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Momentum-space structure of dineutrons in Borromean nuclei
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A comparative study is made of the momentum-space structure of dineutrons in the Borromean nuclei 11Li,
6He, 22C, and 19B. The ground-state properties of these nuclei are well described by a three-body model
using a newly constructed finite-range nn interaction in momentum space. I clarify how the mean opening
angle between momenta of valence neutrons and the opening-angle distribution reflect the two-neutron density
of the Borromean nuclei. By indicating the similarities to the distributions for the correlation angle in the
knockout-reaction experiments, I show that the angular correlations of halo neutrons can provide rich information
for the characteristic structure of dineutrons in the Borromean nuclei.
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I. INTRODUCTION

The geometry of the two-neutron (2n) Borromean nuclei
has attracted attention in recent decades [1–4]. The long
core-n distance is characterized by the low-density neutron
halo and the narrow momentum distributions of the decay
fragments in breakup experiments. The core plus 2n system
is bound due to the effective nn correlations in low-density
medium, and many studies have been made to clarify the
nature of the nn correlation, i.e., whether or not it corresponds
to dineutrons in which spatial correlations are maximum.

The drastic change of the correlation length of 2n
pairs with the matter density was shown by Hartree-Fock-
Bogoliubov calculations [5]. Consequently, the dineutron
correlation was predicted in dilute neutron-rich matter below
the saturation density ρ0 of 10−4 � ρ/ρ0 � 0.5. Following
this consideration, the authors of Ref. [6] showed that the
dineutron correlation should appear at the surface of the 2n
halo nuclei (see, e.g., Ref. [7] for a recent review, and refer-
ences therein).

One pioneer study is the measurement of the low-lying
electric dipole (E1) transition strength in 11Li [8]. By relating
to the E1 cluster sum rule, the distance between the core and
the center of mass of valence neutrons (the core-2n distance)
and the opening angle between position vectors of valence
neutrons were extracted. Similar analyses have been made for
6He [9,10] and 19B [11]. The core-2n distance was also ex-
tracted by associating with the charge radius in 11Li [12–14].
The distance between valence neutrons (the n-n distance)
was measured for 6He, 11Li, and 14Be based on the Hanbury
Brown–Twiss correlation study [15,16].

Information about the structure of dineutrons in momen-
tum space plays a complementary role by viewing it from
different perspectives. A recent knockout-reaction experiment
for 11Li measured the mean correlation angle between mo-
menta of the two emitted neutrons [17]. The mean correlation
angle is considered to reflect the momentum-space structure
of dineutrons.

Besides numerous investigations of the real-space structure
of Borromean nuclei, few calculations have been performed
in momentum space. The three-body Faddeev equations were
solved in momentum space for 11Li and 6He [18–21]. The
momentum distributions of the decay fragments in breakup
experiments were the main interest.

The calculation in momentum space itself has advantages
for description of weakly bound nuclei. For example, the
model space can be tiny, because the wave function with
spatially extended structure in real space, via the uncertainty
principle, translates into a narrow distribution in momentum
space. The advantages were demonstrated in a quasiparticle
random phase approximation calculation using the Skyrme
energy density functional [22].

The construction of effective interactions is an important
factor in advancing the study of unstable nuclei. The density-
dependent contact δ(r) interaction is easy to handle, and
widely used for pairing problems in the density functional
theory (DFT) [23,24] and the three-body model [1,25,26].
The contact δ(r) pairing interaction can be meaningful with
a cutoff energy in the two-particle spectrum ε1 + ε2 � Ecut,
although the principal prescription for determining the cutoff
energy has not been established. A cutoff energy in the range
from 15 to 120 MeV was often used (see, e.g., Refs. [26–29]),
but the pair wave function does not converge, via the uncer-
tainty principle, with increasing Ecut (see, e.g., Refs. [5,26]).

In the present study, an effective finite-range nn interaction
in momentum space is constructed with the intention of wide
application including DFT calculations. By performing the
three-body model calculation for the Borromean nuclei 11Li,
6He, 22C, and 19B, I demonstrate the descriptive power of the
new nn interaction. I clarify how the mean opening angle and
the opening-angle distribution reflect the structure of dineu-
trons in the Borromean nuclei.

This paper is organized as follows. In Sec. II, the three-
body model is explained. In Sec. III, the effective nn
interaction is constructed. In Secs. IV and V, the ground-state
properties and the dineutron structure in 11Li and 6He are
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discussed. In Secs. VI and VII, the three-body model is ap-
plied to 22C and 19B. Conclusions are drawn in Sec. VIII.

II. METHOD

A. Three-body model

I consider a three-body system consisting of an inert core
nucleus with the mass number Ac and two valence neutrons
n1 and n2. The three-body Hamiltonian in momentum space is
defined by

H = hcn(1) + hcn(2) + Vnn + h̄2

Acm
k1 · k2. (1)

Here, hcn is a core-n single-particle Hamiltonian, m is the
neutron mass, and k1, k2 are momenta of valence neutrons.
(k is called momentum together with h̄k.) Vnn is an effective
nn interaction. The last term in Eq. (1) represents the recoil
kinetic energy of the core [26].

For hcn, the Schrödinger equation for the radial single-
particle wave function ψnr l j (k) of angular-momentum quan-
tum numbers l , j is an integral equation [30],

h̄2k2

2μ
ψnr l j (k) + 2

π

∫ ∞

0
Vl j (k, p)ψnr l j (p)p2d p = εnr l jψnr l j (k).

(2)

Here, nr is the radial quantum number, μ = mAc/(Ac + 1) is
the reduced mass, and εnr l j is the single-particle energy. The
core-n potential is given by

Vl j (k, p) =
∫ ∞

0
jl (kr)Vl j (r) jl (pr)r2dr, (3)

with the Woods-Saxon potential

Vl j (r) = V0

[
1 − 0.44 flsr

2
0 (l · s)

1

r

d

dr

]

×
[

1 + exp
( r − Rcn

acn

)]−1

. (4)

jl is the spherical Bessel function, and Rcn = r0A1/3
c . The

parameters V0, r0, acn, and fls will be given in Secs. IV, VI,
and VII.

The ground-state wave function of the three-body Hamil-
tonian H is given by

�gs(k1, k2) =
∑

n1n2l j

αn1n2l j�
(2)
n1n2l j (k1, k2). (5)

The expansion coefficient αn1n2l j is found by diagonalizing H
in the model space of the two-neutron states with the energy
ε1 + ε2 � Ecut. The uncorrelated two-neutron wave function
�

(2)
n1n2l j (k1, k2) coupling to total angular momentum J = 0 can

be constructed in a manner similar to the real-space calcula-
tion [1,26].

The 2n density distribution in momentum space is defined
by ρ2(k1, k2) = |�gs(k1, k2)|2. The 2n density distribution in
real space is obtained by the Fourier transformation

ρ2(r1, r2) = 1

(2π )3

∫
d3k1d3k2eik1·r1+ik2·r2ρ2(k1, k2). (6)

The root-mean-square (RMS) values of the core-2n dis-
tance r̄c-2n =

√
〈|(r1 + r2)2/4〉| and the n-n distance r̄nn =√

〈|(r1 − r2)2〉| are calculated by using Eq. (6). The matter
radius Rm of the three-body system with mass number A =
Ac + 2 [1,26] is obtained by

(Rm)2 = Ac

A
(Rc)2 + 2Ac

A2
(r̄c-2n)2 + 1

2A
(r̄nn)2. (7)

Here, Rc is the radius of the core nucleus.

