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Medium-dependent relativistic NN potential: Application to fusion dynamics
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In-medium effects are introduced in the microscopic description of the effective nucleon-nucleon (NN)
interaction potential entitled DDR3Y in terms of the density-dependent nucleon-meson couplings within the
relativistic-Hartree-Bogoliubov (RHB) approach. The nuclear densities of the interacting target and projectile
nuclei and NN potentials are obtained for nonlinear NL3∗ and TM1 parameter sets within the relativistic
mean-field approach and density-dependent DDME1 and DDME2 parameter sets within the RHB formalism.
The DDR3Y NN potential and the densities are used to obtain the nuclear potential by adopting the double-
folding approach. This nuclear potential is further used to probe the fusion dynamics within the �-summed
Wong model for a few even-even systems leading to the formation of light, heavy, and superheavy nuclei.
The calculations are also performed for the relativistic R3Y, density-dependent and -independent Michigan 3
Yukawa (M3Y) interaction potentials for the comparison. We observed that the DDR3Y NN potential gives a
better overlap with the experimental data as compared to nonrelativistic M3Y and DDM3Y NN potentials. From
the comparison of R3Y and DDR3Y interactions, it is manifested that the inclusion of in-medium effects in
terms of density-dependent nucleon-meson couplings raises the fusion barrier and consequently decreases the
fusion and/or capture cross-section. Moreover, the nuclear densities, as well as the relativistic R3Y NN potential
obtained for the NL3∗ parameter set, are observed to give a comparatively better fit to the experimental data.

DOI: 10.1103/PhysRevC.106.044602

I. INTRODUCTION

The interaction barrier generated by two colliding nuclei
is of the essence in understanding complex nuclear reaction
dynamics. The formulas for the long-range repulsive Coulomb
and centrifugal potentials formed between two interacting
heavy ions are straightforward, whereas the short-range at-
tractive nuclear potential evaluation is ambiguous. Despite
numerous theoretical efforts, the understanding of the nu-
clear interaction in the total interaction potential is still fuzzy
[1–5]. The double-folding model [6] is one of the widely used
techniques that turned out to give a satisfactory description
of the real part of the nucleus-nucleus as well as α-nucleus
optical potentials. In the double-folding model, the nuclear
optical potential is obtained by integrating the densities of
the interacting nuclei over an effective nucleon-nucleon (NN)
interaction potential. The widely adopted choices of the ef-
fective NN interaction potential are the Michigan 3 Yukawa
(M3Y) interactions which were developed to fit the G-matrix
elements of Reid [7] and Paris [8] NN potentials on an
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oscillator basis. Later, the density dependence was included
in the original M3Y interactions to account for the higher-
order exchange effects and the Pauli blocking exchange
effects. Moreover, the density-independent M3Y interactions
were also observed to fail in saturating cold nuclear mat-
ter (NM) [7,8]. Consequently, numerous density-dependent
M3Y NN interactions were developed with density-dependent
parameters fitted to reproduce the saturation properties
of NM.

Parallel to the M3Y potential, recently in Refs. [9–11],
the relativistic NN potential was derived within the well-
established relativistic mean-field (RMF) formalism and
entitled R3Y NN potential. Furthermore, this relativistic R3Y
NN potential was employed to study the cluster radioactivity
[9–12] and fusion dynamics [13–17] of various even-even,
even-odd, and odd-odd reactions leading to the synthesis of
heavy and superheavy nuclei. From these works, it is con-
cluded that the results obtained from the R3Y NN interactions
provide a relatively better overlap with the experimental data.
It is worth mentioning that the R3Y NN interaction is obtained
for the linear and nonlinear relativistic parameter sets. Here
our main aim is to introduce the medium effects in the R3Y
NN-potential in terms of density-dependent nucleon-meson
couplings within the relativistic-Hartree-Bogoliubov (RHB)
approach, which will be analogous to the density-dependent
M3Y (DDM3Y) potential.
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Unlike the nonrelativistic M3Y NN interactions, the rela-
tivistic R3Y NN potential is given in terms of meson masses
and coupling constants. The nonlinear coupling constants
in the relativistic R3Y NN potential include effectively the
medium effects [18]. Furthermore, the other reliable method
to introduce medium dependence in the relativistic R3Y NN
interaction potential is to include density-dependent cou-
pling constants, which is different from the DDM3Y NN
potential. For example, the medium effect was introduced
in M3Y potential through a weighted function of the den-
sity [7,8]; however, for the R3Y NN potential, the medium
effect will be included through nucleon-meson coupling
constants within the RHB approach [19,20]. The density-
dependent DDME1 and DDME2 parameter sets are used
in the present study to obtain the relativistic R3Y NN po-
tential entitled DDR3Y potential. Furthermore, the DDR3Y
potential, along with the densities from the RHB approach,
is used to estimate the fusion dynamics of various heavy-
ion reactions. Here, we have chosen six reaction systems,
namely, 16O + 40Ca, 40Ca + 58Ni, 40Ca + 90Zr, 16O + 144Sm,
16O + 208Pb, and 48Ca + 208Pb forming light, heavy, and su-
perheavy nuclei to examine the application of the DDR3Y
NN potential in the description of fusion. The results of
the newly introduced DDR3Y NN potential obtained for the
DDME1 [19] and DDME2 [20] parameter sets within the
RHB approach are also compared with the R3Y NN po-
tential obtained for the nonlinear NL3∗ [21] and TM1 [22]
RMF parameter sets. Moreover, the traditional Reid M3Y
and the density-dependent M3Y (DDM3Y) [6,23,24] are also
considered for comparison. The fusion and/or capture cross-
section is obtained within the �-summed Wong model [25,26]
and results are also compared with the available experimental
data [27–32].

