
matrix element (2). For computing this matrix element we
need a one-body transition operator on the nonrelativistic
proton-hyperon Hilbert space written in the two-component
formalism, i.e., using Pauli matrices. Only then can we fold
the operator with the nuclear and hypernuclear nonrelativistic
wave functions that are expressed by Pauli spinors. Moreover,
as we see in Eq. (6) we need the elementary amplitude, in
general, for a nonzero proton momentum �peff . Formulas for
this two-component (CGLN) amplitude in special cases are
already available in literature; see e.g., Ref. [8] for either the
laboratory ( �peff = 0) or the center-of-mass ( �peff = −�q) frame.
Here we provide the two-component form of the amplitude for
arbitrary value of the proton momentum, i.e., in an arbitrary
frame.

Due to the GI of the amplitude (8) one can change the
polarization vector εμ = εμ − ε0 qμ/q0 = (0, �ε), which sets
the time component to zero, and the amplitude can be written
via a two-component amplitude �J · �ε,

M · ε = ū�γ5

6∑
j=1

M j A j up = X†
� ( �J · �ε) Xp, (9)

where X†
� and Xp are Pauli spinors. The new form �J includes

nonrelativistic structures composed from Pauli matrices and
three-momenta, for example �q, �pK , and �pp. After some manip-
ulations we can arrive at the amplitude in the two-component
form for a nonzero proton momentum �pp,

�J · �ε = G1 (�σ · �ε) + G2 i( �pp × �q · �ε) + G3 i( �pK × �q · �ε)

+ G4 i( �pp × �pK · �ε) + i( �pp × �pK · �q)[ G5 (�q · �ε)

+ G6 ( �pp · �ε) + G7 ( �pK · �ε) ] + G8 (�σ · �q)(�q · �ε)

+ G9 (�σ · �q)( �pp · �ε) + G10 (�σ · �q)( �pK · �ε)

+ G11 (�σ · �pp)(�q · �ε) + G12 (�σ · �pp)( �pp · �ε)

+ G13 (�σ · �pp)( �pK · �ε) + G14 (�σ · �pK )(�q · �ε)

+ G15 (�σ · �pK )( �pp · �ε) + G16 (�σ · �pK )( �pK · �ε). (10)
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Expressions for the CGLN-like amplitudes Gj in terms of the
scalar amplitudes Aj and kinematical variables are given in
Appendix A. In the special case of �pp = 0 one obtains the
ordinary amplitude in the laboratory frame,

�JL · �ε = G1 (�σ · �ε) + G3 i( �pK × �q · �ε)

+ G8 (�σ · �q)(�q · �ε) + G10 (�σ · �q)( �pK · �ε)

+ G14 (�σ · �pK )(�q · �ε) + G16 (�σ · �pK )( �pK · �ε), (11)

which is equivalent to Eq. (4.3) of [8] and which was used in
the DWIA calculations of the hypernuclear cross sections in
Refs. [4,14]. The formulas for Gj agree with the correspond-
ing formulas for Fi (i = 1, . . . , 6) in Eqs. (B.3) of Ref. [8].
Similarly, we can compare Eq. (10) for the center-of-mass
frame ( �pp = −�q) with that in Ref. [8] and with corresponding
CGLN amplitudes in (B.1) [8].

In evaluating the matrix element (2) it is convenient to use
the spherical form of the amplitude

�J · �ε = −
√

3 [ J (1) ⊗ ε (1) ]0 =
∑

λ

(−1)−λ J (1)
λ ε

(1)
−λ, (12)

where the components J (1)
λ are defined via 12 spherical ampli-

tudes FS
λη with S = 0, 1 and λ, η = ±1, 0:

J (1)
λ =

∑
Sη

FS
λη σ S

η . (13)

Here σ 1
η are the spherical components of Pauli matrices and σ 0

0
is the unit matrix. Inserting (13) into (12) we get the following
explicit form:

�J · �ε = − ε 1
1

(
F 0

−10 + σ 1
1 F 1

−11 + σ 1
0 F 1

−10 + σ 1
−1 F 1

−1−1

)
+ ε 1

0

(
F 0

00 + σ 1
1 F 1

01 + σ 1
0 F 1

00 + σ 1
−1 F 1

0−1

)
− ε 1

−1

(
F 0

10 + σ 1
1 F 1

11 + σ 1
0 F 1

10 + σ 1
−1 F 1

1−1

)
. (14)

The formulas for FS
λη written in terms of the spherical compo-

nents of the momenta and the CGLN-like amplitudes Gj are
given in Appendix B.

C. Cross section for hypernuclear production

The spherical components (T (1)
λ ) of the hypernuclear pro-

duction amplitude (Tμ) can be decomposed into the reduced
amplitudes Aλ

Jm,

T (1)
λ = 1

[JH ]

∑
Jm

CJH MH
JAMAJm Aλ

Jm, (15)

where CJH MH
JAMAJm is the Clebsch-Gordan coefficient, (JA, MA)

and (JH , MH ) are the nuclear and hypernuclear spin
and its projection, respectively, and [J] = √

2J + 1,
which is used also in the following relations. In the
OFA (6) and assuming that the proton and � are in
single-particle states α (= nl j) and α′, respectively,
we get

Aλ
Jm = 1

[J]

∑
Sη

FS
λη

∑
LM

CJm
LMSη

∑
α′α

RLM
α′α HLSJ

l ′ j′l j

×(
H || [b+
α′ ⊗ aα]J || 
A), (16)

Φ

θe
θ

p

p'
γ
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Scattering (Leptonic) Plane

Reaction (Hadronic) Plane
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x
ŷ

e

e

K

K

K

^

^

θK

ΦK

y^

z^

x^

p
K

q

FIG. 2. The laboratory frame for hypernucleus electroproduction
( �PA = 0) with the z axis oriented along the photon momentum �q. The
y axis of the right-handed system is perpendicular to the leptonic
plane; see the upper part of the figure. The kaon momentum is
defined by its polar θK and azimutal 
K angles; see the lower part.
Similar notation is used for the proton momentum �pp. The angle 
K

also defines the angle between the leptonic and hadronic planes. Note
our convention that for 
K = 0 the kaon momentum lies between the
beam ( �pe) and photon momenta.

where RLM
α′α are the radial integrals, HLSJ

l ′ j′l j includes the Racah
algebra [see Eq. (C7)], and the reduced one-body density
matrix elements (OBDME) are nonzero only for the consid-
ered single-particle transitions (α)p → (α′)� described by the
operator [b+

α′ ⊗ aα]J with the proton annihilation (aα) and �

creation (b+
α′ ) operators. More details on derivation of Eq. (16)

is given in Appendix C.
The cross sections are calculated in the laboratory frame

( �PA = 0) with electron kinematics and definitions of the an-
gles as given in Fig. 2. The virtual photon has the energy Eγ =
Ee − E ′

e, a “mass” Q2 = −q2 = �q 2 − E2
γ , the transverse po-

larization

ε =
(

1 + 2| �q|2
Q2

tan2 θe

2

)−1

, (17)

and the longitudinal polarization given as εL = ε Q2/E2
γ . The

unpolarized differential cross section for electroproduction is
then

dσ

d�K
= dσT

d�K
+ εL

dσL

d�K
+ ε

dσTT

d�K
+

√
εL(ε + 1)

dσTL

d�K
,

d3σ

dE ′
ed�′

ed�K
= �

dσ

d�K
, (18)

where the triple-differential cross section is a product of
dσ/d�K and the virtual-photon flux in the nucleus rest frame,