III. EFFECTIVE nn INTERACTION

I construct an effective nn interaction in momentum space
for pairing correlations. First, a nonlocal effective interac-
tion V (k1, k2; k′

1, k′
2) is considered. The momenta k1 and

k2 are expressed as k1 = krel + qc.m./2 and k2 = −krel +
qc.m./2 with the relative momentum krel = (k1 − k2)/2 and
the center-of-mass (c.m.) momentum qc.m. = k1 + k2.

In translationally invariant systems carrying no current, the
paired state with qc.m. = 0 has the largest binding energy, and
the interaction can be simplified to

V (krel,−krel; k′
rel,−k′

rel ) ≡ Vrel(krel, k′
rel ). (8)

Only the s-wave part V (0)
rel (krel, k′

rel ) of Vrel(krel, k′
rel ) can be

retained in the low-momentum region [31].
The separable approximation for V (0)

rel (krel, k′
rel ) has been

successfully applied to various nuclear systems [32–45]. In
the present study, the Yamaguchi-type potential [45]

V (0)
rel (krel, k′

rel ) = −γ (krel )γ (k′
rel ) (9)

with

γ (krel ) = u

k2
rel + 
2

(10)

is adopted. Recently, the Yamaguchi-type potential was
successfully applied to superfluid phase transitions of asym-
metric nuclear matter [44]. The adopted parameters of u =
2.6683 MeV−1/2 fm−2 and 
 = 1.1392 fm−1 were deter-
mined by the scattering length and the effective range of the
1S0 nn scattering.

In the Borromean nuclei, a neutron pair is localized around
the core nucleus, and it is necessary to take the qc.m. depen-
dence into the effective interaction. I assume a separable form,

V (k1, k2; k′
1, k′

2) = −γ (krel )η(qc.m.)γ (k′
rel )η(q′

c.m.). (11)

The Gaussian-type form factor

η(qc.m.) = (
√

πq0)−3e−(qc.m./q0 )2
(12)

is considered to have a role similar to the Gaussian-type ef-
fective core-n-n three-body interaction in real space [46–49].
The assumption of Eq. (11) should be justified by actually
application in the present study.

The parameter q0 = 0.3588 fm−1 is fixed by the experi-
mental value of the 2n separation energy of S2n = 0.369 MeV
in 11Li [50]. The choice of q0 = 0.3588 fm−1 represents that
the 2n correlations occur in the low-momentum neutron-halo
region, namely, the surface-type interaction (see discussions
of Figs. 3 and 9).
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TABLE I. (a) Ground-state properties of 11Li and 6He. The kSEP
interaction with Ecut = 100 MeV and q0 = 0.3588 fm−1 is used. The
2n separation energy, the fraction of the neutron (s1/2)2, (p1/2)2, and
(p3/2)2 configurations, the fraction of the S = 0 component, the core-
2n and n-n distances, and the matter radius are listed. (b) Same as (a)
but Ecut = 120 MeV and q0 = 0.3610 fm−1 are used.

S2n (s1/2)2 (p1/2)2 (p3/2)2 S = 0 r̄c-2n r̄nn Rm

(MeV) (%) (%) (%) (%) (fm) (fm) (fm)

(a) Ecut = 100 MeV and q0 = 0.3588 fm−1

11Li 0.369 27.1 59.0 1.4 60.7 5.00 6.78 3.20
6He 0.980 5.0 15.5 72.9 96.8 4.07 5.14 2.70

(b) Ecut = 120 MeV and q0 = 0.3610 fm−1

11Li 0.369 26.9 59.2 1.4 60.7 4.98 6.76 3.19
6He 0.994 4.9 15.6 72.9 96.8 4.05 5.13 2.70

Hereafter, the separable interaction in momentum space of
Eq. (11) is abbreviated as the kSEP interaction for simplicity.

IV. APPLICATION TO 11Li AND 6He

11Li and 6He are Borromean nuclei in which the p-wave
one-particle resonant states play a role. Numerous experimen-
tal and theoretical studies have been conducted on these nuclei
(e.g., Ref. [7] for a recent review). In the present study, I do
not intend to perform a comprehensive investigation, but I
demonstrate the descriptive power of the three-body model
using the kSEP interaction by comparing with the typical
previous studies.

The single-particle Schrödinger equation of Eq. (2) is
solved in k-space grids from zero to 2.5 fm−1 in steps of
0.08 fm−1. The finer step of 0.045 fm−1 is also used for
plotting dineutron structure such as the 2n density distribution.
The orbital angular momenta � � 9 are considered. The cutoff
energy is Ecut = 100 MeV.

Table I (a) shows the ground-state properties of 11Li
and 6He obtained by using Ecut = 100 MeV and q0 =
0.3588 fm−1. (They are shown to check the convergence. The
physical consideration will be given later.) If the cutoff energy
is increased to Ecut = 120 MeV, while the same value of q0 =
0.3588 fm−1 is used, the 2n separation energy changes from
0.369 to 0.436 MeV for 11Li (0.980 to 1.079 MeV for 6He).
This non-negligible Ecut dependence is due to the Lorentzian
form for krel in the kSEP interaction.

The Ecut dependence is practically eliminated by tuning
q0 for each Ecut. Table I (b) shows the result for 11Li and
6He using Ecut = 120 MeV and q0 = 0.3610 fm−1, which is
fixed by the experimental value of S2n = 0.369 MeV in 11Li.
Compared to the result of Ecut = 100 MeV, the change of S2n

in 6He is 0.014 MeV, and the other quantities match with high
accuracy.

A. Ground-state properties of 11Li

For 11Li, the 10Li -n potential of Ref. [26] is
adopted. The parameters are summarized in Table II.
This potential reproduces the energy of the p1/2 resonant

TABLE II. Parameter sets of the core-n potential for 11Li, 6He,
22C (C1 and C2), and 19B. The single-particle angular-momentum
quantum numbers (l j), the strength parameter V0 for the (l j) state,
the s-wave scattering length a0, and the resonance energy ER for the
(l j) state are listed. See text for details.

r0 acn V0 a0 ER

(fm) (fm) fls l j (MeV) l j (fm) (MeV)

11Li 1.27 0.67 1.006 � = even −47.5 s1/2 −5.6
� = odd −35.366 p1/2 0.538

6He 1.25 0.65 0.93 s1/2 −56.89
p1/2 −68.53 p1/2 1.27

j > 1/2 −48.27 p3/2 0.798
22C 1.25 0.65 0.826 s1/2 −29.80 s1/2 −2.8
(C1) � > 0 −45.14 d3/2 0.9
22C 1.25 0.65 0.278 s1/2 −29.80 s1/2 −2.8
(C2) � > 0 −35.28 d3/2 2.6

d5/2 1.5
19B 1.25 0.65 0.826 s1/2 −36.36 s1/2 −50

� > 0 −37.43 d3/2 1.37

state at 0.538 MeV [51]. The s-wave scattering length is
a0 = −5.6 fm.