The paper is organized as follows: The details of the theo-
retical formalism adopted in the present analysis are explained
in Sec. II. The results obtained from the theoretical calcu-
lations are discussed in Sec. III. In Sec. IV, a summary and
conclusions of the work are presented.

II. THEORETICAL FORMALISM

A large number of nucleons are involved in the nuclear
fusion of two interacting heavy ions. The interaction potential
formed between two colliding heavy ions plays a vital role in
elucidating the complex fusion mechanism. The total interac-
tion potential can be written as the sum of three terms,

V �
T (R) = VC (R) + V�(R) + Vn(R). (1)

Here, R is the separation distance between the interacting
nuclei. The terms VC (R) = ZpZt e2/R and V�(R) = h̄2�(�+1)

2μR2 are
the repulsive Coulomb and centrifugal potentials, respectively.
Zp and Zt symbolize the charge numbers of projectile and tar-
get nuclei, and μ is the reduced mass. The last term in Eq. (1)
denotes the short-range and attractive nuclear potential, which
is calculated within the double-folding approach [6] as

Vn( �R) =
∫

ρp(�rp)ρt (�rt )Veff(ρ, r≡|�rp − �rt + �R|)d3rpd3rt .

(2)

Here, bold symbols ρp and ρt denote the total nuclear den-
sity (i.e., sum of proton and neutron densities) distributions
of the interacting projectile and target nuclei, respectively.
Veff(ρ, r) is the effective nucleon-nucleon (NN) interaction
potential. As discussed above, the density-independent M3Y
(Michigan 3 Yukawa) NN interactions are widely adopted, and
the density-dependent M3Y (DDM3Y) NN interactions have
also been developed to include the in-medium effects. The
relativistic R3Y NN potential comparable to the M3Y has also
been recently derived from the relativistic mean-field (RMF)
formalism. The present analysis aims to obtain the density-
dependent R3Y (DDR3Y) NN potential from the RHB model.
The M3Y, DDM3Y, R3Y, and DDR3Y NN potentials are
discussed in detail in the following subsections.

A. M3Y and DDM3Y nucleon-nucleon interaction potentials

The explicit medium dependence in the original M3Y in-
teraction was introduced [6,23,24,33] via multiplying it by a
density-dependent weight factor F (ρ),

V M3Y
eff (ρ, r) = F (ρ)V M3Y

eff (r). (3)

Here, V M3Y
eff (r) is the radial-dependent M3Y NN interaction. In

the present analysis, we have considered the widely adopted
Reid M3Y [7] interaction which is written as the sum of three
Yukawa terms as

V M3Y
eff (r) = 7999

e−4r

4r
− 2140

e−2.5r

2.5r
+ J00δ(r). (4)

Here, J00(E )δ(r) is the long-range one-pion exchange poten-
tial (OPEP). The different versions of the density-dependent
F (ρ) factor are developed in the literature with parameters
fitted to reproduce the saturation properties of the nuclear mat-
ter. Here, we have considered the BDM3Y-type [33], which is
written as

F (ρ) = C[1 − αρβ]. (5)

As mentioned above, the parameters C, α, and β are adjusted
to match the nuclear matter saturation properties. Here, we
have adopted the BDM3Y1 (C = 1.2253, α = 1.5124 fm3,
and β = 1.0) version [33] of the density-dependent Reid
M3Y NN interaction as it yields a nuclear incompressibil-
ity value K = 232 MeV, which is comparable to the ones
given by NL3∗ (K = 258.8 MeV) [21], TM1 (K = 281 MeV)
[22], DDME1 (K = 244.5 MeV) [19], and DDME2 (K =
250.89 MeV) [20] parameter sets considered here. The den-
sity ρ in Eq. (5) is taken as sum of the projectile and target
densities at the midpoint of the nucleon-nucleon separation
distance. This procedure is known as the frozen density ap-
proximation (FDA) [6,23,24,33–35] and is widely adopted in
the folding model.