� = α

2π2

| �q |
Q2(1 − ε)

E ′
e

Ee
, (19)
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with the fine-structure constant α. The separated cross sec-
tions are

dσT

d�K
= β

2[JA]2

∑
Jm

1

[J]2

(∣∣A+1
Jm

∣∣2 + ∣∣A−1
Jm

∣∣2)
, (20a)

dσL

d�K
= β

[JA]2

∑
Jm

1

[J]2

∣∣A0
Jm

∣∣2
, (20b)

dσTT

d�K
= β

[JA]2

∑
Jm

1

[J]2
Re

[
A+1

JmA−1∗
Jm

]
, (20c)

dσTL

d�K
= β

[JA]2

∑
Jm

1

[J]2
Re

[
A0∗

Jm

(
A+1

Jm − A−1
Jm

)]
, (20d)

where the kinematical factor β depends on the kaon mo-
mentum [8]. In the kinematics considered here and those
of the performed experiments [4] the transverse part dσT

dominates the cross section. The longitudinal part dσL gives
small contributions but, as we will show, it is sensitive to
kinematical effects and elementary amplitudes. The TL in-
terference part is an important contribution to the full cross
section even for quite small photon virtualities considered
here, Q2 ≈ 0.01 (GeV/c)2.

D. Optimum on-shell approximation

The elementary electroproduction amplitude is constructed
assuming that the involved particles are on their mass shell,
except the virtual photon, and that the energy-momentum is
conserved. However, in the impulse approximation (Fig. 1)
the initial proton and final � are not asymptotically free
objects, in fact they are intermediate particles. In our model
calculations we deem that it is reasonable to keep the baryons
on their mass shell and consider a translational invariance
of the elementary and overall amplitudes and of the nuclear
and hypernuclear wave functions, the latter being written as a
plane wave for the center-of-inertia motion multiplied by the
internal part as a function of relative (Jacobi) coordinates. We
also require energy conservation in the elementary vertex,

Eγ +
√

m2
p + �p 2

p =
√

m2
K + �p 2

K +
√

m2
� + �p 2

�, (21)

to keep the amplitude on the energy shell as well. This re-
quirement together with energy conservation in many-body
vertexes,

EA =
√

M2
c + ( �PA − �pp)2 +

√
m2

p + �p 2
p + εp, (22a)

EH =
√

M2
c + ( �PA − �pp)2 +

√
m2

� + �p2
� + ε�, (22b)

where εp and ε� are single-particle binding energies in a gen-
eral reference frame, leads to a violation of the overall energy
conservation by a factor εp − ε�. However, as this difference
is relatively small, εp − ε� ≈ 10 MeV, in comparison with the
total energy, Eγ + EA ≈ 10 GeV, we neglect it, assuming the
overall energy conservation

Eγ + EA = EK + EH . (23)

The kinematics of electroproduction is determined by
the virtual-photon momentum q and polarization ε and by

the kaon polar θK and azimuthal 
K angles. The magnitude
of the kaon three-momentum has to be calculated from en-
ergy conservation equations (21) or (23), which we denote
by | �pK (2b)| and | �pK (mb)|, respectively. Since the solution
| �pK (2b)| for the 2-body reaction with an arbitrary proton
momentum in general differs from the solution | �pK (mb)| for
the many-body process, we have to choose which value will
be used in computing the elementary amplitude (ea) and the
radial integral (ri) in Eq. (16) and for the kinematic factor β

in Eqs. (20a)–(20d). This provides us with various schemes of
calculation:

(a) 2-body: only one value | �pK (2b)| is used for ea, ri,
and β. The elementary amplitude is then on-energy-
shell but the many body energy conservation (23) is
violated.

(b) 2-body_ea: a hybrid scheme with two different
values| �pK (2b)| for ea and | �pK (mb)| for ri and β. The
elementary amplitude is on-energy-shell and both (21)
and (23) are fulfilled. Note that this scheme was used
in our previous calculations [4,14].

(c) many-body: only one value | �pK (mb)| is used for ea, ri,
and β. However, in this case the elementary amplitude
is off-energy-shell which causes additional uncertainty
of the results.

In the next section we will show differences of the cross
sections calculated in these schemes.

One can take advantage of the possibility to choose the
effective value of �pp in Eq. (21) and find a value that gives
the same solution as that of Eq. (23), | �pK (2b)| = | �pK (mb)|.
This value exists and we denote it as an “optimum” proton
momentum �popt. In fact, we have one equation for the mag-
nitude | �popt| and an angle with respect to �� which can be
chosen. In our calculations we have chosen this angle to be
180◦, i.e., the proton is moving opposite to the momentum
transfer, minimizing the momentum of �. Note that in the
OFA, Eq. (6), this optimum momentum equals �peff and makes
the three schemes given above equivalent, allowing for the
on-energy-shell elementary amplitude. Therefore we denote
this as the optimum on-shell approximation. Note also that we
do not perform an “optimal Fermi averaging” as in Ref. [19]
for the (π+, K+) production because we use the OFA.

E. Mean proton momentum in target nucleus

The effective value of the proton momentum in the OFA (6)
can be also chosen as a mean momentum of the proton deter-
mined from its mean kinetic energy inside a nucleus, | �peff| =√

2μ 〈Ekin〉, where μ is the reduced mass of the proton-core
system. In the analysis presented here we calculate the mean
kinetic energy of a proton inside 12C using the single-particle
wave function of the proton, used also for computing the
radial integrals. The interaction between the proton and the
core 11B is described by the Woods-Saxon and Coulomb
potential which was also used in Ref. [4]. For the protons
bound in the 0p1/2 and 0p3/2 states with the binding energies
−10.37 and −15.96 MeV we have obtained the mean kinetic
energies 18.15 and 18.76 MeV, respectively. These very near
values, even if the binding energies are quite different, can be
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attributed to a relatively strong spin-orbital part of the poten-
tial with a depth of VLS = −19 MeV. The mean momenta are
then 176.7 and 179.6 MeV/c. In our comparison presented
in the next section we will consider that | �peff| = 179 MeV/c
with two values of the angle with respect to the photon,
θeff = 0◦ and 180◦.

III. RESULTS

First, we give more details about the model calculations
presented here, mentioning also upgrades of the model with
respect to the previous version, and then we show kinematic
and Fermi motion effects on the angular (θKe) and energy (Eγ )
dependence of the cross sections in electroproduction of 12

�B.
We prefer to use the kaon angle with respect to the beam,
θKe, instead of with respect to the photon, θK ; see Fig. 2.
The results are presented only for selected hypernuclear states
(Ex[MeV], JP): (0.0, 1−) and (0.116, 2−) with � in s orbit and
(10.525, 1+), (11.059, 2+), and (11.132, 3+) with � in p orbit.
It is interesting to mention a selection rule according to which
contributions from the spin non-flip part of the elementary
amplitude F0

λ0 in Eq. (16) are only possible for the states 1−
and 2+ but they are missing in 2−, 1+, and 3+. However, in
the kinematic region considered here, i.e., small kaon-photon
angles θK , the strength of the spin nonflip spherical amplitudes
F0

λ0 is very small and therefore one cannot expect big differ-
ences due to this selection rule. There is, however, another
“dynamical” selection rule which will be mentioned below
and which generates differences between the results for these
two groups of states.