The ground-state properties of 11Li are shown in Table I
(a). The weights of the neutron (s1/2)2, (p1/2)2, and (p3/2)2

configurations are P[(s1/2)2] = 27.1%, P[(p1/2)2] = 59.0%,
and P[(p3/2)2] = 1.4%, respectively. For the p states, it is
close to the value of P[(p1/2)2] + P[(p3/2)2] = 59 ± 1% in a
recent knockout-reaction experiment [17]. For the s state, it
is smaller than P[(s1/2)2] = 35 ± 4% of the same experiment.
The authors of Ref. [52] pointed out that the weights of the
s and p states have a model dependence in their extraction,
and the same experimental data was best reproduced by equal
weight (≈48%) for the s and p states.

The determination of the weights is still under debate.
For example, P[(s1/2)2] and the s-wave scattering length are
23% and −5.6 fm in the three-body model using the density-
dependent contact interaction [25,26], 44% and −45.0 fm
in the coupled-channel model [53], 47% and −17.4 fm in
the tensor optimized shell model using bare interaction [54],
67% and −29.8 fm in the transfer to the continuum reaction
framework (potential P3) [55].

The small P[(s1/2)2] is accompanied by the small neg-
ative value of a0 in the shell-model-type calculations of
Refs. [25,26] and the present study. As pointed out in
Ref. [56], the coupling to the nonresonant continuum states
with high orbital-angular-momentum � is considered for the
description of the dineutron correlation in the calculations.
For example, I adopt the 10Li -n potential of a0 = −5.6 fm
[25,26], and the admixture of the high-� states up to � � 9
describes the dineutron structure, in spite of the small s-wave
weight of 27%.

The core-2n distance of 5.00 fm is consistent with the ex-
perimental values ranging from 5.01(32) [8] to 6.2(5) fm [4].
The n-n distance of 6.78 fm is in agreement with the extracted
value of 6.6 ± 1.4 fm in the three-body correlation study of
the dissociation of two neutrons [15] (see also Refs. [7,57] for
the experimental value). The matter radius of 3.20 fm also fits
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into the range of the experimental values from 3.12(16) [58] to
3.71(20) fm [59]. Here, the observed matter radius of 2.32 fm
in 9Li [58] is used for the core radius parameter Rc in Eq. (7).

B. Ground-state properties of 6He

For 6He, the 4He -n potential of Woods-Saxon type was
constructed in Ref. [26]. This potential reproduces the low-
energy 4He -n phase shift, and the 4He -n elastic scattering
cross section is dominated by a peak of the p3/2 resonance
around 0.9 MeV. It was pointed out that the effective nn inter-
action has to be modified so as to reproduce the experimental
value of S2n = 0.975 MeV [60] in the three-body calculation
using this 4He -n potential and the density-dependent contact
nn interaction. I also obtain the small value of S2n = 0.309
MeV by using the same 4He -n potential and the kSEP inter-
action.

In the present study, I reconstruct the 4He -n potential of
Ref. [26] by considering the updated experimental informa-
tion. The parameters are summarized in Table II. The strength
parameters of −48.27 and −65.14 MeV are fixed so as to
reproduce the observed values of 0.798 MeV for the p3/2 res-
onance energy and 2.068 MeV for the p1/2 resonance energy
[61], respectively.

For the s state, the strength parameter of −56.89 MeV
is fixed for P[(s1/2)2] = 5%, a value which is similar
to the observation with large uncertainty [62]. The ad-
mixture of a level of 5–10% was theoretical predicted
(see, e.g., Refs. [47,63]). For the other (l j) states, the
same strength parameter as the p3/2 state is used. (If
the strength parameter for the p3/2 state is also used
for the s state, P[(s1/2)2] = 3.7% and S2n = 0.967 MeV
are obtained.)

The ground-state properties of 6He are summarized in
Table I. The value of S2n = 0.980 MeV is in agreement with
the experimental value of 0.975 MeV [60].

The weights of the p3/2 and p1/2 states are 72.9% and
15.5%, respectively. Because the energies of the p3/2 and
p1/2 resonant states are fixed in the 4He -n potential, the
weight of the p3/2 state becomes smaller while that for the
p1/2 state is larger, compared to those in the previous studies
using the potential reproducing the 4He -n phase shift. For
example, P[(s3/2)2] = 83.0% was obtained by the three-body
calculation using the density-dependent contact nn interac-
tion [25,26]. A recent three-body calculation with finite-range
interactions gave P[(p3/2)2] = 87.5% and P[(p1/2)2] = 3.7%
[47], although the sum of 91.1% is close to 88.4% in the
present calculation. P[(p1/2)2] ≈ 7% was obtained by an anal-
ysis based the interference between the p1/2 and p3/2 states
for the angular correlation of halo neutrons in the peripheral
fragmentation of 6He [64].

The core-2n distance is 4.07 fm, which is consistent with
the recent experimental value of 3.9(2) fm [10]. The n-n
distance of 5.14 fm is within the uncertainty of the observed
value of 5.9 ± 1.2 fm [15].

The matter radius of 2.70 fm is estimated by Eq. (7) using
the radius of 1.462 fm of 4He deduced from the charge-radius
measurement [65]. This value of the matter radius fits the
range of the available experimental data from 2.33 ± 0.04 fm

[66] to 2.71 ± 0.04 fm [67]. Here, the small value of 2.33 ±
0.04 fm [66] was obtained by the analysis of the static den-
sity (optical limit) Glauber model for the interaction cross
section of σ = 722 ± 5 mb [66], while the large value of
2.71 ± 0.04 fm [67] (2.54 ± 0.04 fm [68]) was obtained from
the same experimental data but by considering the few-body
correlations based on the zero-range (finite-range) Faddeev
wave function model.

V. TWO-NEUTRON CORRELATIONS IN 11Li AND 6He

A. Two-neutron density for 11Li

I show the 2n density for 11Li to see the spatial correlation
of valence neutrons. The total 2n density can be decomposed
into the S = 0 and S = 1 components in the LS-coupling
scheme. (“Total” emphasizes the sum of the S components.)
For the spherical core-n potential, the 2n density in real space
can be expressed as ρ2(r1, r2, θr ) using the radial coordinates
r1 and r2 and the opening angle between them, θr [1,25]. In
the same manner, the 2n density in momentum space can be
expressed as ρ2(k1, k2, θk ) using k1 = |k1|, k2 = |k2|, and the
opening angle between them, θk . Note that ρ2(k1, k2, θk ) is
normalized as∫ ∞

0
4πk2

1dk1

∫ ∞

0
k2

2dk2

×
∫ π

0
2π sin θkdθkρ2(k1, k2, θk ) = 1. (13)

Figures 1(a) and 1(b) show the total 2n density and the S =
0 component for 11Li as functions of r = r1 = r2 and θr . Here,
it is weighted with 8π2r4 sin θr .

