
PHYSICAL REVIEW C 106, 044608 (2022)

10Be-nucleus optical potentials developed from chiral effective field theory NN interactions
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We present a determination of optical potentials for 10Be-nucleus collisions using the double-folding method
to compute the real part and Kramers-Kronig dispersion relations to derive the imaginary part. As microscopic
inputs we use chiral effective field theory nucleon-nucleon interactions at next-to-next-to-leading order combined
with state-of-the-art nucleonic densities. With these potentials, we compute elastic-scattering cross sections for
the exotic nucleus 10Be off various targets, and compare them to experiment. Without any fitting parameter, we
obtain good agreement with data. For collisions on light targets, we observe significant uncertainty related to the
short-range physics, whereas for heavy targets that uncertainty remains small.
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I. INTRODUCTION

One of the most important inputs in the study of nuclear
reactions is the interaction between the colliding nuclei [1].
Typically, the nuclear part of these interactions is described by
phenomenological optical potentials (POPs), the parameters
of which are fitted to experimental data. Given their nature,
they lack predictive power and cannot be used to describe
reactions for which no data are available. To reduce uncer-
tainty, it would be useful to derive optical potentials from
first principles. This becomes more and more crucial with the
development of new radioactive-ion beam facilities, where the
structure of exotic nuclei is mostly studied through nuclear
reactions [2].

In the case of nucleon-nucleus potentials, there have been
several approaches using NN forces from chiral effective field
theory (EFT) [3–6]. These NN interactions are expressed as
an order-by-order expansion, which allows for a systematic
improvement of the description of observables [7,8]. All these
studies give interesting results, but are focused on the collision
of a nucleon with a target nucleus. To describe nucleus-
nucleus interactions, there have been efforts using different
kinds of microscopic interactions within the double-folding
formalism [9]. In this formalism, the potentials between nuclei
are determined from two fundamental inputs: realistic nuclear
densities and microscopic NN interactions. In this way, either
the real part of the optical potential [10,11] or both its real and
imaginary parts [12–14] can be determined.

In our previous studies [15–17], we have combined these
two ideas. We have taken NN interactions developed within
a chiral EFT framework to construct nucleus-nucleus opti-
cal potentials using the double-folding method. To construct
the imaginary part, we have suggested to use the dispersion
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relations [16,17]. This enabled us to obtain optical potentials
without any fitting parameter. This approach allowed us to
satisfactorily describe elastic scattering and low-energy fusion
involving light stable projectiles such as α, 12C, and 16O with
a variety of targets ranging from α to 120Sn.

Our goal for the present paper is to extend this method
away from stability. We concentrate on reactions involving
10Be, which is radioactive and exhibits deformation and clus-
terlike configurations [18]. The validity of our method would
enable us to construct reliable nucleus-nucleus interactions
that are key inputs of few-body models of reactions [2].
In particular, 10Be-target interactions could then be used in
the description of reactions with 11Be, the archetypical one-
neutron halo nucleus. Studies involving halo nuclei are an
active topic of research for both nuclear-reaction and structure
communities. Having the ability to construct optical potentials
from first principles would be an asset to these studies.

This paper is organized as follows: in Sec. II we give a brief
overview of the formalism of the double-folding technique
and the ways of building the imaginary part of the optical po-
tential. In Secs. III–V we present results for elastic scattering
of 10Be on different targets at energies at which experimental
data exist: 12C at Elab = 595 MeV [19], 208Pb at Elab = 127
MeV [20], and 64Zn at Elab = 28.3 MeV [21]. Finally, we
summarize and give an outlook in Sec. VI.