B. R3Y and DDR3Y nucleon-nucleon interaction potentials

The relativistic effective nucleon-nucleon R3Y interaction
[9–11] is derived from the self-consistent relativistic mean-
field (RMF) formalism. The RMF models have emerged to
be very reliable in the description of structural properties of
the finite nuclei, not only in the β-stable regions but also
in the regions of extreme isospin asymmetry lying close
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to the drip lines. A phenomenological Lagrangian density
[9–17,21,22,36–42] describing the nucleon-meson many body
system can be written as

L = ψ{iγ μ∂μ − M}ψ + 1

2
∂μσ∂μσ − 1

2
m2

σ σ 2

− 1

3
g2σ

3 − 1

4
g3σ

4 − gσψψσ − 1

4

μν
μν

+ 1

2
m2

ωωμωμ + 1

4
ξ3(ωμωμ)2 − gωψγ μψωμ

− 1

4
�Bμν. �Bμν + 1

2
m2

ρ �ρμ.�ρμ − gρψγ μ�τψ · �ρμ

− 1

4
FμνFμν − eψγ μ (1 − τ3)

2
ψAμ. (6)

Here, mσ , mω, and mρ are the masses of the corresponding σ ,
ω, and ρ mesons, which intermediate the interaction between
the nucleons of mass M denoted by the Dirac spinor ψ . gσ , gω,
and gρ are the nucleon-meson coupling constants and g2, g3,
and ξ3 denote the nonlinear meson self interaction constants.
The quantities τ and τ3 in Eq. (6) denote the isospin and its
third component, respectively. 
μν , �Bμν , and Fμν symbolize
the field tensors for ω, ρ, and photons, respectively, and are
written as

Fμν = ∂μAν − ∂νAμ, (7)


μν = ∂μων − ∂νωμ, (8)

and

�Bμν = ∂μ�ρν − ∂ν �ρμ. (9)

Here, Aμ is the electromagnetic field. The equations of mo-
tions for the Dirac nucleons and mesons can be derived using
the Euler-Lagrange equations in the mean-field approximation
and are written as

(−iα∇ + β(M + gσ σ ) + gωω + gρτ3ρ3)ψ = εψ,(−∇2 + m2
σ

)
σ (r) = −gσ ρs(r) − g2σ

2(r) − g3σ
3(r),(−∇2 + m2

ω

)
ω(r) = gωρ(r) − ξ3ω

3(r),(−∇2 + m2
ρ

)
ρ(r) = gρρ3(r). (10)

The relativistic effective nucleon-nucleon interaction entitled
R3Y potential [9–11] is derived from the mean-field equa-
tions for the mesons under the limit of one meson exchange.
The relativistic R3Y NN potential is obtained for linear and
nonlinear RMF parameter sets and has been applied suc-
cessfully in exploring the various nuclear phenomenon. In
recent studies [9–17], the Reid M3Y, as well as the R3Y
NN potentials, are used and these studies show that the R3Y
NN potential obtained for nonlinear RMF parameter sets give
comparatively better overlap with the available experimental
data. As discussed above, the explicit density dependence
was introduced in the M3Y NN potential to account for the
in-medium effects, which also results in a better description
of infinite nuclear matter properties. In this direction, it is
crucial and interesting to introduce medium dependence in the
relativistic R3Y NN potential. Here within relativistic mean-
field formalism, it is not necessary to multiply a weighted

density function with the NN potential to make it medium-
dependent, as shown for the M3Y potential in Eq. (3). The
nonlinear meson self-interactions terms in the R3Y NN po-
tential obtained for nonlinear RMF parameter sets effectively
include the medium effects [18]. The alternate method to
include medium effects in the relativistic NN potential (R3Y)
is to consider the density-dependent parametrization within
the RHB approach, where the nucleon-meson couplings are
medium-dependent and are defined as [19,20,43–45]

gi(ρ) = gi(ρsat ) fi(x)|i=σ,ω, (11)

where

fi(x) = ai
1 + bi(x + di )2

1 + ci(x + di )2
(12)

and

gρ (ρ) = gρ (ρsat )exp[−aρ (x − 1)]. (13)

Here, x = ρ/ρsat, with ρsat being the baryon density of sym-
metric nuclear matter at saturation. The five constraints-
fi(1) = 1, f ′′

i (0) = 0, and f ′′
σ (1) = f ′′

ω (1) reduce the number
of independent parameters in Eq. (12) from eight to three.
The independent parameters (the meson mass and coupling
parameters) of the RHB formalism are obtained to fit the
ground state properties of finite nuclei as well as the properties
of symmetric and asymmetric nuclear matter. In the present
analysis, we have adopted the well-known DDME1 [19] and
DDME2 parameter sets [20] to study the fusion mechanism
of various reactions. The density-dependent R3Y (DDR3Y)
NN potential [V R3Y

eff (r, ρp, ρt )] in terms of density-dependent
meson-nucleon coupling constants defined above can be writ-
ten as

V R3Y
eff (r, ρp, ρt ) =

∑
i=ω,ρ

gi(ρp)gi(ρt )