As pointed out by several authors (e.g., Ref. [25]), there are
two peaks, and the asymmetric angular distribution is caused
by the interference of the different-parity s and p1/2 states.
The higher peak at (r, θr ) = (3.5 fm, 26◦) corresponds to the
dineutron configuration, and it has a long r tail for the halo
structure. The narrow angular distribution indicates the short
n-n distance.

The lower peak at (r, θr ) = (2.8 fm, 106◦) corresponds to
the cigarlike configuration. The peak is rather compact in the
r direction, while the angular distribution is wider, compared
to the dineutron configuration.

Figures 2(a) and 2(b) show the total 2n density (and the
S = 0 component) for 11Li as functions of kn = k1 = k2 and
θk . It is weighted with 8π2k4

n sin θk . The peak for the dineutron
configuration appears at the low momentum of (kn, θk ) =
(0.18 fm−1, 128◦) for the halo structure. It is accompanied by
a broad angular distribution, contrary to the narrow angular
distribution in real space. The peak for the dineutron configu-
ration has a long kn tail, which indicates the strong dineutron
correlation [see the discussion of Fig. 3(b)]. The peak for the
cigarlike configuration appears at the higher momentum of
(kn, θk ) = (0.40 fm−1, 78◦).

I also consider the dineutron structure by associating with
the c.m. momentum qc.m.. This is because an opening angle θk

for a given kn contains various qc.m. components representing
different neutron-pair structures. I define the c.m. density ρc.m.

and the RMS core-n momentum k̄n of valence neutrons as a
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FIG. 1. (a) Total 2n density for 11Li as functions of r1 = r2 = r
and the angle between the valence neutrons, θr . It is weighted with
a factor of 8π 2r4 sin θr . The peak for the dineutron configuration is
indicated by the red (dark gray) region inside the solid contour line.
(b) Same as (a) but for the S = 0 component of 11Li. (c) Same as
(a) but for the total 2n density of 6He.

function of qc.m. by

ρc.m.(qc.m.) =
∫

d3k1d3k2 ρ2(k1, k2) δ(qc.m. − |qc.m.|),
(14)

and

[k̄n(qc.m.)]
2 = 1

ρc.m.(qc.m.)

∫
d3k1d3k2 (k1)2 ρ2(k1, k2)

× δ(qc.m. − |qc.m.|). (15)

Here, qc.m. = k1 + k2, and ρc.m. is normalized as∫ ∞
0 ρc.m.(qc.m.)dqc.m. = 1. The same quantities but for the

S = 0 component are calculated in the same manner.
Figure 3(a) shows the c.m. density obtained from the to-

tal 2n density of 11Li. The peak component appears from
zero to qc.m. ≈ 0.4 fm−1. The choice of q0 = 0.3588 fm−1

for the kSEP interaction represents that the 2n correlations
occur around the low-qc.m. peak of halo neutrons, namely,
the surface-type interaction. The peak at qc.m. ≈ 0.2 fm−1

FIG. 2. (a) Total 2n density for 11Li as functions of k1 = k2 = kn

and the angle between the valence neutrons, θk . It is weighted with
a factor of 8πk4

n sin θk . The peak for the dineutron configuration is
indicated by the red (dark gray) region inside the solid contour line.
(b) Same as (a) but for the S = 0 component of 11Li. (c) Same as
(a) but for the total 2n density of 6He.

corresponds to the peak at kn ≈ 0.2 fm−1 for the dineutron
configuration in the 2n density [see Fig. 2(a)]. The cigarlike
configuration appears above qc.m. ≈ 0.2 fm−1.

Figure 3(b) shows the RMS core-n momentum for 11Li.
The local maximum value of k̄n for the total 2n density is
0.62 fm−1 at qc.m. = 0.43 fm−1. It determines not only the
peak region of ρc.m. but also the kn region covering the peaks
of the dineutron and cigarlike configurations [see Fig. 2(a)].
Here, I refer to the local maximum value of k̄n for the total
2n density as the surface momentum ksurf. The region of
kn < ksurf is interpreted as the low-momentum neutron-halo
region in the Borromean nuclei.

The local maximum value of k̄n for the S = 0 component is
0.86 fm−1 at qc.m. = 0.52 fm−1. It determines the long kn-tail
distribution of the 2n density [see Fig. 2(b)]. The associated
large opening angle, θtail = 2 cos−1[(qc.m./2)/k̄n] = 145◦, in-
dicates the strong dineutron correlation. [See the inset of
Fig. 3(b) for the definition of θtail.]
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FIG. 3. (a) Plot for the c.m. density distribution ρc.m. of 11Li (total
2n density and the S = 0 component) and 6He (total 2n density) as a
function of qc.m.. (b) Same as (a) but for the RMS core-n momentum
k̄n. See text for details.

B. Angular correlations in 11Li

The angular correlations in peripheral fragmentation of
the Borromean nuclei can provide information on the spatial
structure of the dineuton. Measurements using the one-
neutron knockout reaction have been done for 11Li [17,69,70],
6He [64,71], and 14Be [70]. The fragmentation process is
dominated by a sequential mechanism. One neutron is first
knocked out while the rest of the system remains essentially
untouched. The residual unbound two-body system subse-
quently decays into a neutron and a charged fragment (see,
e.g., Refs. [64,69,71]).

Recently, the mean correlation angle 〈θn f 〉 between mo-
menta of emitted neutrons n1 and n2 in the reaction channel
11Li(p, pn1) 10Li∗ → 9Li +n2 was measured as a function of
the missing momentum k of n1 [17]. The correlation angle θn f

is defined in the Jacobi coordinate (e.g., Refs. [64,69]), and θk

and θn f coincide with each other in the large-Ac Borromean
nuclei. The observed 〈θn f 〉 shows a clear k dependence. 〈θn f 〉
has a maximum value of about 100◦ at k ≈ 0.3 fm−1, and it
decreases at smaller and larger k values. At k ≈ 0, 〈θn f 〉 is
close to the uncorrelated limit of 90◦. Above k ≈ 0.9 fm−1,
there is a plateau of 〈θn f 〉 ≈ 87◦, which is also close to 90◦.

In the present study, I clarify how the mean opening an-
gle 〈θk〉 reflects the 2n density distribution. The similarities
between 〈θk〉 and 〈θn f 〉 are indicated, although one should
be careful with a direct comparison due to the uncertainties

FIG. 4. (a) Mean opening angle 〈θk〉 as a function of kn for 11Li
(total 2n density and the S = 0 component). “Surface” indicates the
result imposing the cutoff kcut = ksurf. (b) Same as (a) but for the
opening-angle distribution ρθ as a function of cos θk .

of the final-state interactions and the optical potentials in the
analysis [47,52].

I define 〈θk〉 as a function of kn by

cos〈θk〉 ≡
[ ∫ kcut

0
k2

2dk2

∫ π

0
2π sin θkdθk

× ρ2(kn, k2, θk ) cos θk

]/
ρk (kn) (16)

with one-neutron density distribution

ρk (kn) =
∫ kcut

0
k2

2dk2

∫ π

0
2π sin θkdθk

× ρ2(kn, k2, θk ). (17)

Here, kcut is a cutoff momentum. I examine two cases of kcut =
ksurf and kcut = ∞ (no cutoff). 〈θk〉 for the S = 0 component
is also defined in the same manner.

