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The relation between the fourth-order symmetry energy Esym,4(ρ0) of nuclear matter at saturation density ρ0

and its counterpart asym,4(A) of finite nuclei in a semiempirical nuclear mass formula is revisited by considering
the high-order isospin-dependent surface tension contribution to the latter. We derive the full expression of
asym,4(A), which includes explicitly the high-order isospin-dependent surface tension effects, and find that the
value of Esym,4(ρ0) cannot be extracted from the measured asym,4(A) before the high-order surface tension is
well constrained. Our results imply that a large asym,4(A) value of several MeV obtained from analyzing nuclear
masses can nicely agree with the empirical constraint of Esym,4(ρ0) � 2 MeV from mean-field models and does
not necessarily lead to a large Esym,4(ρ0) value of ≈20 MeV obtained previously without considering the high-
order surface tension. Furthermore, we also give the expression for the sixth-order symmetry energy asym,6(A) of
finite nuclei, which involves more nuclear matter bulk parameters and the higher-order isospin-dependent surface
tension.
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I. INTRODUCTION

The fourth-order symmetry energy of nuclear matter plays
an important role in determining the properties of neutron
stars such as the proton fraction and the core-crust transi-
tion density/pressure [1–7], with the former being critical to
neutron star cooling [8–10]. Mathematically, the fourth-order
symmetry energy of nuclear matter is defined as Esym,4(ρ) ≡
24−1∂4E (ρ, δ)/∂δ4|δ=0, where E (ρ, δ) is the equation of state
(EOS) of asymmetric nucleonic matter (ANM) at density ρ =
ρn + ρp and isospin asymmetry δ = (ρn − ρp)/(ρn + ρp),
with ρn (ρp) denoting the neutron (proton) density [11–19].

Most theoretical model calculations indicate that the
Esym,4(ρ) is much smaller than its preceding term in the
ANM EOS, namely, the nuclear symmetry energy defined
similarly as Esym(ρ) ≡ 2−1∂2E (ρ, δ)/∂δ2|δ=0, and this em-
pirical fact can be illustrated from the free Fermi gas (FFG)
model. In particular, in the relativistic FFG model, one has
the ratio � ≡ Esym,4(ρ)/Esym(ρ) = 108−1 × (10ν4 + 11ν2 +
4)/(ν4 + 2ν2 + 1) with ν = kF/M, where M is the nucleon
rest mass and kF is nucleon Fermi momentum in symmet-
ric nucleonic matter (SNM). Consequently, the � takes a
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value in the range of 1/27 � � � 5/54 [20,21]. For ex-
ample, Esym,4(ρ0) in the nonrelativistic FFG model at the
saturation density ρ0 ≈ 0.16 fm−3 is about 0.45 MeV by
taking M ≈ 939 MeV, which is much less than the value of
≈13 MeV for the symmetry energy Esym(ρ0) in the non-
relativistic FFG model. When considering nucleon-nucleon
interactions, essentially all the predictions on the fourth-order
symmetry energy using either phenomenological models
[4–7,22,23] or microscopic many-body theories [24–26] point
to the self-consistent constraint Esym,4(ρ0) � 2 MeV.

On the other hand, a systematic expansion (i.e., the “lep-
todermous” expansion) of the energy per nucleon in a finite
nucleus is usually made in terms of the small quantity
I ≡ (N − Z )/A ≈ δ and the length parameter A−1/3, such
that B(N, Z )/A = ∑

i, j=0,1,2,... Bi jI2iA− j/3 plus terms like the
Coulomb and pairing contributions [27,28], where N and Z
are the neutron and proton numbers in a finite nucleus with
mass number A = N + Z , respectively. Specifically, the clas-
sic Bethe-Weizsäcker mass formula gives [27]

B(N, Z ) = − avA + asurA
2/3 + acou

Z2(1 − Z−2/3)

A1/3

+ aaI2A + ap
(−1)N + (−1)Z

A2/3
, (1)

here −av is the volume energy coefficient, asur is the surface
energy coefficient, acou characterizes the Coulomb interac-
tion between protons, aa is the so-called symmetry energy
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coefficient of finite nuclei, and ap is the paring energy
coefficient. By analyzing nuclear masses [27], a few coef-
ficients appearing in Eq. (1) are found to be about av ≈
15.7 MeV, asur ≈ 18.6 MeV, and acou ≈ 0.7 MeV [27]; see
also Ref. [29]. By considering the isospin correction to the
coefficient of nuclear surface tension [see formula (3)], the
symmetry energy aa appearing in (1) could be generalized to
be [30]

aa → asym(A) = α

1 + (α/β )A−1/3
, (2)

which depends only on the mass number A. Here α =
Esym(ρ0) and β is the so-called surface symmetry energy; for
details on β see the relevant discussionin Sec. II.

Generally, even higher order contributions could be con-
sidered in the semiempirical Bethe-Weizsäcker mass formula
in the form of aaI2A → (aaI2 + aa,4I4 + · · · )A, where aa,4

is the fourth-order symmetry energy coefficient of finite nu-
clei, which is the main topic of the present work. The aa,4

coefficient was recently found to have a sizable value by
analyzing the double difference of the “experimental” sym-
metry energy extracted from nuclear masses [31]. Specifically,
aa,4 ≈ 3.28 ± 0.50 MeV was extracted in Ref. [32] and aa,4 ≈
8.33 ± 1.21 MeV in Ref. [33]. Moreover, in Ref. [34], the
fourth-order symmetry energy of finite nuclei was investigated
by fitting nuclear mass data via the nuclear mass formula with
two different forms of the Winger energy, and the obtained
constraint on aa,4 is about 3.91 ± 0.10 MeV.