4π

e−mir

r

− gσ (ρp)gσ (ρt )

4π

e−mσ r

r
+ J00δ(r). (14)

Here, mσ , mω, and mρ are the masses of the corresponding
σ , ω, and ρ mesons, which intermediate the interaction be-
tween the nucleons. gσ , gω, and gρ are the nucleon-meson
coupling constants and J00(E )δ(r) is the long-range one-pion
exchange potential (OPEP). The expression for the DDR3Y
in Eq. (14) is identical in form to that of the R3Y NN
potential used in previous studies of Refs. [9–15,17]. Here
in the DDR3Y, the nucleon-meson coupling constants are
density-dependent, while they are constant in the case of the
R3Y NN potential. The relativistic DDR3Y NN potential is
obtained for the DDME1 (solid orange line) and DDME2
(dashed black line) within the relativistic-Hartree-Bogoliubov
approach. The R3Y NN potential is also calculated for non-
linear NL3∗ (thick solid blue line) and TM1 (thick-dash
double-dotted magenta line) parameter sets within the rel-
ativistic mean-field formalism and nonrelativistic M3Y NN
potential (dotted green line) for comparison. The results for
the NN potential are shown as a function of the nucleon
separation (r) in Fig. 1. It is worth mentioning that, the R3Y
NN potential for the DDME1 and DDME2 parameter sets
is plotted at the saturation density (ρsat = 0.152 fm−3 for
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FIG. 1. The R3Y nucleon-nucleon (NN) potential for DDME1
(solid orange line), DDME2 (dashed black line), NL3∗ (thick solid
blue line), and TM1 (thick-dash double-dotted magenta line) pa-
rameter sets are compared with the well-known M3Y (dotted green
line) potential. For sake of presentation in 2D, the NN potentials for
DDME1 and DDME2 are calculated using the couplings at saturation
density (ρsat = 0.152 fm−3 [19,20]). The thick-dashed blue line sig-
nifies the R3Y NN potential obtained for NL3∗ parameter set without
nonlinear coupling terms. See text for details.

DDME1 [19] and DDME2 [20]). More details on the rela-
tivistic parametrizations used in the present analysis can be
found in Refs. [19–22].

As the DDME1 and DDME2 parameter sets do not con-
tain any self-interacting nonlinear terms in the meson field,
we have also given the R3Y potential for the NL3∗ param-
eter set without the nonlinear meson self-interaction terms
(thick-dashed blue line) for the sake of comparison. It can be
observed from Fig. 1 that the R3Y NN potential obtained for
the NL3∗ parameter set without the nonlinear terms shows
the deepest pocket, followed by the DDME2 and DDME1
parameter sets at saturation density. This indicates that the
inclusion of the nonlinear meson interaction terms gives a
repulsive core to the NN potentials, which is essential to
reproduce the saturation properties of infinite nuclear matter.
In the relativistic-Hartree-Bogoliubov approach, the medium-
dependent nucleon-meson vertices are introduced instead of
nonlinear self-interaction terms, and more details can be found
in Refs. [19,20]. Following this, the influence of the density-
dependent R3Y NN potential [see Eq. (14)] within the RHB
approach will be taken into account through nuclear potential
within the double-folding model.

It is worth noting here that the DDR3Y NN potential [see
Eq. (14)] depends upon both the projectile and target den-
sities, unlike the DDM3Y [see Eq. (3)], which is given in
terms of the density at the midpoint of the nucleon separa-
tion. This is because the relativistic DDR3Y NN potential is
obtained microscopically within the RHB approach and the
terms [|gi(ρp)gi(ρt )|i=σ,ω,ρ] account for the meson exchange
between the nucleons of the projectile and target nuclei.
Thus, in the DDR3Y, the density dependence is introduced

2 4 6 8 10
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�
(f
m
-3
)

r/2 (fm)
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48Ca+208Pb

FIG. 2. The nuclear density (ρ) at midpoint of internucleon
separation (r/2) obtained within the frozen density approximation
(dashed red line) and relaxed density approximation (solid black line)
for 48Ca + 208Pb system.

microscopically in terms of meson-exchange, as shown ex-
plicitly in Eq. (14). As mentioned above, in case of the
DDM3Y NN potential, the density dependence is introduced
through a weight function F (ρ) and ρ is obtained within
the frozen density approximation (FDA) [6,23,24]. There is
another parallel method that exists to introduce the density
for a composite system, the so-called relaxed density approx-
imation (RDA) [46,47]. In RDA, the nuclear fusion around
and below the barrier is assumed to be a slow process that
allows the relaxation of proton and neutron densities [46,47].
The FDA and RDA are widely adopted in the double-folding
approach for the M3Y potential, as shown in Eq. (5) and the
Skyrme energy density functional, respectively. Here in Fig. 2,
we have shown a comparison of the DDME2 density (ρ) at the
midpoint of nucleon separation [24] for an illustrative case of
48Ca + 208Pb system calculated within the FDA (dashed red
line) and RDA (solid black line). It can be observed from the
Fig. 2 that ρ obtained within the FDA for lower values of
r/2 is much higher than the nuclear matter saturation density
(ρsat = 0.152 fm−3). This is because, in the FDA, the density
at a fixed point of space is given by the sum of the nucleon
densities of both nuclei [6,23,24,33–35], which exceeds ρsat =
0.152 fm−3 at the smaller nucleon distances. This problem can
be resolved by adopting the RDA in which the density at any
separation does not surpass the equilibrium density of nuclear
matter [46,47].