Figure 4(a) shows 〈θk〉 of 11Li. 〈θk〉 (no cutoff) has a
maximum value of 105◦ at kn = 0.27 fm−1. It decreases at
lower and larger kn value, but it gradually increases above
kn ≈ 0.5 fm−1, contrary to the observed 〈θn f 〉. 〈θk〉 decreases
again above kn ≈ 1.5 fm−1 due to the low one-neutron density
(see Fig. 5).
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FIG. 5. Same as Fig. 4(a) but for the one-neutron density distri-
bution of 11Li.

The authors of Ref. [52] pointed out that the mean corre-
lation angle at high missing momentum strongly depends on
the absorption effects at the small distance between the proton
target and the 9Li core. Eventually, the collision between the
proton target and the valence neutron takes place at a large
distance from the 9Li core, and the absorptive effect for the
halo neutron was expected to be small.

Within my model, I examine the influence of the cutoff
kcut = ksurf, which indicates that the only halo neutrons con-
tribute to 〈θk〉. The value of kcut can be changed according to
the experimental conditions, but I examine only kcut = ksurf for
the qualitative discussion.

Figure 4(a) shows 〈θk〉 for the total 2n density impos-
ing kcut = ksurf. 〈θk〉 has a maximum value of 111◦ at kn =
0.31 fm−1. It decreases at smaller and larger kn values. At
kn ≈ 0, it approaches to around 90◦. Above kn ≈ 1.0 fm−1,
there is a plateau of 〈θk〉 ≈ 82◦.

To understand the kn dependence, Fig. 5 shows the one-
neutron density imposing kcut = ksurf. The distributions with
and without the cutoff coincide with each other from zero to
kn ≈ 0.14 fm−1. The influence of the cutoff is already notice-
able at the peak position of kn = 0.18 fm−1. Above kn = ksurf,
the one-neutron density imposing kcut = ksurf is very low, and
〈θk〉 becomes independent of kn.

The characteristic kn dependence of 〈θk〉 is close to the
missing momentum k dependence of the observed 〈θn f 〉, al-
though the reaction mechanize is not considered, except for
the cutoff kcut = ksurf.

Figure 4(a) also shows 〈θk〉 for the S = 0 component
imposing kcut = ksurf. The maximum has a higher value of
130◦ at kn = 0.41 fm−1. This is due to the absence of
the cigarlike configuration with smaller θk . The kn depen-
dence of the one-neutron density for the S = 0 component
shown in Fig. 5 can be also understood by the absence
of the cigarlike configuration around kn = 0.4 fm−1 [see
Fig. 2(a)].

The asymmetric correlation-angle distribution between the
knockout neutron and the one from the decay of 10Li was mea-
sured in the fragment-neutron coincidence experiment [69].
The correlation-angle distribution was well approximated by
a polynomial expansion of dσ/d cos(θn f ) ≈ W (θn f ) = 1 −
1.03(4) cos θn f + 1.41(8) cos2 θn f [69].

In connection with the observation, I define the opening-
angle distribution ρθ (θk ) for the 2n density as

ρθ (θk ) = Nθ

∫ kcut

0
4πk2

1dk1

∫ kcut

0
k2

2dk2ρ2(k1, k2, θk ). (18)

The opening-angle distribution for the S = 0 component is
also defined in the same manner. Nθ is an arbitrarily chosen
normalization factor for better display.

Figure 4(a) shows the opening-angle distribution (no cut-
off) of the total 2n density using Nθ = 1. The distribution
shows the large asymmetry. The ratio ρθ (180◦)/ρθ (90◦) =
6.58 is about 1.9 times larger than the experimental estimation
of W (180◦)/W (90◦) = 3.44.

I also show the opening-angle distribution imposing kcut =
ksurf. By considering the contribution of the only halo neu-
trons, the ration becomes 4.03, which is only 17% deviation
from the experimental value. The experimental ratio of 3.44
also indicates the contribution of the cigarlike configuration
by comparing to the large value of ρθ (180◦)/ρθ (90◦) = 10.5
for the S = 0 component imposing kcut = ksurf.

C. Angular correlations in 6He

Figure 1(c) shows the total 2n density for 6He as functions
of r = r1 = r2 and θr . The plot for the S = 0 component is
similar to the total 2n density due to the large P[S = 0] =
96.8%. As pointed out in the previous studies (e.g., Ref. [7],
and references therein), the ground state is mainly the admix-
ture of the same-parity p1/2 and p3/2 states. The 2n density
has two peaks at (r, θr ) = (3.5 fm, 26◦) and (2.5 fm, 112◦)
for the dineutron and cigarlike configurations, respectively.

Figure 2(c) shows the total 2n density for 6He as functions
of kn = k1 = k2 and θk . The two peaks appear at the similar kn

regions of (kn, θk ) = (0.40 fm−1, 152◦) and (0.40 fm−1, 38◦)
for the dineutron and cigarlike configurations, respectively.

Figures 3(a) and 3(b) show ρc.m. and k̄n for the total 2n
density of 6He. The low-qc.m. peak component below qc.m. ≈
0.4 fm−1 corresponds to the surface region where the 2n
correlations occur. (It is consistent with the choice of q0 =
0.3588 fm−1 for the kSEP interaction as the surface type.)
Compared to 11Li, the peak of ρc.m. shifts toward higher qc.m.,
and the value of k̄n is overall higher, as expected from the
total 2n density [see Fig. 2(c)]. The local maximum value of
k̄n = 0.67 fm−1 at qc.m. = 0.47 fm−1 is adopted as the surface
momentum ksurf.

The local maximum value of k̄n for the S = 0 component
is the same value of 0.67 fm−1. It determines the long kn-tail
distribution of the 2n density. The associated large opening an-
gle, θtail = 2 cos−1[(qc.m./2)/k̄n] = 139◦, indicates the strong
dineutron correlation.

Figure 6(a) shows 〈θk〉 for the total 2n density of 6He. As
in 11Li, 〈θk〉 (no cutoff) is almost constant, and it decreases
above kn ≈ 1.5 fm−1 due to the low one-neutron density. 〈θk〉
imposing kcut = ksurf has a maximum value of 108◦ at kn =
0.23 fm−1, and it decreases at smaller and larger kn values.
Above kn ≈ 1.2 fm−1, 〈θk〉 becomes constant around 86◦.

Figure 6(b) shows the opening-angle distribution for the
total 2n density of 6He. The influence of the cutoff kcut = ksurf

is small. The opening-angle distribution coincides well with

044316-7



MASAYUKI YAMAGAMI PHYSICAL REVIEW C 106, 044316 (2022)

FIG. 6. Same as Fig. 4 but for 6He. For comparison, the opening-
angle distribution ρθ for the pure (p3/2)2 configuration is shown.

the distribution of ρθ (θk ) ∝ cos2 θk for the pure-(p3/2)2 con-
figuration (the same as cos2 θr in the real space [25]), except
for the large dineutron component at cos θk < −0.5.