A. More details of the calculation

The elementary amplitude FS
λη used in Eq. (16) is de-

scribed by our recent BS3 isobar model [21] and by the
older SLA Saclay-Lyon model [22]. Note that SLA does
not describe the new electroproduction data as well as BS3
[21] mainly because these data were not available during its
construction. The OBDME are taken from shell-model struc-
ture calculations by Millener with a �N effective interaction
[24] similarly to our previous calculations [4,14]. The kaon
distortion included in the radial integrals is described in the
eikonal approximation with the first-order optical potential
constructed from the separable KN amplitude as in Ref. [4].

A new feature of the present calculations is that the radial
integrals RLM

α′α are calculated with proper single-particle wave
functions according to the quantum numbers α and α′ of
assumed transitions given by OBDME. In the previous cal-
culations we used only the radial integrals with the quantum
numbers of dominant transitions. Another improvement is
using the right relative particle-core coordinate described by
the Jacobi coordinate |�ξ | in the radial integrals. This allows
one to calculate the proton and � wave functions from the
Schrödinger equation with a particle-core potential. Here we
use the Woods-Saxon and Coulomb potentials as in [4]. Note
also that when checking the new computer code we found that
in our old code there was a wrong sign at the Clebsch-Gordan
coefficient with J = 3, which significantly changed results for
the corresponding states. We have also corrected for a tiny

flaw in calculating the virtual-photon flux for hypernucleus
electroproduction. These upgrades of the calculations make
some differences which will be shown and discussed in Fig. 3
and Table II.

The calculations are performed in the coplanar kinematics
(
K = 180◦), see Fig. 2, close to that of the Hall A experiment
[4] with Q2 = 0.06 (GeV/c)2, ε = 0.7, Eγ ∈ (1.5, 2.5) GeV,
and θKe ∈ (5◦, 14◦).

B. Kinematic and Fermi motion effects in the cross sections

Kinematic effects caused by using different kaon mo-
menta in schemes 2-body, 2-body_ea, and many-body are
shown in Fig. 3 on the angular dependence of the full
cross section dσ/d�K . The calculations are in the frozen-
proton approximation ( �peff = 0) with the photon energy Eγ =
2.2 GeV. The upper and lower parts of the panels show re-
sults with the SLA and BS3 amplitudes, respectively, and
each panel is for a given hypernuclear state. The result “2-
body_ea old” was calculated with “absolute” coordinates
in the radial integrals and with the radial integrals for the
dominant transition (α → α′) as in our previous calcula-
tions [4]. The absolute coordinates are suitable when we
use the harmonic-oscillator single-particle wave functions,
but in calculations with the Woods-Saxon wave functions
the relative particle-core (Jacobi) coordinates are more suit-
able. Comparison of the results “2-body_ea” and “2-body_ea
old” therefore shows changes due to improvements in our
model calculations. The new results are larger by a few
percent.

The effects, given by different values of the kaon momen-
tum | �pK | used in various components of the cross section, are
quite large and do not depend much on the elementary am-
plitude. They are even larger in some cases for SLA than for
BS3; see e.g., the results for the 1+ and 3+ states. Even if the
difference between | �pK (2b)| and | �pK (mb)| in the considered
kinematics and θKe = 6◦ is only smaller than 2%, the differ-
ence of corresponding momentum transfer | ��| is about 10%,
which raises values of the radial integrals. Comparison of the
results in the 2-body and 2-body_ea schemes shows effects
from the radial integrals and also from the normalization of
the cross sections by the parameter β. As the angular depen-
dence of β is weak and β[ �pK (mb)] > β[ �pK (2b)], the effect
from β is mostly the angle-independent rescaling of the cross
section, which is observed for both elementary amplitudes and
all states in Fig. 3. One can therefore conclude that even a
small violation of the many-body energy conservation in the
2-body scheme makes the cross sections smaller by 10–20%
for all states.

The effect of using the off-energy-shell elementary ampli-
tude is seen from the comparison of the 2-body_ea (on-shell)
and many-body (off-shell) schemes. In some cases, see, e.g.,
the states 2− and 1+ in Fig. 3, the effect is quite large,
amounting to about 50% for 2− at θKe = 6◦, and of course
it depends on the amplitude. In general, bigger differences
between the results are observed for the 2−, 1+, and 3+ states
whereas the effects for the other group of states, 1− and 2+,
are smaller. Interestingly, the curves for the two groups of
states, see, e.g., states 1− and 2−, are ordered in a different
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FIG. 3. The full electroproduction cross section for the selected states of 12
�B calculated in the frozen-proton approximation ( �peff = 0) with

the SLA and BS3 amplitudes and using various kaon momenta (computational schems). The results denoted as “2-body_ea old” are calculated
without the upgrades in the radial integrals (see Sec. III A) and therefore can be compared with our previous calculations in [4].

way. This feature can be understood from a numerical analysis
of contributions to the reduced amplitude Aλ

Jm in Eq. (16).
Indeed, from the analysis one can conclude that the radial
integrals with M = 0 acquire the largest values, particularly
their imaginary parts, and are rising functions of | �pK |. Note
also that | �pK (mb)| > | �pK (2b)|. Another observation is that
the elementary amplitude F1

00 dominates in both 2-body_ea

and many-body schemes. This dominance of contributions
with M = 0 and η = 0 provides a selection rule given by
values of the Clebsch-Gordan coefficient CJ0

L010 in Eq. (16).
Recall also that J = JH as JA = 0 for the ground state of
12C. This dynamical selection rule induces a dominance of
the longitudinal amplitude A0

20 for the 2− state and therefore
also a significant enhancement of the longitudinal (20b) and

044609-7



P. BYDŽOVSKÝ et al. PHYSICAL REVIEW C 106, 044609 (2022)

TABLE I. Numerical results calculated with Q2 = 0.06 (GeV/c)2, Eγ = 2.2 GeV, ε = 0.7, θKe = 6◦, and 
K = 180◦ are shown for
three computational schemes: 2-body (2b), 2-body_ea (2b_ea), and many-body (mb). The full cross section (dσ ) and contributions from
the transverse (T), longitudinal (L), and interference (TL) parts are shown together with the reduced amplitudes with λ = 0 and dominant
components of the elementary amplitude BS3. The cross sections are in nb/sr. The bold values indicate the longitudinal contributions that
constitute the selection rule.

Scheme dσ T L TL |A0
J±1| |A0

J0| F 1
00 F 1

01 = −F 1
0−1

State E = 0.0 MeV, JP = 1−

2b 22.40 25.88 0.55 −4.21 0.165 0.0 (0.911, 2.529) (−0.535, 0.203)
2b_ea 34.12 39.18 0.93 −6.24 0.213 0.0 (0.911, 2.529) (−0.535, 0.203)
mb 30.34 38.75 1.48 −10.10 0.270 0.0 (−3.607, 3.114) (0.108, 0.262)

State E = 0.116 MeV, JP = 2−

2b 93.80 89.74 17.18 −13.71 0.364 1.610 (0.911, 2.529) (−0.535, 0.203)
2b_ea 142.32 135.87 25.82 −20.26 0.461 1.947 (0.911, 2.529) (−0.535, 0.203)
mb 187.77 134.46 77.59 −25.04 0.571 3.474 (−3.607, 3.114) (0.108, 0.262)

interference (20d) cross section. The large values of dσL

and dσTL add up, with dσT giving enhancement of the full
cross section in the many-body scheme for the 2− state for
both SLA and BS3. On the other hand, in the 1− state the
amplitude A0

10 = 0 due to the selection rule C10
1010 = 0 and

the many-body cross section is even smaller than that in the
2-body_ea scheme. In this case the cross section is only given
by the transverse part of the amplitude A±1

1m . In Table I we show
numerical results for the cross sections, reduced amplitudes,
and elementary amplitudes calculated with θKe = 6◦ for the
states 1− and 2−. One can see a significant enhancement of
dσL and dσTL for 2− made by contributions from |A0

20|. Note
also a big value of the off-energy-shell elementary amplitude
F1

00 in the many-body scheme. Similarly, the longitudinal
cross section is enhanced in the states 1+ and 3+. From the
dominance of the off-energy-shell elementary amplitude F1

00
one can also conclude that the largest off-shell effects will
be observed in dσL and dσTL, as seen in Table I. As the off-
energy-shell extension of the elementary amplitude is barely
under control, we prefer the schemes 2-body and 2-body_ea
with the on-energy-shell amplitude. Recall that if we opt for
the optimum proton momentum, all schemes are equivalent
and the elementary amplitude is on-energy-shell.