Some questions naturally emerge: What implication does a
sizable aa,4 give on the value of Esym,4(ρ0)? Is the fourth-order
symmetry energy of nuclear matter also large and inconsistent
with the empirical constraint that Esym,4(ρ0) � 2 MeV? In this
work, the full formula for the fourth-order symmetry energy
of finite nuclei is derived, and the conclusion is that although
the aa,4 obtained by fitting nuclear masses is sizable, the
corresponding Esym,4(ρ0) could still be relatively small to be
consistent with the empirical constraints due to the high-order
isospin-dependent surface tension effects.

The paper is organized as follows. Section II gives a brief
review of the current status of the symmetry energy and the
fourth-order symmetry energy of finite nuclei, starting from
the general discussion of Eq. (2). In Sec. III, the formula for
the fourth-order symmetry energy of finite nuclei is given
together with numerical demonstrations, and the emphasis
is on the surface contribution. Section IV is devoted to the
analytical expression for the sixth-order symmetry energy of
finite nuclei. Section V gives the summary of the present
work.

II. SYMMETRY ENERGIES OF FINITE NUCLEI:
RELEVANT STATUS REVIEW

We start our discussions by reviewing the status of the
symmetry energy of finite nuclei. For a finite nucleus with
N neutrons and Z protons, the total difference 	 = N − Z
could be decomposed into two parts as 	v = Nv − Zv and
	s = Ns − Zs, representing the isospin difference in the bulk
of the nucleus and that distributed on its surface. Naturally
one has 	 = 	v + 	s. As more isospin asymmetry moves to

the surface, physically the nucleus becomes looser, indicating
that the surface tension of the nucleus becomes smaller com-
pared to one in which no isospin asymmetry is distributed on
the surface. Moreover, as either neutrons or protons are dis-
tributed more on the nucleus surface, the surface tension σ =
asur/(4πr2

0 ), where r0 is the nuclear matter radius parameter
defined by 4πρ0r3

0/3 = 1, always decreases. Consequently,
the surface tension with some isospin asymmetry distributed
on the nucleus surface could be written as [30]

σ = σ0 − γμ2
a = σ0

[
1 − (γ /σ0)μ2

a

]
, (3)

where μa = (μn − μp)/2 is the chemical potential difference
between neutrons and protons, and γ is a parameter. The
leading nontrivial contribution starting at order μ2

a reflects the
aforementioned symmetry between neutrons and protons.

Based on the relation (3), Ref. [30] derived a closed expres-
sion for the symmetry energy of finite nuclei incorporating the
surface effects; see formula (2) where α ≡ av

a is the coefficient
in front of (Nv − Zv)2/A, and β ≡ 1/16πr2

0γ ≡ as
a. The av

a
and as

a are the volume (bulk) symmetry energy and the surface
symmetry energy [30,35], respectively. In the limit of large A,
the isospin asymmetry gets primarily stored within the bulk
and the coefficient asym(A) tends towards av

a , i.e., we also have
av

a = Esym(ρ0). On the other hand, in the limit of small mass
number A, the storage of the isospin asymmetry gets shifted
to the surface and the ratio asym(A)/A scales as as

a/A2/3.
In addition, the relation is further established between the

coefficient β and the ones appearing in the nuclear droplet
model [27], i.e., β = 4Q/9 = (4H/9)/(1 − 2P/3J ), where
J ≡ Esym(ρ0) = α, Q is the neutron skin stiffness coefficient
[29] and the individual constants H, P, and G, found equal to
G = 3JP/2Q, describe the dependence of the surface energy
on the bulk isospin asymmetry and on normalized size of the
neutron skin.

The uncertainties on the symmetry energy of finite nuclei
are mainly due to those on the surface symmetry energy
coefficient β, e.g., Ref. [30] constrained the ranges for the
parameters α and β as 27 � α � 31 MeV and 11 � β �
14 MeV and their ratio as 2.0 � α/β � 2.8 [30]. Similarly,
an earlier analysis via the Thomas-Fermi model gives Q about
35.4 MeV, leading to β about 15.7 MeV, and even earlier
the droplet model gave Q ≈ 16 MeV and β ≈ 7.1 MeV [27].
Recently, based on analysis of the isobaric analog states (IAS),
the volume symmetry energy coefficient and the surface sym-
metry energy coefficient were found to be about av

a = α ≈
35.3 MeV and as

a = β ≈ 9.7 MeV, respectively [36], and con-
sequently α/β ≈ 3.6. On the other hand, when combining the
IAS analysis and the neutron skin thickness (	rnp) constraint,
the relation between the coefficients av

a and as
a is found to be

slightly changed. Specifically, the av
a and the as

a obtained in the
half-infinite calculation are found to be about 30.2–33.7 MeV
and 14.8–18.5 MeV, leading to the ratio α/β ≈ 1.92 ± 0.24,
while the best values from the combined analysis from IAS
and the 	rnp are about 33.2 and 10.7 MeV, respectively [36],
and thus α/β ≈ 3.1.

We have made no attempt to review all the relevant investi-
gations of the coefficients av

a and as
a. The main point we would

like to stress here is that these uncertainties may further induce
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essential uncertainties on the fourth-order symmetry energy of
finite nuclei through the ratio α/β.