To assess the validity of the FDA and RDA for evaluating
the DDM3Y, we have calculated the nuclear potential using
both approximations within the double-folding approach. For
the sake of comparison, we have also evaluated the DDR3Y
NN potential using both these approximations [i.e., replacing
ρp and ρt in Eq. (14) by ρ]. Figure 3 shows the nuclear poten-
tial calculated using the DDM3Y (dashed lines) and DDR3Y
(solid lines) within the FDA (red) and RDA (black) for the
case of 48Ca + 208Pb system. The solid orange line shows
the nuclear potential calculated using the DDR3Y given in
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FIG. 3. Nuclear potential (Vn) calculated within frozen den-
sity approximation (red) and relaxed density approximation (black)
using DDM3Y (dashed) and DDR3Y (solid) NN potentials for
48Ca + 208Pb system.

Eq. (14). It is worth mentioning here that to obtain the nu-
clear potential using Eq. (14), neither of the frozen or relaxed
density approximations is needed. It can be noticed clearly
from Fig. 3 that there is a remarkable difference between the
nuclear potentials obtained within the FDA and RDA for the
DDR3Y NN potential. Comparing the results obtained from
the FDA and RDA with those from Eq. (14), it is observed that
the FDA yields much attractive nuclear potential, whereas the
RDA provides slightly repulsive nuclear potential. Moreover,
the results of the RDA are closer to those obtained using
Eq. (14) than the FDA. In the case of the DDM3Y, the differ-
ence between the nuclear potential obtained within the FDA
and RDA is almost negligible. This is because, in the case of
the DDM3Y, the density dependence enters through a weight
function F (ρ), whereas for the DDR3Y the nucleon-meson
couplings of σ -, ω-, and ρ-mesons are density-dependent (see
Fig. 1 in Ref. [19]). Thus, the FDA approximation, which
gives ρ � ρsat at smaller r is inappropriate for obtaining the
nuclear potential using the DDR3Y NN potential. The RDA,
however, gives results close to those obtained using Eq. (14),
but still, there is a noticeable difference, especially at smaller
nuclear separation distance (R). However, both the RDA as
well as the FDA give similar results in the case of the DDM3Y.
Following all these observations, we have adopted the tra-
ditional FDA [6,23,24] for calculating the nuclear potential
using the DDM3Y. To obtain the nuclear potential using the
DDR3Y NN potential, no approximation to the density is used,
and the medium dependence is introduced in terms of both
projectile and target density-dependent nucleon-meson cou-
plings. More explicitly, the medium dependence in DDR3Y is
introduced directly in the coupling constants.

The nuclear potentials obtained by folding different den-
sity distributions and NN interactions are further employed
to study the fusion of various systems within the extended
�-summed Wong model [13–17,25]. This �-summed Wong
model [25] is the refined version of the simple Wong formula

[26] and accounts for the actual modifications entering the
fusion barrier due to its angular momentum dependence. The
cross-section in terms of � -partial wave is written as

σ (Ec.m.) = π

k2

�max∑
�=0

(2� + 1)P�(Ec.m.). (15)

Here, k =
√

2μEc.m.

h̄2 and Ec.m. denotes the energy of target-
projectile system in the center of mass frame. In present
study, �max values are extracted from the sharp cut-off model
[48] for above barrier energies and extrapolated for below
barrier energies. The quantity P� symbolize the transmission
coefficient. Using the Hill-Wheeler [49] approximation of
symmetric parabolic barrier, P� can be written in terms of
barrier height (V �

B ) and curvature (h̄ω�) as

P� =
{

1 + exp

[
2π

(
V �

B − Ec.m.
)

h̄ω�

]}−1

. (16)

The barrier characteristics such as the barrier height (V �
B ) and

barrier position (R�
B) can be evaluated easily once the total

interaction potential [see Eq. (1)] is defined, i.e.,

dV �
T

dR

∣∣∣∣
R=R�

B

= 0, (17)

d2V �
T

dR2

∣∣∣∣
R=R�

B

� 0. (18)

Further, the barrier curvature (h̄ω�) can also be evaluated at
R = R�

B corresponding to the barrier height V �
B as

h̄ω� = h̄
[∣∣d2V �

T (R)/dR2
∣∣
R=R�

B
/μ

] 1
2 . (19)

These barrier characteristics of the total interaction potential
are obtained using M3Y, DDM3Y, R3Y, and DDR3Y NN
interaction potential described in detail above.