II. OPTICAL POTENTIALS FROM THE
DOUBLE-FOLDING FORMALISM

To analyze elastic scattering within the optical model, the
nuclear part of the interaction between the colliding nuclei
is described by a complex potential. For the real part, we
assume the antisymmetrized double-folding potential (DFP),
VF, constructed as the sum of a direct (D) and an exchange
(Ex) contribution: VF = VD + VEx. For a detailed explanation,
see Refs. [12,15]. The direct part is the average of the NN
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interaction v over the nucleonic densities:

VD(r) =
∑

i, j=n,p

∫∫
ρ i

1(r1) vi j (s) ρ
j
2 (r2) d3r1d3r2, (1)

where r is the relative coordinate between the centers of mass
of the nuclei; r1 and r2 are the inner coordinates of nucleus 1
and 2, respectively; s = r − r1 + r2 is the relative coordinate
between any given pair of points in the projectile and target;
and ρ i

j are the neutron (i = n) and proton (i = p) density
distributions of nucleus j. The exchange part of the potential
arises from the fact that identical nucleons in the projectile and
the target cannot be distinguished from one another. It reads

VEx(r, Ec.m.) =
∑

i, j=n,p

∫∫
ρ i

1(r1, r1 + s) v
i j
Ex(s)

× ρ
j
2 (r2, r2 − s) exp

[
ik(r) · s
μ/mN

]
d3r1d3r2,

(2)

where μ is the reduced mass of the colliding system, vEx =
−P12v is the exchange contribution from the NN potential,
the integral runs over the density matrices ρ i

1,2(r, r ± s) of
the nuclei, and the momentum for the nucleus-nucleus relative
motion k is given by

k2(r) = 2μ

h̄2 [Ec.m. − VF(r, Ec.m.) − VCoul(r)]. (3)

Due to the dependence of k on the double-folding potential
VF, VEx has to be determined self-consistently.

Following Refs. [15–17], we use as NN potential lo-
cal chiral EFT interactions. These are based on those of
Refs. [22,23], which are derived and regulated directly in r
space. To test the sensitivity of our calculation to short-range
physics, we apply different regulators, with cutoffs R0 = 1.2
and 1.6 fm [15].

To describe the absorptive imaginary part of the potential,
we have explored two possibilities: the first one is a zeroth-
order approximation setting the imaginary part proportional
to the real DFP, as suggested in Refs. [11,24]:

W = NW VF . (4)

The second possibility is using Kramers-Kronig relations,
better known in our field as dispersion relations, which link
the real and imaginary parts of the interaction [25,26]. These
relations are the application of the Sokhotski-Plemelj theorem
and they relate the imaginary part of the potential W with the
energy-dependent part of the DFP through [17]

W (r, Ec.m.) = − 1

π
P

∫ +∞

−∞

VEx(r, E )

E − Ec.m.
dE , (5)

where P represents the principal value integral. Contrary to
Eq. (4), this approach provides an efficient constraint on the
imaginary term of the nucleus-nucleus interactions without
involving any free parameter. However, it does not include
couplings to single excited states of either of the nuclei. At
sufficiently high energy (higher than the Coulomb barrier) this
approach is justified and leads to good agreement with data for
both closed and nonclosed shell nuclei [16,17].
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FIG. 1. 10Be density profiles for (a) protons and (b) neutrons.
Four types of densities are shown: scaled harmonic oscillator den-
sities [28] for 9Be (dotted lines) and 10B (dashed lines), monopole
densities [29] (dashed-dotted lines), and the densities calculated us-
ing DHB theory [30] (solid lines).

The double-folding potentials constructed in this way ex-
hibit a systematic order-by-order behavior expected in EFT,
very similar to the one seen in Ref. [15]. These features
carry through to the elastic-scattering cross sections. For this
reason, in the following we will show only results at N2LO,
which reproduce better the experimental data. We limit our
calculations to this order, because we concentrate on the de-
scription of elastic scattering, for which the inclusion of orders
beyond N2LO does not have much impact [27].