It should be pointed out that if the nuclear surface tension
is truncated as in Eq. (3), there would be no higher order sym-
metry energies from the surface contribution in finite nuclei.
However, it is natural and physical that the nuclear surface
tension should include higher order contributions, i.e.,

σ ≈ σ0 − γμ2
a − γ ′μ4

a − γ ′′μ6
a + · · · , (4)

where γ ′ and γ ′′, etc., are effective parameters. Under this
situation, one can obtain higher order terms in the binding
energy per nucleon in finite nuclei, which is the starting point
for the calculations of the present work.

Recently, the bulk term av
sym,4(A) of the fourth-order sym-

metry energy asym,4(A) of finite nuclei was derived using a
variational method in Ref. [37] based on the lowest-order
isospin truncation of Eq. (3) for the surface tension, and the
analytic expression is obtained as

av
sym,4(A) = 1

(1 + α/βA1/3)4

(
Esym,4(ρ0) − L2

2K0

)
. (5)

Based on this formula, Ref. [37] claimed that the Esym,4(ρ0)
should be as large as about 20 MeV if aa,4 ≈ 3.28 MeV is
used [32]. Such a large value of Esym,4(ρ0) ≈ 20 MeV is
partially due to the term L2/2K0 which is about 4.2 MeV if
L ≈ 45 MeV [17,38,39] and K0 ≈ 240 MeV [18,40–42] are
adopted, and this confusing value is significantly larger than
the empirical constraint of Esym,4(ρ0) � 2 MeV. In the present
work, we show that a high-order surface contribution will
appear in the fourth-order symmetry energy of finite nuclei
due to the high-order isospin dependent surface tension (γ ′) as
in Eq. (4), and thus a large aa,4 value of several MeV obtained
from analyzing nuclear masses does not have to lead to a large
Esym,4(ρ0) value of ≈20 MeV obtained without considering
the high-order isospin dependent surface tension.

III. FOURTH-ORDER SYMMETRY ENERGY OF FINITE
NUCLEI: FULL EXPRESSION

Generally, one can obtain the following equations to deter-
mine the bulk and surface isospin asymmetries as well as the
chemical potential difference in finite nuclei [30]:

	v + 	s = 	, 2α	v/A − μa = 0, 	s/S + dσ/dμa = 0,

(6)
where S = 4πr2

0 A2/3 is the surface area of the nucleus via the
relation R = r0A1/3. It should be pointed out that the equa-
tions shown in (6) are not complete in the sense that, as higher
order terms like γ ′μ4

a would induce a high order symmetry
energy in finite nuclei related to the surface properties, one
needs to add the bulk term 4α4(	v/A)3 ≡ 4Esym,4(ρ0)(	v/A)3

originating from the fourth-order symmetry energy to the sec-
ond equation and to solve self-consistently. However, since
this part was already obtained in Ref. [37], for the purpose of
the present work we will not give the detailed derivations here
and only focus on the surface contribution.

A. Effective symmetry energies for finite nuclei

By introducing the function f = σ/σ0, one obtains in
the situation f = 1 − θμ2

a ≡ 1 + y (with θ ≡ γ /σ0 and y ≡
−θμ2

a) the following expressions for 	v,	s, and μa:

	v

	
= 1

1 + φ
,

	s

	
= φ

1 + φ
, μa = 2α

A

	

1 + φ
, (7)

where φ = α/βA1/3. The effective symmetry energy [appear-
ing in the mass formula in the form of aeff

a (N, Z )I2A] in finite
nuclei could be obtained as

aeff
a (N, Z ) =

[
α	2

v

A
+ μa	s + σ0S( f − 1)

]/
AI2, (8)

which includes the effects from higher order symmetry
energies as aeff

a (N, Z ) ≈ asym(A) + as
sym,4(A)I2 + · · · . In par-

ticular, for f = 1 − θμ2
a the effective symmetry energy

aeff
a (N, Z ) reduces to asym(A) = α/(1 + α/βA1/3). Moreover,

in this simple model there is only one effective parameter,
θ , and it is determined uniquely by the surface symmetry
energy coefficient β and the surface tension σ0. Similarly,
the effective fourth-order symmetry energy of finite nuclei is
defined as

aeff
a,4(N, Z ) = [

aeff
a (N, Z ) − asym(A)

]/
I2, (9)

which contains even higher order contributions, e.g., the sixth-
order symmetry energy.

As long as the function f is depending on the combination
y = −θμ2

a , i.e., f = f (y), it could be proved straightfor-
wardly that the bulk and the surface isospin asymmetries are
given, by generalizing the first two relations of (7), as

	v

	
=

(
1 + φ

df

dy

)−1

,
	s

	
= φ

df

dy

(
1 + φ

df

dy

)−1

. (10)

In this situation, the effective symmetry energy of finite nuclei
can be obtained as

aeff
a (N, Z ) =α(1 + 2φdf /dy)

(1 + φdf /dy)2
+ 4πr2

0σ0

I2A1/3
[ f (y) − 1], (11)

and μa should be self-consistently obtained by solving the
three equations of (6). As A → ∞ and N − Z → ∞ but the
ratio I is fixed, the chemical potential difference μa will also
be fixed for a given I . In particular, all effective models for f
tend to be the same in the large-A limit, and μa ≈ μ∞

a ≡ 2αI ,
or equivalently 2μa = μn − μp ≈ 4αδ, indicating that the
aeff

a,4(N, Z ) approaches zero in this limit. It should be remem-
bered that only the surface contribution to the fourth-order
symmetry energy is studied here; see the comments given at
the beginning of this section. If f = 1 + y is adopted, then
Eq. (11) naturally reduces to α/(1 + φ).