In the following we will study effects of the proton mo-
tion in the target nucleus, which we denote as Fermi motion
effects. Particularly, we will demonstrate these effects on the
angle and energy-dependent cross sections calculated in the
OFA with various effective proton momenta. We consider five
cases:

(i) frozen p: �peff = 0 ⇒ �p� = ��
(ii) frozen �: �peff = − �� ⇒ �p� = 0

(iii) optimum: �peff = �popt

(iv) mean 0: | �peff | = 179 MeV/c and θp = 0◦
(v) mean 180: | �peff | = 179 MeV/c and θp = 180◦

Note that calculations in the frozen � approximation were
also performed in Ref. [9] for the 12C(γ , K+)12

�B reaction.
The optimum and mean values are calculated as described
in Secs. II D and II E, respectively. We present the full cross
section dσ in Eq. (18) which corresponds to hypernuclear

photoproduction induced by virtual photons. In the case of
angular dependence the effects observed in dσ qualitatively
coincide with those in the triple-differential cross section d3σ

because the virtual-photon flux factor �, Eq. (19), is kaon-
angle independent and acts only as a scaling factor. In the case
of the energy dependence the flux factor can modify the shape
of the curves, but as it depends only on the electron kinematics
it does not qualitatively change effects due to different proton
and kaon momenta. The results calculated in the 2-body_ea
scheme with Eγ = 2.2 GeV and with various proton momenta
are shown in Fig. 4. The effects from the Fermi motion are
very different, both in the magnitude and the shape, for the
elementary amplitudes SLA and BS3. Whereas there are very
small effects for the SLA (at given energy), the results with
BS3 reveal quite a strong dependence on the proton momen-
tum. The largest cross sections for a given state are obtained
with the largest value of the momentum | �peff | = | ��| ≈ 300
MeV/c in the case of frozen �, and the smallest values
are with frozen proton, | �peff | = 0. These differences at small
kaon angles, θK ≈ 0, make about 30% for BS3. Note that
the BS3 results with the mean momentum strongly depend
on the direction with respect to the photon momentum (0◦
or 180◦) and that they reveal effects due to the dynamical
selection rule. This angle dependence differs for the SLA nad
BS3 amplitudes and it is more pronounced in the longitudinal
components of the cross section as we will show below. The
dependence of the effects on the elementary amplitude is
also apparent from the result with the mean momentum and
θp = 0◦ (the green dotted line), which lies mostly above the
result with frozen proton (the black solid line) for the BS3
amplitude whereas it is slightly below the black line for the
SLA amplitude. These effects survive for smaller energies
(Eγ = 1.5 GeV) where the Fermi motion effects with SLA
are bigger. These observations suggest that the effects due to
the proton motion depend on both the elementary amplitude
and kinematics of the process. More pronounced effects of
Fermi motion are observed in separated contributions from
the transverse (T), longitudinal (L), and interference (TL)
parts of the full cross section as shown in Fig. 5 for the
BS3 amplitude and for the 1− and 3+ states. Recall that
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FIG. 4. The full electroproduction cross section for the selected states of 12
�B calculated in the scheme 2-body_ea with the SLA nad BS3

elementary amplitudes and with various values of the proton momentum �peff . The photon has energy Eγ = 2.2 GeV, Q2 = 0.06 (GeV/c)2, and
polarization ε = 0.7.

the results for 1− reveal similar features as those for 2+
and the results for 3+ are similar to those for 2− and
1+. Figure 5 also shows a difference between the electro-
and photoproduction calculations represented by the full dσ

for the former and by the transverse dσT for the latter.
The transverse part dominates the full cross section in the

considered kinematic region (small θK and Q2), but the con-
tributions from dσL and dσTL are also important corrections
here, amounting to about 10% at 6–10 degrees. The particu-
lar contribution depends on the elementary amplitude. Note
that the BS3 amplitude includes additional longitudinal cou-
plings of the nucleon resonances to the virtual photon [21],
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FIG. 5. Contributions from the transverse (T), longitudinal (L), and transverse-longitudinal (TL) interference parts to the full cross
section in Eq. (18) are shown for the ground state (upper panels) and the 3+ excited state (bottom panels) of 12

�B. The results are calculated in
the scheme 2-body_ea with the BS3 amplitude for the five values of the proton momentum and kinematics as in Fig. 4.

which are missing in the SLA amplitude. However, the re-
sults for the L and TL parts of the cross section calculated
with SLA also reveal considerable effects due to the Fermi
motion, but these contributions largely cancel each other,
giving only tiny effects in the full electroproduction cross
section.

Whereas the character of the results in Fig. 5 for the T
contribution, the shape and ordering of the lines, is similar for
both states, the magnitude and behavior of the L contribution
are strongly determined by the selection rule and nuclear

structure. The interference part TL being also an important
component of the full cross section reveals some differences
for the presented states as well. Therefore, it is evident that the
different character of the effects in the full cross sections for
the 1− and 3+ states is driven by the longitudinal component
of the virtual photon. Recall that the longitudinal components
of dσ depend on the reduced amplitude A0

Jm with the largest
value for m = 0. Because also the longitudinal spherical am-
plitude F1

00 dominates (in this kinematic region), the behavior
of dσL is strongly affected by the selection rule for CJH 0

L010,
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FIG. 6. The same as in Fig. 4 but for energy dependence at kaon angle θKe = 6◦.

e.g., C10
1010 = 0 and C30

2010 = √
3/5 for the states 1− and 3+,

respectively.
The effects of using various proton momenta in energy-

dependent cross section are shown in Figs. 6 and 7 for
the calculations in the 2-body_ea scheme with Q2 = 0.06
(GeV/c)2, ε = 0.7, 
K = 180◦, and θKe = 6◦ changing the
electron kinematics accordingly. The notation is the same as
in Figs. 4 and 5, respectively.