III. RESULTS AND DISCUSSION

This section aims to assess the application of medium-
dependent relativistic DDR3Y NN potential [see Eq. (14)]
in the description of nuclear fusion dynamics. For this a
detailed analysis of the barrier characteristics and fusion
and/or capture cross-section for six heavy-ion reactions,
namely, 16O + 40Ca, 40Ca + 58Ni, 40Ca + 90Zr, 16O + 144Sm,
16O + 208Pb, and 48Ca + 208Pb is carried out. These even-
even, spherical, and/or nearly spherical [50] target-projectile
systems lead to the formation of compound nuclei with
N/Z ratios varying from 1 (isospin symmetric) to 1.5
(isospin asymmetric). As mentioned above, the nuclear po-
tential formed between two colliding heavy ions provides
a key to elucidating the fusion mechanism, by introduc-
ing in-medium effects in the microscopic description of the
relativistic NN interaction potential. The density-dependent
microscopic DDR3Y NN potential is obtained within the well-
established relativistic-Hartree-Bogoliubov (RHB) approach
for the DDME1 [19], and DDME2 [20] parameter set. It is
worth mentioning that unlike [51], here, the medium effects
in the DDR3Y are introduced microscopically in terms of
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density-dependent couplings of the σ -, ω-, and ρ-mesons.
Also, unlike the DDM3Y, no approximation is used to in-
troduce the density dependence in the relativistic DDR3Y
NN potential. One can observe from Fig. 1 that all the NN
potentials have similar forms but with different depths. The
nonlinear TM1 parameter set provides the most repulsive
core, whereas the NL3∗ parameter without nonlinear meson
interaction terms results in the most attractive core of the
R3Y NN potential. It is worth noting here that the R3Y NN
potential for DDME1 and DDME2 parameter sets is plot-
ted at the saturation density in Fig. 1, whereas the actual
density-dependent R3Y NN potential given by Eq. (14) is
used in the double-folding approach to obtain the nuclear
potential.

The nuclear densities for the target and projectile nu-
clei considered are also obtained within the RHB approach
for the DDME1 and DDME2 parameter sets and the RMF
formalism for the NL3∗ and TM1 parameter sets. Folding
these densities with the R3Y, DDR3Y, DDM3Y, and M3Y
effective NN potentials, we get 12 sets of nuclear potentials,
namely, R3Y-NL3∗, R3Y-TM1, DDR3Y-DDME1, DDR3Y-
DDME2, DDM3Y-NL3∗, DDM3Y-TM1, DDM3Y-DDME1,
DDM3Y-DDME2, M3Y-NL3∗, M3Y-TM1, M3Y-DDME1,
and M3Y-DDME2 for each reaction. As discussed in Sec. II,
the frozen density approximation results in densities (ρ) much
higher than the nuclear matter saturation density (ρsat) at small
separation (see Fig. 2 for the case of 48Ca + 208Pb system
for the DDME2 set). This problem is resolved when the
nuclear density at the midpoint of separation is used within
the relaxed density approximation (RDA). However, it can
be observed from Fig. 3, that the nuclear potential obtained
for DDM3Y within the FDA and RDA almost overlap. In the
case of the DDR3Y, neither the FDA nor RDA is required,
as it incorporates the meson-exchange effect microscopically
within the RHB approach between the projectile and target
nuclei [see Eq. (14)]. Thus, both target and projectile densities
are used to introduce medium-dependence in the DDR3Y
NN potential and consequently to calculate the DDR3Y-
DDME1 and DDR3Y-DDME2, whereas the FDA is used to
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FIG. 4. The total interaction potential VT (MeV) at � = 0h̄ as a
function of radial separation R for 48Ca + 208Pb system calculated
using the M3Y (dash double dotted lines), DDM3Y (dashed lines),
R3Y (thick solid lines), and DDR3Y (solid lines) NN potentials.
The blue (thick dark gray), magenta (thick light gray), orange (light
gray) and black lines are for NL3∗, TM1, DDME1, and DDME2
parameters sets, respectively. See text for details.

evaluate DDM3Y-NL3∗, DDM3Y-TM1, DDM3Y-DDME1,
and DDM3Y-DDME2 nuclear potentials. Further investiga-
tion of Fig. 3 shows that the relativistic DDR3Y NN potential
gives a more attractive nuclear interaction potential as com-
pared to the DDM3Y NN potential. For a more comprehensive
study, the repulsive Coulomb potential is added to all the 12
sets of nuclear potentials mentioned above.

Figure 4 shows the barrier regions of the s-wave (� = 0h̄)
total interaction potentials obtained for 48Ca + 208Pb reaction
using all 12 combinations of nuclear densities and effec-
tive NN potentials. The positions RB (in fm) and heights
VB (in MeV) of the fusion barrier for the six reactions un-
der study are listed in Table I. Here, DDR3Y-DDME1 and

TABLE I. The positions RB (in fm) and heights VB (in MeV) of the fusion barriers obtained using R3Y, DDR3Y, M3Y, and DDM3Y NN
potentials folded with nuclear densities obtained within RHB and RMF approaches for all the reactions under study.