B. Surface fourth-order symmetry energy

Formula (11) itself could be used to derive the fourth-
order symmetry energy of finite nuclei. We start from formula
(11) by assuming that the function f takes the form f ≈
1 + y + κy2, where κ = −γ ′σ0/γ

2 is an effective parame-
ter characterizing the fourth-order contribution to the isospin
splitting of the f = σ/σ0 [see Eq. (4)]. Consequently one has
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f ′ ≡ df /dy = 1 + 2yκ , and the first term in Eq. (11) becomes

α(1 + 2φ f ′)
(1 + φ f ′)2

≈ α(1 + 2φ)

(1 + φ)2
− 4φ2yα

(1 + φ)3
κ, (12)

to order κ . Similarly the second term in Eq. (11) is expanded
as 4πr2

0σ0(y + y2κ )/I2A1/3, where the first term here gives

4πr2
0σ0y

I2A1/3
≈ − αφ

(1 + φ)2
− 16α3φ2θ I2κ

(1 + φ)5
. (13)

Summing the first term of Eq. (12) and the first term of
Eq. (13) gives the familiar formula for symmetry energy of
finite nuclei, i.e., asym(A) = α/(1 + φ).

Since we assume κ is small, the y in 4πr2
0σ0y2κ/I2A1/3

could be approximated as y ≈ −4θα2I2/(1 + φ)2 (recalling
that 	/A = I), and moreover μa ≈ 2αI/(1 + φ). One then
obtains

− 4αφ2y

(1 + φ)3
≈16α3φ2θ

(1 + φ)5
I2,

4πr2
0σ0y2

I2A1/3
≈ 4α3φθ

(1 + φ)4
I2,

(14)

where the relation 4πr2
0σ0y/I2A1/3 ≈ −αφ/(1 + φ)2 is used

for obtaining 4πr2
0σ0y2/I2A1/3 at this order.

Combining all these terms gives the effective symmetry
energy of finite nuclei to order I2κ as

aeff
a (N, Z ) ≈ α

1 + φ
+ 4α3φθκI2

(1 + φ)4
, (15)

the coefficient in front of I2 of the second term gives the
(surface) fourth-order symmetry energy of finite nuclei, i.e.,

as
sym,4(A) = 4α3θκφ

(1 + φ)4
= 4α4θκ

βA1/3

/(
1 + α

βA1/3

)4

. (16)

By combining Eq. (16) with the bulk contribution Eq. (5)
derived in Ref. [37], we finally obtain the total fourth-order
symmetry energy of finite nuclei as

asym,4(A) =
(

1 + Esym(ρ0)

βA1/3

)−4

×
(

Esym,4(ρ0) − L2

2K0
+ 4θκE4

sym(ρ0)

βA1/3

)
. (17)

In Fig. 1, the A dependence of the symmetry energy
asym(A) (blue dash-dot line) and the surface fourth-order sym-
metry energy as

sym,4(A) (magenta line) of finite nuclei are
shown by adopting κ = 0.5, and moreover α ≈ 30 MeV, β ≈
15 MeV, r0 ≈ 1.12 fm [30], and σ0 ≈ 0.8 MeV/fm2 are
used for illustration. It is found that the fourth-order sym-
metry energy (due to the surface) has a weak dependence
on the mass number A within the given range. In addi-
tion, we have asym(A) → βA1/3, as

sym,4(A) → 4κθβ3A, and
as

sym,4(A)/asym(A) → 4κθβ2A2/3 as A → 0, and all are in-
dependent of the bulk term α and approach zero as A → 0.
For heavy nuclei φ = α/βA1/3 is generally smaller than unity
since the mass number A is large, leading to the approxima-
tion as

sym,4(A) ≈ 4α3θκφ = α3A2/3κφ/Sβσ0. The interesting
feature of this approximated fourth-order symmetry energy is
that it is linearly proportional to the factor φ which approaches

FIG. 1. The symmetry energy asym(A) and the surface fourth-
order symmetry energy as

sym,4(A) of finite nuclei as functions of
nuclear mass number A. Here α/β = 2 and κ = 0.5 are adopted for
illustration.

zero in infinite matter limit, i.e., limA→∞ as
sym,4(A) = 0 MeV.

There is no surprise that as
sym,4(A) approaches zero as A →

∞ since it only reflects the surface part of the fourth-order
symmetry energy of finite nuclei. Physically the surface dis-
appears as the mass number A approaches infinity, i.e., the
related fourth-order symmetry energy becomes zero at this
limit; see the inset of Fig. 1. However, it does not mean that
the fourth-order symmetry energy for infinite matter should
be zero, as in the above calculations the relevant term re-
lated to Esym,4(ρ0) is not included in the second equation of
(6), i.e., the fourth-order symmetry energy of finite nuclei
obtained here is still characterized by the symmetry energy
coefficients α and β instead of the Esym,4(ρ0); see Ref. [37] for
the relevant discussions. Nonetheless, (16) is enough for our
purpose.

Moreover, the value of A corresponding to the maximum
of as

sym,4(A) could be found via ∂as
sym,4(A)/∂A = 0, and this

gives Amax = 27α3/β3 ≈ 216. Consequently, as
sym,4(Amax) =

27α3θκ/64 ≈ 7.5 MeV; see the black dashed line of the inset
in Fig. 1. We find that the empirical ratio α/β (near 2–3)
coincidentally predicts that the fourth-order symmetry energy
(due to the surface contribution) maximizes near 208Pb. In-
finite matter (with A → ∞) and finite nuclei (with A being
around 208) are fundamentally different from this perspective,
and this explains the confusion in Ref. [37].