In Fig. 6 we observe significant effects for both elementary
amplitudes, especially at energies above 2 GeV. The resonant
nature of the results for the states 2−, 1+, and 3+ comes
from the longitudinal contributions, as shown in Fig. 7, and
this structure is strongly controlled by the selection rule. A
character of the results, i.e., ordering of the curves, is largely
similar above 2 GeV and for a given amplitude, but there are
differences in a magnitude of the effects and in a particular
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FIG. 7. The same as in Fig. 5 but for energy dependence at kaon angle θKe = 6◦.

shape of the curves. The shape depends quite strongly on the
elementary amplitude but it also differs for the two groups of
hypernuclear states, which is related to the selective contri-
bution from F1

00. Larger Fermi effects for SLA are observed
in kinematics with Q2 = 0.01 (GeV/c)2 and Eγ = 1.5 GeV
than here, which is given by a magnitude of the effects in the
spin-flip amplitude F1

λη. In the case of the BS3 amplitude big
effects are observed for both kinematics at energies above 2
GeV, which is given by rising strength in the BS3 amplitude

at higher energies as one can see in Figs. 5 and 11 of Ref. [21].
For example, at Eγ = 2.4 GeV the proton-photon invariant
energy is 2.3 and 2.6 GeV in the frozen-proton and frozen-�
approximations, respectively, which makes the hypernuclear
cross sections significantly larger for the latter. As the SLA
amplitude provides almost a constant strength [21] around 2
GeV, the Fermi effects are moderate in this energy region.
Generally, the results with BS3 reveal more pronounced struc-
tures in the energy dependence than those with SLA. The

044609-12



FERMI MOTION EFFECTS IN ELECTROPRODUCTION … PHYSICAL REVIEW C 106, 044609 (2022)

structures are quite similar within the two groups of states,
which is mainly driven by the contribution from the spin-flip
part F1

λη.
The resonant nature of the energy-dependent full cross

section observed mainly for BS3 is induced by contributions
from the longitudinal (L) and interference (TL) parts, as one
can clearly see in Fig. 7. The transverse part dσT reveals a
smooth energy dependence but the contributions from the L
and TL parts model the resonant behavior in the full cross
section; see the black (frozen proton) and red (optimum) lines
for the 3+ state. Note that the behavior of the L and TL
contributions significantly differs for the two extreme cases
with the mean momentum, θp = 0◦ and 180◦, which suggests
that the contributions from the L and TL parts strongly depend
on the angle between the proton and photon momenta.

Even if the energy behavior of the L and TL parts is quite
similar for both states, see for example the results with the
frozen proton and optimum momentum, the magnitudes of
their contributions differ quite strongly. The full cross sec-
tions at Eγ = 2 GeV with frozen proton for the 1− and 3+
states is about 30 and 150 nb/sr, respectively, and the con-
tributions from L are about 1 and 60 nb/sr, respectively. The
relative contribution from L then amounts to about 3% and
40% for the 1− and 3+ states, respectively. This phenomenon
can be attributed to a significant contribution from the ele-
mentary amplitude F1

00 in the longitudinal part for the 3+ state
(where A0

30 �= 0) which is absent in 1− (where A0
10 = 0). Note,

however, that the contribution from L is smaller for energies
different from approximately 2 GeV. The relatively large con-
tribution from the longitudinal part at 2 GeV demonstrates
again importance of the electroproduction calculations even
in kinematics with a photon which is almost real [Q2 = 0.06
(GeV/c)2].

In Figs. 4–7 one sees that the results with the optimum
proton momentum generally lie between the extreme cases
with frozen proton and frozen � and in most cases are close
to the frozen proton approximation. Moreover, because in
the version with the optimum momentum all the computa-
tional schemes are equivalent and calculations are performed
with only one value of the kaon momentum, we suggest this
version to be a suitable variant of the optimal factorization
approximation in the DWIA and denote it as optimum on-shell
approximation.

C. Comparison with data and previous results

In Table II we compare the new theoretical predictions for
the triple-differential cross sections in electroproduction of
12
�B with experimental data and our previous results (“old”),
both from Table II of Ref. [4]. The calculations are performed
with the BS3 elementary amplitude in the following kinemat-
ics: Ee = 3.77 GeV, E ′

e = 1.56 GeV, θe = 6◦, θKe = 6◦, 
K =
180◦. The photon kinematics is Eγ = 2.21 GeV, Q2 = 0.0644
(GeV/c)2, ε = 0.7033, the photon angle with respect to the
beam is 4.2◦, and � = 0.0178 (GeV/c)−1. The kaon angle
with respect to the photon momentum is very small, θK =
1.8◦.

The new results “NEWa” are calculated in the frozen-
proton approximation and the 2-body_ea scheme with two

TABLE II. Experimental cross sections (crs) for electroproduc-
tion of 12

�B in nb/(sr2GeV) are compared with theoretical predictions
calculated with the BS3 amplitude. The data and results “old” are
from [4]. The newly elaborated results (see Sec. III A) “NEWa” and
“NEWb” are calculated with the zero and the optimum proton mo-
mentum, respectively. The theoretical prediction on the line denoted
with “sum:” is the total cross section for given multiplet which can
be compared with the experimental value.

Data Theoretical predictions

Ex Ex Cross sections

(MeV) crs (MeV) JP old NEWa NEWb

0.000 1− 0.524 0.611 0.741
0.116 2− 2.172 2.535 2.677

0.0 4.51 sum: 2.696 3.145 3.418
2.587 1− 0.689 0.805 0.956
2.593 0− 0.071 0.082 0.027

2.62 0.58 sum: 0.760 0.887 0.983
4.761 2− 0.022 0.022
5.642 2− 0.359 0.422 0.429
5.717 1− 0.097 0.113 0.132

5.94 0.51 sum: 0.456 0.558 0.583
10.480 2+ 0.157 0.175 0.196
10.525 1+ 0.100 0.111 0.098
11.059 2+ 0.778 0.870 0.973
11.132 3+ 1.324 2.169 2.099
11.674 1+ 0.047 0.085 0.087

10.93 4.68 sum: 2.406 3.410 3.453
12.967 2+ 0.447 0.504 0.556
13.074 1+ 0.196 0.219 0.191
13.383 1+ 0.0008 0.0008

12.65 0.63 sum: 0.643 0.724 0.748

values of the kaon momentum, | �pK (2b)| = 1931 MeV/c
and | �pK (mb)| = 1964 MeV/c. The momentum of � is 301
MeV/c and it equals the transfer. The result “NEWb” is
the same calculation as NEWa but with the optimum pro-
ton momentum | �popt| = 99 MeV/c and cos(θp�)= −1. The
kaon momentum is | �pK (2b)| = | �pK (mb)| = 1964 MeV/c, the
� moves with momentum 170 MeV/c, and the momentum
transfer is | ��| = 269 MeV/c. One sees that the optimum
momentum is comparable to the � momentum and to | ��|.
We denote the calculation NEWb as the optimum on-shell
approximation; see also Sec. II D.

The differences between the results “old” and “NEWa”
observed in Table II are due to our improvements in the model
calculations, especially in the radial integrals; see details of
the calculation in Sec. III A. A remarkable change is the
markedly larger cross section for the state 3+ at 11.132 MeV,
which is mainly due to a flaw in the previous calculations. The
new value significantly improves agreement with the data for
the second dominant peak at 11 MeV. We can say that at the
given energy the new cross sections for all states are larger by
10–15% for both BS3 and SLA elementary amplitudes.

On the other hand, differences between the results with the
zero (NEWa) and the optimum proton momentum (NEWb)
depend quite strongly on the elementary amplitude. The new
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TABLE III. The same as in Table II but for 9
�Li.