Reaction 16O + 40Ca 40Ca + 58Ni 40Ca + 90Zr 16O + 144Sm 16O + 208Pb 48Ca + 208Pb

Nuclear Potential RB VB RB VB RB VB RB VB RB VB RB VB

R3Y-NL3∗ 9.4 22.85 10.5 72.36 11.2 96.83 11.3 59.59 12.2 73.17 13.2 169.81
R3Y-TM1 9.2 23.26 10.3 73.45 11.0 98.20 11.1 60.46 12.0 74.11 13.0 171.84
DDR3Y-DDME1 9.2 23.35 10.2 73.91 10.9 99.18 11.0 60.88 11.9 74.80 12.8 173.55
DDR3Y-DDME2 9.2 23.41 10.2 74.03 10.9 99.28 10.9 60.99 11.9 74.90 12.8 173.64
DDM3Y-NL3∗ 8.8 24.28 9.8 76.70 10.4 102.73 10.7 62.66 11.5 76.89 12.3 179.28
DDM3Y-TM1 8.7 24.53 9.7 77.29 10.4 103.45 10.6 63.12 11.4 77.36 12.3 180.20
DDM3Y-DDME1 8.9 24.06 9.8 76.13 10.5 102.12 10.7 62.24 11.6 76.43 12.4 178.41
DDM3Y-DDME2 8.8 24.17 9.8 76.41 10.5 102.41 10.7 62.44 11.5 76.65 12.4 178.83
M3Y-NL3∗ 8.9 24.01 9.8 76.34 10.5 101.77 10.7 62.20 11.6 76.31 12.4 177.93
M3Y-TM1 8.8 24.23 9.7 76.84 10.5 102.40 10.7 62.64 11.5 76.74 12.4 178.72
M3Y-DDME1 9.0 23.80 9.9 75.63 10.6 101.22 10.8 61.81 11.7 75.88 12.5 177.17
M3Y-DDME2 8.9 23.90 9.9 75.87 10.6 101.49 10.8 62.00 11.6 76.09 12.5 177.54
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DDR3Y-DDME2 signify that both the effective NN potentials
as well as the nuclear densities are obtained within the RHB
approach for the density-dependent DDME1 and DDME2
parameter sets, respectively. The BDM3Y1 version of the
density-dependent Reid NN interactions (denoted as DDM3Y)
is considered here since it gives a nuclear incompressibility
(K) value comparable to that given by the RMF parameter
sets considered in the present study. It can be observed from
Fig. 4, as well as Table I, that the R3Y-NL3∗ nuclear potential
gives the lowest barrier, whereas the DDM3Y-TM1 provides
the highest fusion barrier for the considered heavy-ion reac-
tions. From the comparison of barrier heights obtained for
the R3Y and newly introduced DDR3Y, as well as those ob-
tained for the M3Y and DDM3Y NN potentials, it is observed
that the inclusion of density dependence in the effective NN
potential increases the fusion barrier because the in-medium
effects result in a more repulsive nuclear potential (see Fig. 3).
However, the difference between the barrier characteristics
obtained for the DDR3Y and R3Y is more prominent than
that for the DDM3Y and M3Y NN potentials. This is be-
cause, in the DDR3Y, the medium-dependence is introduced
microscopically in terms of the density-dependent meson-
nucleon couplings. Further, comparing the results given by
different nuclear density distributions folded with the same
M3Y NN potentials, it is noted that densities obtained for
the DDME1 and TM1 parameters sets give the lowest and

highest barrier, respectively. Also, the total potentials obtained
within the DDME1 and DDME2 almost overlap in the barrier
region, with the DDME2 giving a slightly higher barrier. The
characteristics of the total interaction potentials obtained for
different NN potentials and nuclear densities are further used
to calculate the fusion probability.

The �-summed Wong model equipped with the relativistic-
Hartree-Bogoliubov and relativistic mean-field approaches is
used to evaluate the fusion and/or capture cross-section for
the six reactions under study. The �-values are obtained using
the sharp cut-off model [48] at above barrier center of mass
energies and are extrapolated for the below-barrier region. The
fusion and/or capture cross-section σ (mb) as function of the
center of mass-energy (Ec.m.) is shown in Fig. 5, calculated
using 12 different nuclear potentials listed in Table I. It can be
noted from Fig. 5 that among the R3Y, DDR3Y, M3Y, and
DDM3Y, the highest cross-section is obtained for the R3Y
NN potential, whereas the DDM3Y yields the lowest cross-
section for all the systems. From the comparison of results
obtained for the NL3∗, TM1, DDME1, and DDME2 densities
folded with the same NN potential (M3Y and DDM3Y), it
is observed that the DDME1 and TM1 densities give the
highest and lowest cross-sections, respectively. On comparing
the cross-section obtained for newly developed DDR3Y with
that obtained for nonlinear R3Y NN potential, it is observed
that the fusion and/or capture cross-section decreases on
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introducing the medium-dependence through the density-
dependent nucleon-meson couplings.