The relation 2α	v/A = μa could itself be solved pertur-
batively order by order. Under the assumption f = 1 + y +
κy2, one obtains the equation for determining the chemical
potential using the expression for 	v/	 [see the relations
(10)],

μa + φμa − 2κφθμ3
a = 2αI. (18)

In the infinite matter limit φ → 0 and the equation gives μa =
μ∞

a ≡ 2αI . By treating both the φ and κ perturbatively on the
same order, one writes down μa to the second order as μa ≈
μ∞

a (1 + ϕ1φ + ϕ2κ + ϕ3φκ + ϕ4φ
2 + ϕ5κ

2), with ϕ1–ϕ5 five
coefficients to be determined. Since there are already two
small quantities κφ in front of μ3

a one could safely approxi-
mate the cube of μ3

a as μ∞,3
a to second order. Equation (18)
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becomes

μ∞
a (1 + ϕ1φ + ϕ2κ + ϕ3φκ + ϕ4φ

2 + ϕ5κ
2)

+ μ∞
a φ(1 + ϕ1φ + ϕ2κ ) − 2κφθμ∞,3

a = 2αI, (19)

which could be calculated order by order: (1) at zeroth
order, one has the result μ∞

a ≈ 2αI , or μ∞
n − μ∞

p ≈ 4αI;
(2) at first order, we have μ∞

a [(ϕ1 + 1)φ + ϕ2κ] = 0, con-
sequently ϕ1 = −1, ϕ2 = 0; and (3) at second order, one
has the equation μ∞

a [ϕ3φκ + ϕ4φ
2 + ϕ5κ

2 + ϕ1φ
2 + ϕ2φκ −

2κφθμ∞,2
a ] = 0, and solving it gives ϕ4 = 1, ϕ5 = 0, and

ϕ3 = 2θμ∞,2
a .

By combining the above results one obtains the chemical
potential difference between neutrons and protons in finite
nuclei to the second order as

μa ≈ μ∞
a

(
1 − φ + φ2 + 2κφθμ∞,2

a

)
. (20)

The relation (20) could be written in the slightly different
form μn − μp ≈ 4αI (1 − φ + φ2) + 4κφθμ∞,3

a = 4αI (1 −
φ + φ2) + 32α3κφθ I3, via the identity 2μa = μn − μp.
Moreover, near the infinite matter limit we have as

sym,4(A) ≈
4α3θκφ (the surface contribution), and one finally obtains
μn − μp ≈ 4Iα(1 − φ + φ2) + 8I3as

sym,4(A). It is analogous
to the relation μn − μp ≈ 4δEsym(ρ) + 8δ3Esym,4(ρ) often
used in determining the proton fraction xp = (1 − δ)/2 in
neutron stars [4,6,7]. In fact a more similar relation can be
found for the neutron and proton chemical potential differ-
ence, i.e., μn − μp ≈ 4Iasym(A)[1 + 2I2as

sym,4(A)/asym(A)] in
finite nuclei, by recalling that 1 − φ + φ2 ≈ 1/(1 + φ) and
α(1 − φ + φ2) ≈ asym(A).

C. Implications of the smallness of Esym,4(ρ0)

Since the derivation of the term 4θκE4
sym(ρ0)/βA1/3 is

independent of the bulk contribution Esym,4(ρ0) − L2/2K0,
the two terms are additive. Here the θκ term in Eq. (17)
approaches zero as A → ∞ since the surface disappears
for infinite matter. On the other hand, the bulk term ap-
proaches a constant (independent of A), i.e., Esym,4(ρ0) −
L2/2K0 as A → ∞. It is now clear that one could still have
Esym,4(ρ0) � 2 MeV to be consistent with microscopic calcu-
lations, irrespective of the value of as

sym,4(A) since the surface
contribution only affects finite nuclei. Solving Eq. (17) for
Esym,4(ρ0) gives the expression for Esym,4(ρ0), from which it
is clearly demonstrated that a large value of aa,4 (as obtained
from nucleus mass formula fitting) should not necessarily lead
to a large Esym,4(ρ0), and the balance strongly depends on
the higher order coefficient κ , which has very little influence
on nuclear structure quantities such as the surface tension of
certain typical finite nuclei.

If one accepts the fact that Esym,4(ρ0) is empirically
smaller than about 2 MeV [4,6,7], then Eq. (17) gives
certain correlations among quantities with sizable magni-
tude. In this sense, the resulting correlations are expected
to be intrinsic, like those obtained from the unbound na-
ture of pure neutron matter [43]. As an example, we study
the correlation between the surface symmetry energy coef-
ficient β and the slope parameter L, by uniformly sampling
within the empirical ranges for the symmetry energy as

FIG. 2. The correlation between α/β and L/α (left) and between
β and L (right) via the smallness of Esym,4(ρ0). See the text for details.

α = Esym(ρ0) ≈ 28–36 MeV [44,45], the ratio α/β ≈ 1–4,
the nucleon surface tension σ0 ≈ 0.6–1.0 MeV/fm2 in
SNM, the coefficient κ ≈ 0–1.0, the slope parameter L ≈
30–120 MeV of the symmetry energy, the incompressibil-
ity coefficient K0 ≈ 220–260 MeV of SNM, the fourth-
order symmetry energy aa,4 ≈ 2.78–3.78 MeV [32] extracted
from nuclear mass data, Esym,4(ρ0) ≈ 0–2 MeV, acou ≈
0.6–0.8 MeV, and r0 ≈ 1.12 fm. The model f is simply
truncated as f ≈ 1 + y + κy2. The results calculated from the
samples using Eq. (17) are then shown as open circles in
Fig. 2. For comparison, the results from various Skyrme in-
teractions reported in Ref. [35] are present as open diamonds.
Specifically, the correlation of the ratio α/β to the ratio L/α is
shown in the left panel of Fig. 2, which demonstrates well lin-
ear dependence. This is consistent with the findings using the
Skyrme interactions [35]. Similarly, the correlation between β