Although the large dineutron component in the 2n density
has been pointed out by several authors (e.g., Ref. [25]), the
observed correlation-angle distribution is rather symmetric,
dσ/d cos(θn f ) ≈ 1 + 1.5 cos2(θn f ) [64]. This may be due to
the difference of θk and θn f , which coincide with each other in
the large-Ac Borromean nuclei. Actually, the rather symmetric
correlation-angle distribution for the ground state of 6He was
shown in Ref. [47]. More quantitative analyses for extracting
the dineutron structure from the observations remain for fur-
ther studies.

VI. APPLICATION TO 22C

I apply the three-body model using the kSEP force to the
Borromean nuclei 22C and 19B in which the d-wave one-
particle resonant states play a role. For 22C, the observed
values of S2n with large uncertainties are 0.42 ± 0.96 MeV
[72] and −0.14 ± 0.46 MeV (S2n < 0.32 MeV) [73]. The
significant neutron s-wave contribution in 22C was suggested
by the measurements of the large reaction cross section [74],
the interaction cross section [75], and the momentum distribu-
tion of the neutron removal cross section [76]. The observed
decay-energy spectrum in 21C could be described with an
s-wave virtual state of the scattering length |a0| < 2.8 fm [77].
Previous theoretical studies also emphasized the large s-wave
contribution [77–85].

However, the origin of the large s-wave contribution is still
under debate. Here, the current situation is briefly summa-
rized for justification of the three-body description of 22C.
The large s-wave contribution in the ground states of 19,20C
was also suggested by the observed momentum distributions
of the neutron removal cross section [76]. The observed
ground-state spin-parity of Iπ = 1/2+ in 19C [86] is also in
agreement with the interpretation that the 13th neutron is
placed on the [211 1/2] one-particle state in the prolately
deformed potential. It was pointed out in Ref. [87] that the
s-wave component is dominant in the weakly bound [211 1/2]
state.

The minor role of the s-wave component in the core nu-
cleus 20C of 21,22C may be understood by considering a
different shape from the ground state of 20C. The unbound
nucleus 21C was not observed as a low-lying resonant state
[77], and it is consistent with the ground-state spin-parity
of Iπ = 1/2+. It was considered in Ref. [77] that the 15th
neutron is placed on the s-wave virtual state assuming as
spherical shape. In Ref. [87], the 15th neutron is consider to
be in the [211 1/2] state in the potential with small oblate
shape. In both interpretations, the 13th and 14th neutrons are
placed on the 1d5/2 state or the [211 3/2] state in the core
nucleus 20C.

A. 20C -n potential

Precise experimental information about the one-particle
resonant states in 21C is missing so far. Several studies sug-
gested the low-lying d3/2 state [88,89] and the d5/2 state
[76,90].

I examine the two parameter sets of C1 and C2 for the
20C -n potential. The parameters are summarized in Table II.
In both C1 and C2, acn = 0.65 fm and r0 = 1.25 fm of Set 2
in Ref. [89] are used. For the s state, the strength parameter of
−29.80 MeV is fixed by a0 = −2.8 fm.

For C1, I consider the low-lying d3/2 resonant state which
was introduced to reproduce the observed values of the 2n
separation energy and the matter radius [88,89]. The strength
parameter of −45.14 MeV for the � > 0 states gives the
d3/2 resonant state at 0.9 MeV. Here, fls = 0.826 of Set 2
in Ref. [89] is used. Set C1 gives S2n = 0.111 MeV, which
is consistent with the experimental upper limit of S2n <

0.32 MeV [73].
For C2, the two d resonant states are considered. The

shell-model calculation using the WBP interaction predicted
the 5/2+ and 3/2+ states at 1.11 and 2.19 MeV in 21C,
respectively [76]. The observed momentum distribution of the
neutron removal cross section from 22C was well reproduced
by considering them as the d5/2 and d3/2 states [76].

A measurement by invariant mass spectroscopy of 21C
suggested that the resonant state at about 1.5 MeV may be
identified as the 5/2+ state [90]. The strength parameter of
−35.28 MeV for the � > 0 states gives the d5/2 state at
1.5 MeV. fls = 0.278 is determined so as to give the same
level spacing of 1.1 MeV between the 5/2+ and 3/2+ states
in the shell model calculation [76]. Set C2 gives S2n = 0.202
MeV, which is consistent with the upper limit of S2n < 0.32
MeV [73].
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TABLE III. Same as Table I but for 22C (sets C1 and C2) and
19B. The fractions of the neutron (s1/2)2, (d3/2)2, and (d5/2)2 config-
urations are shown.

S2n (s1/2)2 (d3/2)2 (d5/2)2 S = 0 r̄c-2n r̄nn Rm

(MeV) (%) (%) (%) (%) (fm) (fm) (fm)

22C (C1) 0.111 28.1 60.3 0.8 64.1 5.08 7.53 3.39
22C (C2) 0.202 32.9 12.3 46.1 97.4 5.20 7.55 3.41
19B 0.490 54.7 3.4 35.9 93.9 5.15 8.16 3.50

B. Ground-state properties of 22C

The ground-state properties of 22C are summarized in
Table III. Both C1 and C2 give similar values of r̄c-2n and
r̄nn. The matter radius of C1 (C2) is 3.39 (3.41) fm, which is
in agreement with the experimental value of 3.44 ± 0.08 fm
[75]. Here, the matter radius of 2.98 fm in 20C [58] is used
for Rc in Eq. (7). For both C1 and C2, the weights of the
configurations are about 30% for the s state and about 60%
for the sum of the d states. Obviously, the d3/2 (d5/2) state has
the largest weight of 60.3% (46.1%) for C1 (C2).

The fraction of the S = 0 component is a small value of
64.1% for C1, while it is 97.4% for C2. It reflects the coef-
ficients of the angular-momentum coupling in �

(2)
n1n2l j (k1, k2)

of Eq. (5) (see the C coefficient in Eq. (A.5) of Ref. [1]). The
influence of the S = 0 and 1 components on the opening-angle
distribution will be discussed in Sec. VI C.

C. Angular correlations in 22C

Figures 7(a) and 7(b) show the real-space total 2n density
and the S = 0 component for 22C (C1). As pointed out by the
previous studies (e.g., Ref. [89], and references therein), there
are three peaks at (r, θr ) = (3.8 fm, 22◦), (3.3 fm, 132◦), and
(3.3 fm, 66◦) for the dineutron, cigarlike, and boomerang
configurations, respectively. The boomerang configuration ap-
pears due to the admixture of the d and f waves coupled to
even L (see, e.g., Ref. [85]). The ground-state configuration
is mainly the admixture of the same-parity s and d states.
The interference with the p states of the 6.4% weight causes
the large dineutron component [see also the discussion of the
opening-angle distribution in Fig. 10(b)].

Figure 7(c) shows the real-space total 2n density for 22C
(C2). The plot for the S = 0 component is almost the same
due to P[S = 0] = 97.4%. The overall structure is also similar
to that for the S = 0 component of C1. The large dineutron
component is caused by the interference with the p states of
the 4.4% weight.

Figures 8(a) and 8(b) show the momentum-space total
2n density and the S = 0 component for C1. The peak
for the dineutron configuration appears at low momentum
of (kn, θk ) = (0.14 fm−1, 106◦), and the angular distribu-
tion is remarkably wide. The peaks for the cigarlike and
boomerang configurations appear at higher momenta of
(kn, θk ) = (0.68 fm−1, 44◦) and (0.72 fm−1, 124◦), respec-
tively.