The experimental data are taken from Refs. [27–32] for
comparison at below and above barrier energies as shown
in Fig. 5. The R3Y NN potential, as well as the nuclear
densities obtained for the NL3∗ parameter set, are observed
to give a comparatively better fit to the experimental data than
the other sets of nuclear potentials. As discussed above, the
inclusion of in-medium effects in the DDR3Y NN potential
within the RHB approach decreases the cross-section which
results in the under-estimation of the experimental data. Both
the nonrelativistic M3Y and DDM3Y NN potentials are also
observed to underestimate the fusion and/or capture cross-
section for all the systems under study. For the 40Ca + 58Ni
[Fig. 5(b)] and 40Ca + 90Zr [Fig. 5(d)] systems, the R3Y-
NL3∗ is also observed to underestimate the cross-section at
below barrier energies. The difference between the cross-
section obtained using different nuclear potentials is smallest
for the 16O + 40Ca reaction, involving comparatively lighter
and doubly magic target and projectile nuclei. Moreover, the
difference between cross-sections obtained using different nu-
clear potentials decreases progressively as we move toward
the higher center of mass energies. This is because, at above
barrier energy regions, the effects of nuclear structure are
diminished considerably, and only the angular momentum
effect persists [13,14]. Also, the difference between cross-
sections obtained for different RMF and RHB parameter sets
increases with the increase in the mass of the compound
nucleus formed in the reaction. This indicates that a relevant
choice of nuclear potential becomes more and more important
as we move towards the exotic regions of the nuclear chart.

IV. SUMMARY AND CONCLUSIONS

The density dependence is introduced in the description
of the relativistic R3Y effective NN potential. The R3Y NN
potential is obtained in terms of density-dependent nucleon-
meson couplings within the framework of the relativistic-
Hartree-Bogoliubov (RHB) approach for the well-known
DDME1 and DDME2 parameter sets. This newly developed
effective NN potential is entitled DDR3Y NN potential and
is further employed to obtain the nuclear potential within
the double-folding approach and also the fusion and/or cap-
ture cross-section within the �-summed Wong model. The
microscopic R3Y NN potential obtained within relativis-
tic mean-field (RMF) formalism for nonlinear NL3∗ and
TM1 parameter sets, as well as the nonrelativistic M3Y and
DDM3Y NN potentials, are also considered for the compar-
ison. The frozen density approximation (FDA) is used to

calculate the DDM3Y NN potential, whereas no such ap-
proximation is needed to obtain the microscopic DDR3Y
NN potential as it is obtained in terms of both projectile
and target density-dependent nucleon-meson couplings within
the RHB approach. The comparison of the fusion barrier
characteristics and fusion and/or capture cross-sections ob-
tained within different forms of the NN potential (R3Y,
DDR3Y, M3Y, and DDM3Y) is carried out for six reactions,
namely, 16O + 40Ca, 40Ca + 58Ni, 40Ca + 90Zr, 16O + 144Sm,
16O + 208Pb, and 48Ca + 208Pb leading to the formation of
light, heavy and superheavy compound nuclei.

From the comparison of barrier characteristics and cross-
sections obtained for the R3Y and newly introduced DDR3Y
as well as those obtained for the M3Y and DDM3Y NN poten-
tials, it is observed that the inclusion of density dependence in
the effective NN potential increases the fusion barrier, which
consequently decreases the fusion and/or capture cross-
section. However, the difference between results obtained
for the R3Y and DDR3Y is considerably more prominent
than those obtained for the M3Y and DDM3Y NN poten-
tials. This is because the medium-dependence is introduced
in the DDR3Y via density-dependent meson-nucleon cou-
plings, unlike in the DDM3Y, where the density-dependent
is introduced through a weight function. Further, from the
comparison of cross-sections obtained using different nuclear
potentials with the experimental data, it is noticed that the
DDR3Y NN potential underestimates the fusion and/or cap-
ture cross-section for all the considered reactions. However,
the match between the experimental and theoretical cross-
section is better for the DDR3Y NN potentials than for the
DDM3Y NN potentials. The relativistic R3Y NN potential and
nuclear densities obtained for the NL3∗ parameter set are ob-
served to provide a comparatively better fit to the experimental
data. Moreover, the difference between the different RMF and
RHB parameter sets increases with the increase in the mass
number of the compound nuclei. Thus, a more systematic
study involving more degrees of freedom and nuclear reac-
tions forming heavy and superheavy nuclei should be carried
out for a comprehensive analysis of the effects of different
nuclear densities and NN potentials on fusion dynamics.
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