and L is shown in the right panel of Fig. 2.
Furthermore, if a macroscopic formula for the neutron

skin thickness 	rnp for heavy nuclei is adopted, then one
can similarly investigate the correlations between 	rnp and
characteristic parameters such as the surface symmetry energy
β, the slope parameter L of the symmetry energy, the κ param-
eter, and so on. In particular, if a strong correlation between
κ and 	rnp could be established, then one can use the latter
from experiments, such as parity-violating electron scattering
experiments (PREX, CREX) [46–53], to effectively constrain
κ . However, before the lower order parameters such as the
surface symmetry energy β are well constrained, it is hard
to investigate the real effects of κ , since β is directly related
to the θ parameter as θ ∼ β−1. Nonetheless the neutron skin
thickness for neutron-rich nuclei may provide a promising
probe to detect the κ parameter, and this is left for future
studies.

IV. EXPRESSION FOR THE SIXTH-ORDER SYMMETRY
ENERGY OF FINITE NUCLEI

If one considers even higher order isospin dependent terms
in the nuclear surface tension coefficient as σ/σ0 ≈ 1 + y +
κy2 + sy3 with s being the effective parameter beyond κ , one
can directly obtain the sixth-order symmetry energy asym,6(A)
of finite nuclei as a function only of A including both the
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volume and surface contributions as

asym,6(A) =
(

1 + Esym(ρ0)

βA1/3

)−6
[

Esym,6(ρ0) − Lsym,4

( L

K0

)

+ Ksym

2

( L

K0

)2

− J0

6

( L

K0

)3

+ 16θ2E6
sym(ρ0)

βA1/3

(
4κ2

1 + βA1/3/Esym(ρ0)
− s

)]
,

(21)

here Ksym ≡ 9ρ0
2d2Esym(ρ)/dρ2|ρ=ρ0 is the curvature coef-

ficient (see, e.g., Ref. [54]) of the symmetry energy, J0 ≡
27ρ0

3d3E0(ρ)/dρ3|ρ=ρ0 is the skewness coefficient (see,
e.g., Ref. [55]) of the EOS E0(ρ) of SNM, and Lsym,4 ≡
3ρ0dEsym,4(ρ)/dρ|ρ=ρ0 is the slope parameter of the fourth-
order symmetry energy Esym,4(ρ) (see, e.g., Ref. [22]). The
surface contribution (the last line) in Eq. (21) comes from two
parts: the higher-order term originating from the lower-order
coefficient κ (proportional to κ2) and the higher-order term
from the coefficient s. Naturally the surface term of asym,6(A)
approaches zero as A → ∞.

Similarly to the investigations given in the last section, it
is very difficult to extract the value of the sixth-order symme-
try energy Esym,6(ρ0) ≡ 720−1∂6E (ρ0, δ)/∂δ6|δ=0 for infinite
matter from this expression even if the aa,6 appeared in the
mass formula via the term aa,6I6 is constrained, since one
could adjust the coefficient s to make Esym,6(ρ0) small or large
without essentially affecting the properties of finite nuclei,
such as the nuclear surface tension. For example, without in-
cluding the surface term here a “small” aa,6 ≈ 1 MeV (which
can hardly be “probed” because of the tiny factor I6 asso-
ciated with it) may induce an Esym,6(ρ0) of about 7–8 MeV,
which is likely to be in conflict with the empirical constraint
on the EOS of ANM. In this sense, the surface contribution
to asym,6(A) is fundamental. In addition, by requiring, e.g.,
Esym,6(ρ0) � 1 MeV and asym,6(A) � 1 MeV, Eq. (21) then
provides a link relating several characteristics with sizable
magnitude, which could be used to establish certain correla-
tions among them. These are left for future studies.

V. SUMMARY AND CONCLUSIONS

We have shown that for the fourth-order symmetry
energy of finite nuclei, it could be naturally decom-
posed into two terms characterizing the bulk and
the surfaces contributions, respectively. The surface
contribution 4θκE4

sym(ρ0)/βA1/3/[1 + Esym(ρ0)/βA1/3]4 ∼
4θκE4

sym(ρ0)/βA1/3 characterized by the product of θκ , to
the fourth-order symmetry energy of finite nuclei, is obtained
by introducing the next leading order contribution to the

isospin dependence of the nuclear surface tension coefficient
through σ/σ0 ≈ 1 − θμ2

a + κθ2μ4
a , where κ is an effective

parameter characterizing the high order effects. Although
the κ parameter may induce a sizable 4θκE4

sym(ρ0)/βA1/3, it
has very little impact on the nuclear structure quantities of
interest, such as the surface tension itself (since y = −θμ2

a
is generally small than unity). Since this term is independent
of Esym,4(ρ0), it characterizes the coupling between the
symmetry energy Esym(ρ0) and the high order coefficient
κ , i.e., it is induced by some high-order isospin dependent
surface tension effects. Although both the surface contribution
and the bulk term to the fourth-order symmetry energy of
finite nuclei could be large, they contribute little to the nuclear
structure quantities, since generally one has I4 � 0.003 for
finite nuclei. This means that the fourth-order symmetry
energy of finite nuclei is usually hard to “probe” and special
observables are needed (see, e.g., Refs. [32–34]).