Figure 8(c) shows the total 2n density for C2. The plot
is similar to that of the S = 0 component for C1. The peaks

FIG. 7. Same as Fig. 1 but for 22C (sets C1 and C2) and 19B. The
S = 0 component for 22C (C1) is also shown.

appear at (kn, θk ) = (0.14 fm−1, 104◦), (0.68 fm−1, 24◦), and
(0.59 fm−1, 96◦) for dineutron, cigarlike, and boomerang
configurations, respectively. The peak of the dineutron con-
figuration for C2 is 39% higher than that for C1 due to the
larger low-qcm component of the 2n density.

To see this, Fig. 9(a) shows ρc.m. obtained from the total
2n densities of C1 and C2. The peak component from zero to
qc.m. ≈ 0.4 fm−1 corresponds the surface region where the 2n
correlations occur. (It is consistent with the choice of q0 =
0.3588 fm−1 for the kSEP interaction as the surface type.)
The low-qc.m. component for C2 is larger due to the larger
s-wave weight and the higher d-wave resonance energies. For
C1, ρc.m. of the S = 0 component is also shown. The S = 1
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FIG. 8. Same as Fig. 2 but for 22C (sets C1 and C2) and 19B. The
S = 0 component for 22C (C1) is also shown.

component of the cigarlike and boomerang configurations
appears above qc.m. ≈ 0.3 fm−1.

Figure 9(b) shows k̄n for 22C. For C1 (C2), the local
maximum value of k̄n = 0.87(0.89) fm−1 at qc.m. = 0.43
(0.43) fm−1 is adopted as the surface momentum ksurf.

The local maximum value of k̄n for the S = 0 component
is 0.96 (0.89) fm−1 at qc.m. = 0.43 (0.43) fm−1 for C1 (C2).
It determines the long kn-tail distribution of the 2n density
[see Figs. 8(b) and 8(c)]. The associated large opening an-
gle, θtail = 2 cos−1[(qc.m./2)/k̄n] = 154◦(152◦), indicates the
strong dineutron correlation.

Figure 10(a) shows 〈θk〉 of the total 2n density impos-
ing kcut = ksurf. For C1 (C2), 〈θk〉 has a maximum value of

FIG. 9. Same as Fig. 3 but for 22C (sets C1 and C2) and 19B. The
result for the S = 0 component of 22C (C1) is also shown.

FIG. 10. (a) Mean opening angle 〈θk〉 for the total 2n density of
22C (sets C1 and C2). “Surface effect” indicates the imposed cutoff
kcut = ksurf. The result for the S = 0 component of 22C (C1) is also
shown. (b) The same as (a) but for the opening-angle distribution.
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118◦(118◦) at kn = 0.32 (0.36) fm−1, and it decreases to
around 90◦ at smaller and larger kn values. Figure 10(a) also
shows 〈θk〉 of the S = 0 component for C1. The maximum
value of 128◦ at kn = 0.41 fm−1 is large due to the small
contribution of the cigarlike and boomerang configurations
with smaller θk [compare Figs. 8(a) and 8(b)].

Figure 10(b) shows the opening-angle distributions of the
total 2n density and the S = 0 component imposing kcut =
ksurf for C1. The distribution of the S = 0 component has
a rather symmetric double-well shape, except for the large
dineutron component at cos θk < −0.7. In the distribution
for the total 2n density, the wells around cos θk = 0.72 and
−0.56 are filled by the cigarlike and boomerang configura-
tions, respectively. Figure 10(b) also shows the opening-angle
distribution of the total 2n density for C2. Similarly to that
of the S = 0 component for C1, the distribution has a rather
symmetric double-well structure.

It is notable that the observation of the angular distribution
can give information not only about the dineutron structure
but also about the spin-parity of the single-particle resonant
states.

VII. APPLICATION TO 19B

For 19B, the observed values of S2n are small but with large
uncertainty: 0.089 ± 0.560 MeV [91], 0.14 ± 0.39 MeV [73],
and 0.5 ± 0.4 MeV [92]. The recent observation of the E1
transition strength suggested S2n ≈ 0.5 MeV [11].

The analysis of the interaction cross section and the 2n
separation energy indicates that the valence neutrons are dom-
inantly in the (d5/2)2 configuration and the halo formation
is suppressed [73,92,93]. The matter radius was extracted as
Rm = 3.11 ± 0.13 fm [92].

On the other hand, the upper limit of the s-wave scatter-
ing length a0 � −50 fm was extracted in the decay energy
spectrum of 18B studied by a single-proton knockout reaction
[94]. The observation of the large E1 transition strength of
B(E1) = 1.64 ± 0.06(stat) ± 0.12(sys) e2fm2 (integrated up
to 6 MeV) suggested the large s-wave occupation proba-
bility of 35% [11]. The core-2n distance of 5.75 ± 0.11 ±
0.21 fm was extracted based on the three-body model cal-
culation using the 17B -n potential of a0 = −50 fm and the
density-dependent contact n-n interaction. Three-body model
calculations using the finite-range nn interactions also sug-
gested the large s-wave contribution in 19B [82,95,96].

A. 17B -n potential

I construct the 17B -n potential by modifying the set C1
for 22C, because precise information of 18B is missing at the
moment, especially about the d-wave resonant states. The
parameters are summarized in Table II.

For the s state, the strength parameter of −36.36 MeV
is fixed by a0 = −50 fm. The strength parameter of V0 =
−37.43 MeV for the � > 0 states gives the d5/2 resonant state
at 1.37 MeV, which is close to the Jπ = 1− excited state at
1.14 MeV predicted by a shell model calculation using the
WBP interaction [94]. This V0 is extrapolated by the rela-
tion of V0 = VIS(1 − κI ) with I = (N − Z )/A and κ = 0.6185

[97]. Here, VIS = −52.94 MeV is fixed by the experimental
value of Sn = 0.58 MeV of 19C [72]. This 17B -n potential
gives S2n = 0.490 MeV, which is close to 0.5 MeV suggested
by the recent experiment [11].

B. Three-body structure of 19B

The ground-state properties of 19B are summarized in
Table III. The weight of the s state is 54.7%. The core-
2n distance of 5.15 fm is smaller than the observed value
of 5.75 ± 0.11 ± 0.21 fm [11], while the matter radius of
3.50 fm is larger than the observed value of 3.11(13) fm [92].
Here, the experimental matter radius of 2.99 fm in 17B [92] is
used for Rc in Eq. (7).

My result is close to that of the three-body model cal-
culation adopting the similar 17B -n potential plus realistic
finite-range nn interactions such as the Gogny-Pires-Tourreil
(GPT) potential [96]. The calculation using the GPT potential
gives P[(s1/2)2] = 53.2%, r̄c-2n = 5.01 fm, r̄nn = 7.28 fm, and
Rm = 3.43 fm. It was also pointed out that a reduction of the
range of the nn interaction causes a significant reduction of
P[(s1/2)2]. This resembles the smaller value of P[(s1/2)2] =
35% when the contact nn force was used [11].