Data Theoretical predictions

Ex Ex Cross sections

(MeV) crs (MeV) JP old NEWa NEWb

0.0 0.59 0.000 3/2+ 0.157 0.188 0.197
0.57 0.83 0.563 5/2+ 1.035 1.238 1.314
sum: 1.42 1.19 1.43 1.51

1.423 1/2+ 0.294 0.353 0.399
1.445 3/2+ 0.343 0.412 0.398

1.45 0.79 sum: 0.64 0.77 0.80
2.272 5/2+ 0.109 0.130 0.147
2.732 7/2+ 0.315 0.379 0.382

2.27 0.54 sum: 0.42 0.51 0.53

results with the optimum proton momentum are larger by
1–11% for BS3, as shown in Table II, but the results with
SLA are larger only by less than 1%. However, recall that
the effects from the proton motion for SLA are larger for
energies different from 2.21 GeV, e.g., for Eγ = 1.5 and 2.4
GeV, as seen in Fig. 6. Note also that the Fermi-motion effects
in Table II are moderate due to a quite small value of the
optimum proton momentum (99 MeV/c).

We can conclude that both the effects of the proton motion
and the improvements of our model calculations lead to a
better agreement of theoretical predictions NEWb with the
data for both main peaks at 0 and 11 MeV. The new results
are still about 27% below the experimental values for the
main peaks, whereas the new calculation overpredicts the
cross sections for the other core-excited states. Let us note,
however, that in the optimum on-shell approximation one uses
only one value of the kaon momentum, which allows for both
the energy conservation in the overall system and the use of
the on-energy-shell elementary amplitude. Recall also that the
optimum momentum is not determined uniquely as it also
depends on the angle between the proton momentum and the
momentum transfer ��. In our analysis we have considered
only the special case with cos(θp�) = −1.

For completeness, in Tables III and IV we also report on the
new calculations with the BS3 amplitude for the hypernuclei
9
�Li and 16

�N. These old results and the experimental data were
already published in Ref. [4], and here we compare them with
the new results, similarly to what we did for 12

�B in Table II.
One can see that the Fermi-motion effects due to optimum
proton momentum raise the cross sections by 3–20% for 16

�N
(popt= 120 MeV/c) and only by 4–6% for 9

�Li (popt= 82
MeV/c). The smaller effects in the latter case can be partially
attributed to the smaller value of the proton momentum. These
effects together with improvements in the calculation make
disagreement of the theoretical results with the data still worse
for 16

�N but they improve the agreement of theory and data for
9
�Li. Note that in the calculations with SLA, changes of the
cross sections due to improvements are of similar magnitude
but that the Fermi-motion effects are smaller.

Different results were obtained for 12
�B at lower photon

energy Eγ = 1.5 GeV in kinematics of the Hall C experiment
[5], where the Fermi-motion effects raise the cross sections by

TABLE IV. The same as in Table II but for 16
�N.

Data Theoretical predictions

Ex Ex Cross sections

(MeV) crs (MeV) JP old NEWa NEWb

0.000 0− 0.134 0.151 0.071
0.023 1− 1.391 1.587 2.027

0.0 1.45 sum: 1.52 1.74 2.10
6.730 1− 0.688 0.800 0.967
6.978 2− 2.153 2.502 2.679

6.83 3.16 sum: 2.84 3.30 3.65
11.000 2+ 1.627 1.777 2.078
11.116 1+ 0.679 0.767 0.752
11.249 1+ 0.071 0.064 0.058

10.92 2.11 sum: 2.38 2.61 2.89
17.303 1+ 0.181 0.197 0.183
17.515 3+ 2.045 3.597 3.550
17.567 2+ 1.723 1.910 2.142

17.10 3.44 sum: 3.95 5.70 5.88

2–4% for SLA but they lower them by about 6% for BS3.
Note that the effects from improvements of the calculations
are also important at this energy, raising the cross sections,
which improves agreement of theoretical predictions with
the data. This is illustrated in Table V, where we compare
the new results in the frozen-proton (NEWa) and optimum
on-shell (NEWb) approximations with data from the Hall C
experiment E01-011 and with our previous results published
in Table VI of Ref. [4]. We show only the results for � in the
s orbit for which assignment of the theory and experimental
data is straightforward. The differential cross sections were

TABLE V. Differential cross sections in nb/sr (crs) from the Hall
C experiment E01-011 for electroproduction of 12

�B are compared
with theoretical predictions calculated with the SLA amplitude. Only
the states with � in the s orbit are shown. The data are from [5] and
the results “old” are from [4]. The new results “NEWa” and “NEWb”
are calculated with the zero and optimum proton momentum, respec-
tively. The theoretical prediction on the line denoted with “sum:” is
the total cross section for the given multiplet which can be compared
with the experimental value.

Data Theoretical predictions

Ex Ex Cross sections

(MeV) crs (MeV) JP old NEWa NEWb

0.000 1− 13.90 17.89 18.04
0.116 2− 44.70 57.48 60.00

0.0 101.0 sum: 58.60 75.37 78.04
2.587 1− 17.26 22.20 23.05
2.593 0− 0.04 0.05 0.01

3.127 33.5 sum: 17.31 22.25 23.06
4.761 2− 0.37 0.49 0.50
5.642 2− 7.20 9.37 9.74
5.717 1− 2.44 3.17 3.23

6.077 26.0 sum: 10.01 13.03 13.47
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calculated at kinematics Ee = 1.851 GeV, E ′
e = 0.351 GeV,

θe = 5.4◦, θKe = 7.11◦, and 
K = 90◦, with the elementary
amplitude SLA [22] for which we obtained a better agreement
with the data than with the BS3 amplitude. The new results
with the optimum proton momentum (128 MeV/c) are in bet-
ter agreement with the data than the results with zero proton
momentum. However, significant improvement comes from
the changes in the model calculations; compare the results
“old” and “NEWa.”

IV. SUMMARY

We investigated the cross sections for electroproduction of
12
�B and effects therein, which are caused by various options
for kaon and proton momenta. The value of the kaon mo-
mentum is related to a choice of the computational scheme,
and the proton momentum relates to the Fermi motion of the
target proton inside of the nucleus. The calculations were per-
formed in the DWIA where the many-particle matrix element
is treated in the optimal factorization approximation with an
effective proton momentum in the elementary amplitude. In
order to allow for nonzero values of the proton momentum,
we have derived the two-component (CGLN-like) form of
the elementary amplitude which applies generally for electro-
production of pseudoscalar mesons off the nucleons. These
CGLN-like amplitudes in a general reference frame can be
calculated from known scalar amplitudes. Note that in the
previous calculations the approximation with zero proton mo-
mentum (frozen proton) was considered, and that, as far as we
know, this general form of the electroproduction amplitude
was not available in literature yet.

Utilizing this new formalism for the elementary ampli-
tude with the nucleus-hypernucleus transition matrix elements
(OBDME) and the kaon distortion as in our previous calcula-
tions [4], we have found that the effects of various choices
of the proton effective momentum (the Fermi motion ef-
fect) depend quite strongly on kinematics and the elementary
amplitude. The effects are in general more pronounced for
larger photon energies, i.e., above 2 GeV in the target-nucleus
laboratory frame, which is given by the magnitude of the
effects in the elementary amplitude. Generally, larger effects
were observed for the BS3 amplitude, especially in the en-
ergy dependence of the cross sections. Resonant structures in
the full cross section are modeled by contributions from the
longitudinal (L) and transverse-longitudinal (TL) interference
parts, which reveal quite a strong sensitivity to the value of
proton momentum.

The Fermi motion effects also differ for the hypernuclear
states with various spins and parities due to the selective
contribution from the strong longitudinal spherical elementary
amplitude F1

00. We denote these noticeable differences of the
results for two groups of hypernuclear states as the dynamical
selection rule, which enters into the full cross section mainly
via the L and TL contributions. We can therefore conclude
that the Fermi motion effects are very important for the L and
TL contributions in the full cross section.