On the other hand, all the microscopic many-body theories
and phenomenological model predictions give the consistent
constraint that Esym,4(ρ0) � 2 MeV, indicating the Esym,4(ρ0)
could not be large although its counterpart of finite nuclei
could be sizable. One needs to consider the total fourth-order
symmetry energy of finite nuclei composed of both the bulk
and the surface contributions. In this sense the surface con-
tribution characterized by κ to the fourth-order symmetry
energy of finite nuclei is fundamental, i.e., it is essential for
explaining a reasonable Esym,4(ρ0) � 2 MeV and a sizable
asym,4(A) simultaneously. Essentially, it is hard to constrain the
parameter κ via finite-nucleus information. In the future, un-
less certain quantities/processes determining the coefficient
κ to within some narrow range are available, it seems that
one can hardly constrain the fourth-order symmetry energy
Esym,4(ρ0) of nuclear matter from the nuclear mass formula
fitting on asym,4(A), since a finite nucleus has a surface while
the infinite matter does not.

Finally, we also present the expression for the sixth-order
symmetry energy of finite nuclei, which is related to more
nuclear matter bulk parameters and the higher-order isospin-
dependent surface tension. We would like to mention that
although the higher-order symmetry energies of finite nuclei
are difficult to measure in terrestrial nuclei, they could be
potentially useful for understanding the properties of neutron
star crust or supernova explosions where extremely neutron-
rich clusters may exist.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China under Grants No. 12235010, No.
11905302, and No. 11625521, the National SKA Program of
China No. 2020SKA0120300, and the Fundamental Research
Funds for the Central Universities, Sun Yat-Sen University
(No. 22qntd1801).

[1] F. S. Zhang and L. W. Chen, Chin. Phys. Lett. 18, 142
(2001).

[2] A. W. Steiner, Phys. Rev. C 74, 045808 (2006).

[3] J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Phys. Rev. C 79,
035802 (2009); Astrophys. J. 697, 1549 (2009).

[4] B. J. Cai and L. W. Chen, Phys. Rev. C 85, 024302 (2012).

044319-6

https://doi.org/10.1088/0256-307X/18/1/350
https://doi.org/10.1103/PhysRevC.74.045808
https://doi.org/10.1103/PhysRevC.79.035802
https://doi.org/10.1088/0004-637X/697/2/1549
https://doi.org/10.1103/PhysRevC.85.024302


HIGH-ORDER ISOSPIN-DEPENDENT SURFACE TENSION … PHYSICAL REVIEW C 106, 044319 (2022)

[5] W. M. Seif and D. N. Basu, Phys. Rev. C 89, 028801 (2014).
[6] C. Gonzalez-Boquera, M. Centelles, X. Vinas, and A. Rios,

Phys. Rev. C 96, 065806 (2017).
[7] J. Pu, Z. Zhang, and L. W. Chen, Phys. Rev. C 96, 054311

(2017).
[8] J. M. Lattimer, C. J. Pethick, M. Prakash, and P. Haensel, Phys.

Rev. Lett. 66, 2701 (1991).
[9] D. G. Yakovlev, A. D. Kaminker, O. Y. Gnedin, and P. Haensel,

Phys. Rep. 354, 1 (2001).
[10] D. G. Yakovlev and C. J. Pethick, Annu. Rev. Astron.

Astrophys. 42, 169 (2004).
[11] P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298, 1592

(2002).
[12] V. Baran, M. Colonna, V. Greco, and M. Di Toro, Phys. Rep.

410, 335 (2005).
[13] B. A. Li, L. W. Chen, and C. M. Ko, Phys. Rep. 464, 113 (2008).
[14] B. A. Li, À. Ramos, G. Verde, and I. Vidaña, Eur. Phys. J. A 50,

9 (2014).
[15] G. Colo, U. Garg, and H. Sagawa, Eur. Phys. J. A 50, 26 (2014).
[16] M. Baldo and G. F. Burgio, Prog. Part. Nucl. Phys. 91, 203

(2016).
[17] M. Oertel, M. Hempel, T. Klahn, and S. Typel, Rev. Mod. Phys.

89, 015007 (2017).
[18] U. Garg and G. Colò, Prog. Part. Nucl. Phys. 101, 55 (2018).
[19] B. A. Li et al., Prog. Part. Nucl. Phys. 99, 29 (2018).
[20] B. J. Cai and B. A. Li, Phys. Rev. C 105, 064607 (2022).
[21] B. J. Cai and B. A. Li, Ann. Phys. (NY) 444, 169062 (2022).
[22] L.-W. Chen, B.-J. Cai, C. M. Ko, B.-A. Li, C. Shen, and J. Xu,

Phys. Rev. C 80, 014322 (2009).
[23] B. K. Agrawal, S. K. Samaddar, J. N. De, C. Mondal, and S.

De, Int. J. Mod. Phys. E 26, 1750022 (2017).
[24] C. H. Lee, T. T. S. Kuo, G. Q. Li, and G. E. Brown, Phys. Rev.

C 57, 3488 (1998).
[25] I. Bombaci and U. Lombardo, Phys. Rev. C 44, 1892 (1991).
[26] N. Kaiser, Phys. Rev. C 91, 065201 (2015).
[27] W. D. Myers and W. J. Swiatecki, Ann. Phys. (NY) 55, 395

(1969).

[28] M. Brack, C. Guet, and H. Hakansson, Phys. Rep. 123, 275
(1985).

[29] W. D. Myers and W. J. Swiatecki, Nucl. Phys. A 601, 141
(1996).

[30] P. Danielewicz, Nucl. Phys. A 727, 233 (2003).
[31] M. Wang et al., Chin. Phys. C 36, 1603 (2012).
[32] H. Jiang, M. Bao, L.-W. Chen, Y. M. Zhao, and A. Arima, Phys.