III. 10Be - 12C SCATTERING

We start this study with the analysis of 10Be - 12C elastic
scattering at Elab = 595 MeV. We consider the experimental
data as well as the POP fitted to them from Ref. [19]. First,
we assess the impact of the nuclear densities on the elastic-
scattering cross sections. Figure 1 shows the densities for the
10Be (a) proton and (b) neutron distributions. We use two dif-
ferent kinds of profiles: either fitted from experimental data or
obtained from microscopic calculations. In Ref. [28], charge
densities parametrized as harmonic oscillator functions (HO)
are fitted from electron scattering off 9Be and 10B. From them
we infer proton densities, which we then scale to the number
of protons and neutrons of 10Be. These scaled distributions are
plotted as dotted and dashed lines in Fig. 1. We also explore
two microscopic descriptions: monopole densities obtained
from cluster calculations [29] and Dirac-Hartree-Bogoliubov
(DHB) results given by the code REGINA [30] (dashed-double-
dotted and solid lines in Fig. 1).

For 12C, we make the approximation ρ p = ρn, since it
is a light and stable nucleus with equal number of protons
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FIG. 2. Proton density profiles for 12C: the sum-of-Gaussians
proton particle density (SGp, solid line) and the harmonic oscillator
parametrization (HO, dashed-double-dotted line) [28].

and neutrons. Two different proton densities can be seen in
Fig. 2. First, we see a sum-of-Gaussians nucleonic density
(SGp, solid lines), based on the parametrization of the charge
density obtained through electron scattering in Ref. [28].
Second, we see a density profile obtained through electron
scattering parametrized as a harmonic oscillator function
(dashed-double-dotted lines) [28].

Figure 3 shows the cross sections for elastic scattering
normalized to Rutherford using the different densities for
the collision of 10Be and 12C at Elab = 595 MeV. The black
dashed-dotted line shows the reference cross section obtained
with the POP. All our results are calculated with the NN cutoff
R0 = 1.6 fm and the Kramers-Kronig relations to determine
the imaginary part of the optical potentials [Eq. (5)]. The
influence of R0 and the imaginary part is studied and dis-
cussed later in this section. Panel (a) shows the dependence
of the elastic-scattering cross sections on the 10Be density.
For the 12C density, we use SGp, which has been shown to
provide the best results for scattering involving 4He [17].
From these results, we see that up to ≈ 7◦ all the densities
give cross sections that are in good agreement with the data
from Ref. [19]. At larger angles, these distributions lead to
cross sections with different magnitudes, but remain in phase
with the oscillations of the experimental data. Between the
second and third maxima, there is not much spread amongst
the cross sections obtained with different densities. At larger
angles, DHB calculations (solid line) agree slightly better with
the POP results, so we will use this profile to assess the impact
of the 12C density in the cross sections.

In panel (b) we can see the results obtained with the
different 12C distributions: SGp gives cross sections that are
in phase with experimental data, while results with the HO
density are shifted towards larger angles, starting at the second
minimum. We thus conclude that SGp is optimal in this case
as well. Having determined the best densities to reproduce
the experimental data, we can assess the impact of the NN
interaction and the imaginary part of the potential.
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FIG. 3. 10Be - 12C elastic-scattering cross sections (normalized to
Rutherford) at Elab = 595 MeV as a function of the center-of-mass
angle. Impact of (a) 10Be and (b) 12C densities. For panels (a) and
(b) the line types correspond to those described in the captions of
Figs. 1 and 2, respectively. In all cases, the NN cutoff is R0 = 1.6
fm and the imaginary part was calculated through Kramers-Kronig
relations. Experimental data are from Ref. [19].

In Fig. 4, the bands depict the R0 dependence, where the
upper and lower lines correspond to the result using R0 = 1.6
and 1.2 fm, respectively. The red band shows the results using
Kramers-Kronig relations, while the blue band corresponds to
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FIG. 4. 10Be - 12C elastic-scattering cross sections (normalized to
Rutherford) at Elab = 595 MeV as a function of the center-of-mass
angle. The bands show the R0 = 1.2–1.6-fm dependence. The red
and blue bands show results with Kramers-Kronig relations [Eq. (5)]
and NW = 0.6 [Eq. (4)], respectively. Experimental data are from
Ref. [19].
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calculations setting the imaginary part proportional to the real
part with NW = 0.6 [Eq. (4)]. For both imaginary parts, the R0