We have also shown that the cross section depends quite
strongly on a scheme of computing the kaon laboratory mo-
mentum. If the kaon momentum is computed from the energy

conservation in the elementary-production vertex, the elemen-
tary amplitude is on-energy-shell and the energy conservation
of the overall system is violated by about 1%. In contrast,
calculations with the kaon momentum from the overall energy
conservation have big effects in the elementary amplitude
which is off-energy shell. The off-shell value of the dominant
amplitude F1

00 differs significantly from the on-shell value,
resulting in large contributions in the L and TL components
of the full cross section.

As the off-energy-shell extension of the elementary ampli-
tude is generally not well under control, we prefer using the
computational schemes with the on-energy-shell elementary
amplitude. In the previous calculations we therefore con-
sidered a hybrid form with the on-energy-shell elementary
amplitude and with the kaon momentum calculated from the
overall energy conservation used in the remaining parts of
the computation; i.e., two different kaon momenta were used.
However, the new formalism for the elementary amplitude
developed here allows us to use an “optimum” proton mo-
mentum which makes the computational schemes equivalent,
fulfilling both energy conservation relations with one value of
the kaon momentum, and also allows us to use the on-energy-
shell elementary amplitude.

This optimum on-shell approximation was shown to be
a suitable choice of the effective proton momentum in the
optimal factorization approximation in DWIA, as the obtained
results are in a better agreement with the experimental data.
Note, however, that this improvement is also partially related
to elaborating our model calculations. The optimum proton
momentum used here for comparison with the experimental
data on the 12C target amounts to about 100 MeV/c, which
is in a reasonable agreement with the mean value of the
proton momentum in the p orbit in 12C, about 180 MeV/c. We
therefore suggest using this optimum on-shell approximation
in DWIA calculations.

Note that as the optimum momentum is not determined
uniquely, one could also try other values of the angle of the
proton momentum with respect to the momentum transfer.
The option used here with the proton moving opposite to the
momentum transfer minimizes the momentum of the �.
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APPENDIX A: THE CGLN-LIKE AMPLITUDES IN A
GENERAL REFERENCE FRAME

The CGLN-like amplitudes in Eq. (10) depend on the six
scalar amplitudes Aj [21] and four-vectors q = (q0, �q), pp =
(Ep, �pp), and p� = (E�, �p�). We denote the scalar product
as (a · b) = a0b0 − �a �b. The amplitudes are normalized with
N = 1/

√
4m�mp(E� + m�)(Ep + mp), where mp and m� are

proton and � masses, respectively. Except for the photon
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(in electroproduction) the particles are on the mass shell, m2 = E2 − �p2. The CGLN-like amplitudes in terms of the scalar
amplitudes and kinematical variables read

G1 = N{[(p� · pp) q0 − m�mp q0 − (q · p�)(Ep + mp) − (q · pp)(E� + m�)]A1

+[(p� · pp) + m�mp + E�mp + Epm�][(q · pp)A4 + (q · p�)A5 − q2A6]},
G2 = N[ (q0 + Ep + mp − E� − m�)A1 + (q · pp)A4 + (q · p�)A5 − q2A6],

G3 = N[−(Ep + mp)A1 ],

G4 = N[−q0 A1 − (q · pp)A4 − (q · p�)A5 + q2A6 ],

G5 = N[−A5 + A6 ],

G6 = N[−A4 − A5 ],

G7 = N[ A5 ],

G8 = N

{
− (Ep + mp)A1 − Ep + mp

q2
[(q · pp)A2 + ((q · p�) − q2)A3].

+ [(p� · pp) − (q · pp) + mp(E� + m� − q0) + Ep m�](A5 − A6)

}
,

G9 = N{(q0 − Ep − mp − E� − m�)A1 + (Ep + mp)(A2 + A3)

+[(pp · p�) + mp(E� + m� − q0) + Ep m�]A4

+[(q · p�) − (q · pp) + (pp · p�) + mp(E� + m� − q0) + Epm�]A5 − q2A6},
G10 = N{(Ep + mp)(A1 − A3) + [(q · pp) − (pp · p�) − mp(E� + m� − q0) − Ep m�]A5},

G11 = N

{
q0 A1 + 1

q2
(E� + m� − Ep − mp)[(q · pp)A2 + ((q · p�) − q2)A3] + (q · pp)A4

−[(q · pp) + q0(m� + mp)]A5 + [(q · pp) + (q · p�) − q2 + q0(m� + mp)]A6

}
,

G12 = N{2 q0 A1 + (Ep + mp − E� − m�)(A2 + A3) − q0(m� + mp)(A4 + A5)

−[(q · p�) − (q · pp)](A4 − A5) − 2 q2A6},
G13 = N{−q0 A1 + (E� + m� − Ep − mp)A3 − (q · pp)A4 + [(q · pp) + q0(m� + mp)]A5 + q2A6},

G14 = N

{
Ep + mp

q2
[(q · pp)A2 + ((q · p�) − q2)A3] + [(q · pp) + q0mp](A5 − A6)

}
,

G15 = N{−q0 A1 − (Ep + mp)(A2 + A3) + q0 mpA4 + [(q · pp) + q0 mp − (q · p�)]A5 + q2A6},
G16 = N{(Ep + mp)A3 − [(q · pp) + q0 mp]A5}. (A1)

APPENDIX B: THE SPHERICAL AMPLITUDES IN A GENERAL REFERENCE FRAME

The non-spin-flip (S = 0) spherical amplitudes FS
λη in Eq. (13) can be written in terms of the CGLN-like amplitudes and

spherical components of the photon (�q), proton ( �pp), and kaon ( �pK ) momenta:

F0
−10 = −|�q | [ (pp) 1

−1 G2 + (pK ) 1
−1 G3

] + [
(pp)1

0 (pK ) 1
−1 − (pp) 1

−1 (pK )1
0

]
G4

+D
[

(pp) 1
−1 G6 + (pK ) 1

−1 G7
]

F0
00 = −[

(pp) 1
−1 (pK )1

1 − (pp)1
1 (pK ) 1

−1

]
G4 + D

[ | �q | G5 + (pp)1
0 G6 + (pK )1

0 G7
]

F0
10 = |�q | [ (pp)1

1 G2 + (pK )1
1 G3

] − [
(pp)1

0 (pK )1
1 − (pp)1

1 (pK )1
0

]
G4

+D
[

(pp)1
1 G6 + (pK )1

1 G7
]
.
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Similarly we can write down the spin-flip (S = 1) spherical amplitudes