Rev. C 90, 064303 (2014).
[33] J. L. Tian, H. T. Cui, T. Gao, and N. Wang, Chin. Phys. C 40,

094101 (2016).
[34] H. Jiang, N. Wang, L.-W. Chen, Y. M. Zhao, and A. Arima,

Phys. Rev. C 91, 054302 (2015).
[35] P. Danielewicz and J. Lee, Nucl. Phys. A 818, 36 (2009).
[36] P. Danielewicz and J. Lee, Nucl. Phys. A 922, 1 (2014).
[37] R. Wang and L. W. Chen, Phys. Lett. B 773, 62 (2017).
[38] B. A. Li and X. Han, Phys. Lett. B 727, 276 (2013).
[39] Z. Zhang and L. W. Chen, Phys. Lett. B 726, 234 (2013).
[40] D. H. Youngblood, H. L. Clark, and Y.-W. Lui, Phys. Rev. Lett.

82, 691 (1999).
[41] S. Shlomo, V. M. Kolomietz, and G. Colo, Eur. Phys. J. A 30,

23 (2006).
[42] L. W. Chen and J. Z. Gu, J. Phys. G: Nucl. Part. Phys. 39,

035104 (2012).
[43] B. J. Cai and B. A. Li, Phys. Rev. C 103, 034607 (2021).
[44] L. W. Chen, Nucl. Phys. Rev. 34, 20 (2017).
[45] B. A. Li et al., Universe 7, 182 (2021).
[46] S. Abrahamyan et al., Phys. Rev. Lett. 108, 112502 (2012).
[47] C. Horowitz et al., Phys. Rev. C 85, 032501(R) (2012).
[48] D. Adhikari et al., Phys. Rev. Lett. 126, 172502 (2021).
[49] D. Adhikari et al., Phys. Rev. Lett. 129, 042501 (2022).
[50] P.-G. Reinhard, X. Roca-Maza, and W. Nazarewicz,

arXiv:2206.03134.
[51] E. Yuksel and N. Paar, arXiv:2206.06527.
[52] Z. Zhang and L. W. Chen, arXiv:2207.03328.
[53] B. S. Hu et al., Nat. Phys. 18, 1196 (2022).
[54] Y. Zhou and L. W. Chen, Astrophys. J. 886, 52 (2019).
[55] B. J. Cai and L. W. Chen, Nucl. Sci. Technol. 28, 185 (2017).

044319-7

https://doi.org/10.1103/PhysRevC.89.028801
https://doi.org/10.1103/PhysRevC.96.065806
https://doi.org/10.1103/PhysRevC.96.054311
https://doi.org/10.1103/PhysRevLett.66.2701
https://doi.org/10.1016/S0370-1573(00)00131-9
https://doi.org/10.1146/annurev.astro.42.053102.134013
https://doi.org/10.1126/science.1078070
https://doi.org/10.1016/j.physrep.2004.12.004
https://doi.org/10.1016/j.physrep.2008.04.005
https://doi.org/10.1140/epja/i2014-14009-x
https://doi.org/10.1140/epja/i2014-14026-9
https://doi.org/10.1016/j.ppnp.2016.06.006
https://doi.org/10.1103/RevModPhys.89.015007
https://doi.org/10.1016/j.ppnp.2018.03.001
https://doi.org/10.1016/j.ppnp.2018.01.001
https://doi.org/10.1103/PhysRevC.105.064607
https://doi.org/10.1016/j.aop.2022.169062
https://doi.org/10.1103/PhysRevC.80.014322
https://doi.org/10.1142/S0218301317500227
https://doi.org/10.1103/PhysRevC.57.3488
https://doi.org/10.1103/PhysRevC.44.1892
https://doi.org/10.1103/PhysRevC.91.065201
https://doi.org/10.1016/0003-4916(69)90202-4
https://doi.org/10.1016/0370-1573(86)90078-5
https://doi.org/10.1016/0375-9474(95)00509-9
https://doi.org/10.1016/j.nuclphysa.2003.08.001
https://doi.org/10.1088/1674-1137/36/12/003
https://doi.org/10.1103/PhysRevC.90.064303
https://doi.org/10.1088/1674-1137/40/9/094101
https://doi.org/10.1103/PhysRevC.91.054302
https://doi.org/10.1016/j.nuclphysa.2008.11.007
https://doi.org/10.1016/j.nuclphysa.2013.11.005
https://doi.org/10.1016/j.physletb.2017.08.007
https://doi.org/10.1016/j.physletb.2013.10.006
https://doi.org/10.1016/j.physletb.2013.08.002
https://doi.org/10.1103/PhysRevLett.82.691
https://doi.org/10.1140/epja/i2006-10100-3
https://doi.org/10.1088/0954-3899/39/3/035104
https://doi.org/10.1103/PhysRevC.103.034607
https://doi.org/10.11804/NuclPhysRev.34.01.020
https://doi.org/10.3390/universe7060182
https://doi.org/10.1103/PhysRevLett.108.112502
https://doi.org/10.1103/PhysRevC.85.032501
https://doi.org/10.1103/PhysRevLett.126.172502
https://doi.org/10.1103/PhysRevLett.129.042501
http://arxiv.org/abs/arXiv:2206.03134
http://arxiv.org/abs/arXiv:2206.06527
http://arxiv.org/abs/arXiv:2207.03328
https://doi.org/10.1038/s41567-022-01715-8
https://doi.org/10.3847/1538-4357/ab4adf
https://doi.org/10.1007/s41365-017-0329-1