While the observed E1 strength distribution in 19B is well
described within the three-body model assuming the spheri-
cal core nucleus [11,96], recent investigations suggested the
deformation effect in the ground state of 17,19B [98,99]. So
far, it is not clear how to make the large s-wave contribution
compatible with the argument of the suppression of the halo
formation [73,92,93]. Further analyses are needed to solve the
puzzle.

C. Angular correlations in 19B

Figure 7(d) shows the real-space total 2n density of 19B.
The plot for the S = 0 component is almost the same due
to P[S = 0] = 93.9%. The overall structure is also similar to
that of 22C (C2) with P[S = 0] = 97.4% [see Fig. 7(c)]. There
are three peaks at (r, θr ) = (3.8 fm, 20◦), (3.5 fm, 156◦), and
(3.3 fm, 86◦) for the dineutron, cigarlike, and boomerang
configurations, respectively. The ground-state configuration is
mainly the admixture of the same-parity s and d states. The
interference with the p states of 2.9% weight causes such
a large dineutron component [see also the discussion of the
opening-angle distribution in Fig. 11(b)].

Figure 8(d) shows the momentum-space total 2n density
of 19B. The peak for the dineutron configuration appears
at low momentum of (kn, θk ) = (0.14 fm−1, 98◦), while
the peaks for the cigarlike and boomerang configurations
are at higher momenta of (kn, θk ) = (0.68 fm−1, 26◦) and
(0.59 fm−1, 98◦), respectively.

Figure 9(a) shows ρc.m. obtained from the total 2n density
of 19B. The peak component below qc.m. ≈ 0.4 fm−1 is large
due to the large value of P[(s1/2)2] = 54.7%. The low-qc.m.

peak component corresponds the surface region where the 2n
correlations occur. (It is consistent with the choice of q0 =
0.3588 fm−1 for the kSEP interaction as the surface type.)

Figure 9(b) shows k̄n for 19B. The local maximum value of
k̄n = 0.86 fm−1 at qc.m. = 0.47 fm−1 is adopted as the surface
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FIG. 11. The same as Fig. 10 but for the total 2n density of 19B.

momentum ksurf. The local maximum value of k̄n for the S = 0
component is the same value, and it determines the long kn-tail
distribution of the 2n density [see Fig. 8(d)]. The associated
large opening angle, θtail = 2 cos−1[(qc.m./2)/k̄n] = 148◦, in-
dicates the strong dineutron correlation.

The mean opening angle and the opening-angle distribu-
tion of 19B are also similar to those of 22C (C2). Figure 11(a)
shows 〈θk〉 for the total 2n density of 19B imposing kcut = ksurf.
〈θk〉 has a maximum value of 117◦ at kn = 0.40 fm−1, and
it approaches to around 90◦ at smaller and larger kn values.
Figure 11(b) shows the opening-angle distribution of the total
2n density for 19B imposing kcut = ksurf. The opening-angle
distribution has rather symmetric double-well structure, ex-
cept for the large dineutron component at cos θk < −0.7. The
opening-angle distribution is similar to the correlation-angle
distribution predicted in Ref. [52], except for the divergent
behavior around | cos θn f | ≈ 1.

VIII. SUMMARY

I discussed the momentum-space structure of dineutrons
in the Borromean nuclei 11Li, 6He, 22C, and 19B. For this
purpose, the three-body model calculation was performed by
using a newly constructed finite-range nn interaction in mo-
mentum space (the kSEP interaction). The kSEP interaction is
easy to handle as the contact δ(r) interaction. On top of that,
it enables us to make a prediction of the spatial structure of
dineutrons, which is difficult in calculations using the contact
δ(r) interaction due to the lack of the principal prescription
for the cutoff energy.

I showed that the ground-state properties such as the 2n
separation energy, the matter radius, the core-2n distance, and
the n-n distance in 11Li, 6He, and 22C are well reproduced,
once the parameters in the kSEP interaction are fixed by the
low-energy 1S0 nn scattering and the 2n separation energy of
11Li. The weights of the s, p, and d waves are plausible values
for the experimental observations and the typical three-body
calculations, although the values themselves have a model
dependence.

For 19B, the recently extracted value of S2n ≈ 0.5 MeV
[11] is well reproduced, while the matter radius and the core-
2n distance are inconsistent with the experimental values.
These discrepancies may indicate the deformation effect in
17,19B [98,99], although the observed E1 strength distribution
was well described within the three-body model assuming a
spherical core nucleus [11,96]. Further analyses are needed to
solve the puzzle.

The 2n densities in momentum space were calculated to
see the spatial structure of valence neutrons. In 11Li, the 2n
density has an asymmetric angular distribution due to the
interference of the different-parity s and p states. The peak of
the dineutron configuration appears at low core-n momentum
kn with a broad angular distribution. It is accompanied by a
long high-kn tail, which indicates the strong dineutron cor-
relation. The peak for the cigarlike configuration appears at
higher kn.

In 22C and 19B, the ground-state configuration is mainly
the admixture of the same-parity s and d states. The 2n den-
sity has rather symmetric angler distribution, except for the
large dineutron component at large opening angle due to the
interference with the p states of the small weight. In 6He, the
2n density also has rather symmetric angular distribution due
to the large 88.4% weight of the p states. The two peaks for
the dineutron and cigarlike configurations appear at the same
momentum of kn ≈ 0.4 fm−1.

I clarified how the mean opening angle and the opening-
angle distribution reflect the 2n density. In 11Li, 22C, and
19B, the mean opening angle has a maximum value larger
than 100◦ at low kn, and it decreases to around 90◦ at lower
and higher kn. The mean opening angle in 11Li well coin-
cides with the observed mean correlation angle, although the
reaction mechanism is not considered, except for the cutoff
momentum representing the contribution of only halo neu-
trons. The features of the opening-angle distribution in 11Li
are also consistent with those of the observed correlation-
angle distribution, if the contribution of only halo neutrons
is considered.

For 22C, the influence of the S = 0 and 1 components
of the 2n density was examined by using the 20C -n poten-
tials of C1 (P[S = 0] = 64%) and C2 (P[S = 0] = 97%). A
qualitative difference was found in the opening-angle dis-
tribution. The distributions for C1 (S = 0 component) and
C2 (total 2n density) have similar symmetric double-well
shapes, except for the large dineutron component at cos θk <

−0.7. In the distribution for C1 (total 2n density), the wells
are filled by the cigarlike and boomerang components. For
19B (P[S = 0] = 94%), the mean opening angle and the
opening-angle distribution are similar to those of 22C using C2
(P[S = 0] = 97%).
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For 6He, the mean opening angle is similar to that in
11Li, but the peak at low kn is plateaulike due to the broad
kn distribution of the dineutron peak in the 2n density. The
opening-angle distribution is rather symmetric, except for the
large dineutron component at cos θk < −0.5.

In conclusion, I discussed how the mean opening angle and
the opening-angle distribution reflect the momentum-space 2n
density of the Borromean nuclei. I clarified that the study
of the angular correlations of halo neutrons is promising for

providing rich information about the characteristic dineutron
structure in the Borromean nuclei.
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