F1
11 = G1 − (pp) 1

−1

[
(pp)1

1 G12 + (pK )1
1 G13

] − (pK ) 1
−1

[
(pp)1

1 G15 + (pK )1
1 G16

]
,

F1
10 = |�q | [ (pp)1

1 G9 + (pK )1
1 G10

] + (pp)1
0

[
(pp)1

1 G12 + (pK )1
1 G13

]
+(pK )1

0

[
(pp)1

1 G15 + (pK )1
1 G16

]
,

F1
1−1 = −(pp)1

1

[
(pp)1

1 G12 + (pK )1
1 G13

] − (pK )1
1

[
(pp)1

1 G15 + (pK )1
1 G16

]
,

F1
01 = −|�q | [ (pp) 1

−1 G11 + (pK ) 1
−1 G14

] − (pp)1
0

[
(pp) 1

−1 G12 + (pK ) 1
−1 G15

]
−(pK )1

0

[
(pp) 1

−1 G13 + (pK ) 1
−1 G16

]
,

F1
00 = G1 + |�q | [ | �q | G8 + (pp)1

0 G9 + (pK )1
0 G10 + (pp)1

0 G11 + (pK )1
0 G14

]
+(pp)1

0 (pp)1
0 G12 + (pp)1

0 (pK )1
0 (G13 + G15) + (pK )1

0 (pK )1
0 G16,

F1
0−1 = −|�q | [ (pp)1

1 G11 + (pK )1
1 G14

] − (pp)1
1

[
(pp)1

0 G12 + (pK )1
0 G13

]
−(pK )1

1

[
(pp)1

0 G15 + (pK )1
0 G16

]
,

F1
−11 = −[

(pp) 1
−1 (pp) 1

−1 G12 + (pp) 1
−1 (pK ) 1

−1 (G13 + G15) + (pK ) 1
−1 (pK ) 1

−1 G16
]
,

F1
−10 = |�q | [ (pp) 1

−1 G9 + (pK ) 1
−1 G10

] + (pp)1
0

[
(pp) 1

−1 G12 + (pK ) 1
−1 G13

]
+(pK )1

0

[
(pp) 1

−1 G15 + (pK ) 1
−1 G16

]
,

F1
−1−1 = G1 − (pp)1

1

[
(pp) 1

−1 G12 + (pK ) 1
−1 G13

] − (pK )1
1

[
(pp) 1

−1 G15 + (pK ) 1
−1 G16

]
.

The spherical components of the momenta and the parameter D are

(pK )1
0 = | �pK | cos θK , (pK ) 1

±1 = ∓| �pK |√
2

sin θK exp(±i
K )

(pp)1
0 = | �pp| cos θp, (pp) 1

±1 = ∓| �pp|√
2

sin θp exp(±i
p)

D = i | �q | | �pp| | �pK | sin θp sin θK (cos 
p sin 
K − sin 
p cos 
K ).

The polar angles θK and θp are determined with respect to the photon momentum, and the azimuthal angles 
K and 
p are defined
with respect to the leptonic plane as shown in Fig. 2. Formulas for the CGLN-like amplitudes Gj are given in Appendix A.

APPENDIX C: EQUATION FOR THE REDUCED AMPLITUDES

Here we briefly show how the equation for the reduced amplitude (16) was obtained. We start with the expression (6) for
the many-particle matrix element in the optimal factorization approximation and consider the partial-wave decomposition of the
plane waves and the kaon distorted wave:

e(iB ��·�ξ ) χ∗
K ( �pKH , B�ξ ) =

∑
LM

FLM (�Bξ ) YLM (ξ̂ ), (C1)

where ξ = |�ξ | is the relative particle-core coordinate and � = |�q − �pK | is the momentum transfer. Note, that �pKH is the kaon
momentum with respect to the hypernucleus and that the radial part FLM also depends on orientation of the momentum transfer
given by the projection M. Using this decomposition and the spherical form of the elementary amplitude (13) in the gauge used
in Eq. (9) we obtain for the spherical components of the hypernuclear production amplitude

T (1)
λ = Z

∑
LM

∑
Sη

∑
Jm

CJm
LMSη FS

λη

∫
d3ξ d3ξ1 · · · d3 ξA−2 
∗

H (�ξ1, . . . , �ξA−2, �ξ ) FLM (�Bξ )[YL(ξ̂ ) ⊗ σ S]J
m
A(�ξ1, . . . , �ξA−2, �ξ )

= Z
∑
LM

∑
Sη

∑
Jm

CJm
LMSη FS

λη 〈
H | FLM[YL ⊗ σ S]J
m | 
A 〉, (C2)

where the one-particle transition operator is written as the tensor product,

FLM YLM σ S
η =

∑
Jm

CJm
LMSηFLM[YL ⊗ σ S]J

m,
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with CJm
LMSη the Clebsch-Gordan coefficient. The nuclear and hypernuclear states are determined by their spin (JA, MA) and

(JH , MH ), respectively. Utilizing the Wigner-Eckart theorem the amplitude is written in terms of reduced matrix elements

T (1)
λ = Z

[JH ]

∑
Jm

CJH MH
JAMAJm

∑
LM

∑
Sη

CJm
LMSη FS

λη (
H || FLM[YL ⊗ σ S]J || 
A). (C3)

The reduced matrix element is calculated introducing one-particle states |α〉 with the quantum numbers |nl j〉 generated by
the creation operators |α〉 = a+

α |0〉 for the proton and |α′〉 = b+
α′ |0〉 for the �. Assuming the completeness of the one-particle

states and the Wigner-Eckart theorem we can write the one-particle operator in this base,

FLM [YL ⊗ σ S]J
m = 1

Z [J]

∑
αα′

(α′ || FLM [YL ⊗ σ S]J || α) [b+
α′ ⊗ aα]J

m, (C4)

with the normalization
∑

b+
α aα = Z, as only the protons can be changed to �. This form allows us to decompose the many-

particle reduced matrix element in Eq. (C3) into the one-particle states

(
H || FLM[YL ⊗ σ S]J || 
A) = 1

Z [J]

∑
αα′

(α′ || FLM[YL ⊗ σ S]J || α)(
H || [b+
α′ ⊗ aα]J || 
A). (C5)

The last term in this expression is the reduced one-body density matrix element (OBDME), which can be calculated using a
nuclear model, e.g., the shell model. In our calculations, OBDMEs and the spherical elementary amplitudes FS

λη are the input.
To calculate the reduced matrix element of the one-particle operator in Eq. (C5) we use the one-particle wave functions in the

coordinate space

〈 �ξ | α 〉 = 〈 �ξ | n l j μ 〉 = Rα (ξ )
∑
νη

C jμ
lν 1

2 η
Ylν (ξ̂ ) X

1
2

η , (C6)

where �ξ is a relative particle-core (Jacobi) coordinate and X
1
2

η is the Pauli spinor. After some manipulations we get

(α′ || FLM[YL ⊗ σ S]J || α) = 1√
2π

[L][S][J][l][l ′][ j][ j′]
(

l ′ L l
0 0 0

)⎧⎨
⎩

1
2

1
2 S

j′ j J
l ′ l L

⎫⎬
⎭ (−1)−l ′

×
∫ ∞

0
dξ ξ 2 Rα′ (ξ )∗ FLM (�Bξ ) Rα (ξ ) ≡ HLSJ

l ′ j′l j RLM
n′l ′nl (C7)

where HLSJ
l ′ j′l j includes the Racah algebra in Eq. (C7) and RLM

α′α is the radial integral which includes the radial parts of the
one-particle wave functions and the radial part of the transition operator. The radial wave functions can be calculated from
the Schrödinger equation with a Woods-Saxon potential as in Ref. [4] or can be taken consistently from the many-particle
calculations of OBDME.

Combining Eqs. (C3), (C5), and (C7) we obtain the equation

T (1)
λ = 1

[JH ]

∑
Jm

CJH MH
JAMAJm

1

[J]

∑
Sη

FS
λη

∑
LM

CJm
LMSη

∑
α′α

RLM
α′α HLSJ

l ′ j′l j (
H || [b+
α′ ⊗ aα]J || 
A), (C8)

which corresponds to Eqs. (15) and (16). Note that summing over the one-particle states α′α determines a model space of the
calculation on which the proton → � transitions in the OBDMEs are assumed. In the calculations for the 12C target presented
here we assume the proton being in the p orbit and the � in the s or p orbit, similarly to our previous calculations in Ref. [4].
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