dependence is small at forward angles, where the Coulomb
interaction plays a major role. At larger angles, they have
a sizable dependence on the R0 cutoff, which indicates that
short-range NN physics becomes more relevant. This impact
of the nuclear part of the potential is to be expected in the
collision of two light nuclei that have small radii, as we
have also observed in previous studies [16,17]. The results
for R0 = 1.6 fm (upper lines) are in good agreement with
the data for both choices of the imaginary part. Note that
for this cutoff the discrepancy between them is smaller than
their difference with experiment. This is not the case for
R0 = 1.2 (lower lines), where the two imaginary potentials
lead to very different cross sections. In particular, when using
the Kramers-Kronig relations the cross section with R0 = 1.2
fm (lower red dashed line) is not in phase with the data beyond
the second minimum. This NN potential contains more short-
range information than the one with the larger cutoff R0 = 1.6
fm. Accordingly, the unphysical oscillations obtained with
the Kramers-Kronig relations suggest that the NN interaction
with R0 = 1.2 fm is too hard to be used in this approach.
Let us stress that we set NW = 0.6 because it best fits the
data. Although this value agrees with the NW range used in
Ref. [24], the Kramers-Kronig relations provide an imaginary
part without any fitting parameter.

IV. 10Be - 208Pb SCATTERING

Next we study a reaction at lower energy: 10Be - 208Pb
elastic scattering at Elab = 127 MeV, which corresponds to
the experimental conditions of Ref. [20]. To describe the 208Pb
density, we use the relativistic mean field (RMF) profiles from
Ref. [31]. As we found also in our previous work [17], since
208Pb is a heavy nucleus, the sensitivity of our calculations is
mostly dependent on the choice of the density of the light pro-
jectile 10Be. We have observed that for this collision the best
10Be density to reproduce the experimental data is also the
profile given by DHB calculations, as it was in the 10Be - 12C
case.

Figure 5 compares our calculation with the data of
Ref. [20]. It shows the dependence of the elastic-scattering
cross sections on R0 and the imaginary part of the potential.
For the imaginary part we use Kramers-Kronig relations (red
band), and NW = 1 (blue band), the value that best reproduces
the data. This choice is in agreement with the recommendation
of Ref. [24], where they use higher values of NW for colli-
sions that involve heavier nuclei. The black dashed-dotted line
shows the results obtained with the POP given in Ref. [20],
which was fitted to the experimental data. The R0 bands are
quite narrow, especially compared to those in Fig. 4. This
lighter dependence on the NN interaction is probably due to
the dominance of the Coulomb interaction in the reaction,
which is the same effect that we saw at small angles in
10Be - 12C scattering. We want to remind the reader that the
value of NW was chosen to best reproduce the data, and that is
why in Fig. 5 the results using W = VF agree better with ex-
periment than those obtained with Kramers-Kronig relations.
Nevertheless, using the Kramers-Kronig relations, we still get
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FIG. 5. 10Be - 208Pb elastic-scattering cross sections (normalized
to Rutherford) at Elab = 127 MeV as a function of the center-of-mass
angle. The bands show the R0 = 1.2–1.6-fm dependence. The red
and blue bands show results with Kramers-Kronig relations [Eq. (5)]
and NW = 1.0 [Eq. (4)], respectively. Experimental data are from
Ref. [20].

good agreement with data and the reference optical potential
without the need of any parameter, which is a confirmation
that our approach gives a good description of the imaginary
potential.

V. 10Be - 64Zn SCATTERING

In this section we study the elastic-scattering cross sec-
tions for 10Be - 64Zn scattering at Elab = 28.3 MeV [21]. As
in the previous section, cross sections for this collision are
mostly dependent on the 10Be density, and not on the density
of the heavier target. In this study we use once again the
distributions from DHB calculations for 10Be. We use the
results of the code REGINA [30] for the 64Zn density.

In Fig. 6 we compare our results to the data of Ref. [21].
We assess the R0 and imaginary part dependences of the
elastic-scattering cross sections. For the imaginary part we
use Kramers-Kronig relations (red band), and NW = 1 (blue
band). We can see that both descriptions give results that are
shifted towards larger angles compared to the experiment and
the POP of Ref. [21] (dash-dotted line). In both cases, the
R0 band is quite narrow, since this is a low-energy Coulomb
dominated reaction. The Kramers-Kronig relations agree bet-
ter with data right after the maximum (at ≈ 40◦–50◦), but in
general there is little difference with the results that we get
using the NW prescription. As we discussed in Ref. [17], at
low energies we expect a larger contribution from excitation to
higher states, which will have an important effect in the imag-
inary part of the optical potential. Especially, the deformed
nature of 64Zn and 10Be are likely to play an important role in
the cross sections [18,32].

This system opens interesting new paths for our model. Our
results suggest that at these lower energies excitations to low
lying states have a significant impact and that beyond Hartree-
Fock effects should be included. It will also be interesting to
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FIG. 6. 10Be - 64Zn elastic-scattering cross sections (normalized
to Rutherford) at Elab = 28.3 MeV as a function of the center-
of-mass angle. The bands show the R0 = 1.2–1.6-fm dependence.
The red and blue bands show results with Kramers-Kronig relations
[Eq. (5)] and NW = 1.0 [Eq. (4)], respectively. Experimental data are
from Ref. [21].

study the effect of the inclusion of deformation in the densities
that we use to build our DFP. Those are questions that we plan
to answer in the future.

VI. CONCLUSIONS AND OUTLOOK

This paper is an obvious extension of our previous studies
[15–17]. Its goal is to benchmark our approach in reactions
involving more exotic projectiles. To this end, we have pre-
sented the derivation of 10Be-target interactions at different
energies. To determine the real part, we used the double fold-
ing of local chiral EFT NN interactions [22,23] over realistic
nucleonic densities. We constrained the imaginary part of
the optical potential using the Kramers-Kronig relations (also
known as dispersion relations) [25,26]. Within this frame-
work, we were able to reproduce data for the elastic scattering
of 10Be off 12C, 208Pb, and 64Zn at different energies. For
the collision off the light target 12C, we have seen that the
densities of both nuclei play an important role in the results,
as also does the NN interaction. For heavier targets the main
effect comes from the 10Be density. We have found that the de-
pendence with the short-distance cutoff of the NN interaction

is large on the nuclear-dominated reaction 10Be - 12C, while it
is small for the Coulomb-dominated ones.

Using Kramers-Kronig relations to constrain the imaginary
part of the potential gives good results for high-energy col-
lisions. These relations are not enough to fully describe the
imaginary part of the optical potential at lower energies, where
higher-order effects should be included in the model. This
method provides reliable nucleus-nucleus optical potentials to
describe reactions for which there are no data, in particular
those that involve halo nuclei [2,33]. Knowing that there is
no fitting or scaling parameter in our framework, these results
clearly illustrate the interest of these potentials.

There remain several paths for improvement, at the level of
both the many-body folding method and the input interactions.
Accounting for the excited spectrum of the colliding nuclei
would refine the description of the imaginary part of the op-
tical potential through the application of dispersion relations
to these energy-dependent terms. This would further improve
our potentials and their description of the scattering processes,
especially at low collision energies [34]. Also, it would be
interesting to study the impact of going beyond leading order
in the density matrix expansion used in Eq. (2), or the impact
of using parametrizations of the diagonal densities that ex-
plicitly include deformation [30]. Another aspect that needs
to be investigated is the role of three-nucleon interactions,
as they also enter at N2LO. In preliminary calculations for
16O - 16O [35], we have observed that the contribution to the
nucleus-nucleus potential arising from three-nucleon interac-
tion is very small compared to the two-body contributions
discussed here. Moreover, based on the results in nucleon-
nucleus reactions [36], we expect these contributions to also
be small in other systems. However, this needs to be further
investigated. Finally, using ab initio densities from chiral EFT
would provide a consistent treatment of our inputs and would
be a good step towards a unified description of structure and
reactions.
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