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Nucleon-pair truncation of the shell model for medium-heavy nuclei
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Background: Establishing computationally tractable models of atomic nuclei is a long-time goal of nuclear
structure physics. A flexible framework which easily includes excited states and many-body correlations is the
configuration-interaction shell model (SM), but the exponential growth of the basis means one needs an efficient
truncation scheme, ideally one that includes both deformation and pairing correlations.
Purpose: We propose an efficient truncation scheme of the SM: starting from a pair condensate variationally
defined by Hartree-Fock single-particle states and the particle-number conserved Bardeen-Cooper-Schrieffer
(NBCS) approximation, we carry out projection of states with good angular momentum.
Methods: After generating Hartree-Fock single-particle states with Kramers degeneracy in a SM space, we
optimize the pair amplitudes in the NBCS by minimizing the energy, and then use linear algebra projection
(LAP) of states with good angular momentum. Both NBCS and LAP are computationally fast.
Results: Our calculations yield good agreement with full configuration-interaction SM calculations for low-
lying states of transitional and rotational nuclei with axially symmetric and triaxial deformation in medium- and
heavy-mass regions: 44,46,48Ti, 48,50Cr, 52Fe, 60,62,64Zn, 66,68Ge, 68Se, and 108,110Xe. We predict low-lying states of
112–114Ba and 116–120Ce, nuclei difficult to reach by large-scale SM calculations.
Conclusions: Both pair correlation and the configuration mixing between different intrinsic states play a key
role in reproducing collectivity and shape coexistence, demonstrating the utility of this truncation scheme of the
SM to study transitional and deformed nuclei.
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I. INTRODUCTION

The nuclear shell model (SM) is a flexible and use-
ful framework for configuration-interaction calculations in
nuclear structure theory [1–4]. In a given single-particle
basis, the so-called full configuration-interaction (FCI) con-
siders all possible configurations and efficiently generates
low-lying states, including complex states with multiparticle
correlations. Yet for many heavy rotational nuclei, FCI di-
mensions go far beyond the current computational limit of
≈2–3 × 1010. Hence the hunt for good truncation schemes
that nonetheless incorporate important correlations—in par-
ticular, deformation and pairing—is of great importance.

The pair truncation of the SM has been extensively studied.
For example, in the (generalized) seniority scheme [1,5–8]
and broken pair model [9–11], which work very well for
nearly spherical nuclei, the dominant building block is a pair
of like nucleons coupled to angular momentum zero (denoted
by S pairs), due to the strong monopole pairing interaction.
The ground state of a semimagic even-even nucleus can be
described by an S pair condensate, and the low-lying ex-
cited states are interpreted as breaking of the S pairs. In
the interacting boson model [12–15], the spin-zero S pair
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and spin-two (D) pair are mapped to s and d bosons, key
ingredients in collective states of the vibrational, rotational,
and γ -soft nuclei. A fully fermionic treatment is found in the
nucleon-pair approximation (NPA) of the SM [16,17], built by
nucleon pairs with spins zero, two, four (denoted by G), six
(denoted by I), etc. NPA calculations successfully reproduce
low-lying states in nuclei from spherical, via transitional, and
finally to deformed regions [18–25], and the important role
played by the G (and sometimes I) pair in well-deformed nu-
clei has been demonstrated [26,27]. An important ingredient
for deformed and transitional nuclides was the extraction of
good pairs from Hartree-Fock states [25,26]. Although NPA
configuration spaces are much smaller than full SM ones, and
despite recent significant speed-ups in codes driven largely by
going from a J-coupled scheme to an M or Jz scheme [28,29],
the computation with high-spin G and I pairs is still too
burdensome for most of deformed nuclei across the nuclear
chart.

On the other hand, one frequently finds in nuclear physics
powerful deformed-mean-field calculations incorporating
pairing, such as Bardeen-Cooper-Schrieffer (BCS) [30–33]
and Hartree-Fock-Bogoliubov (HFB) [34,35] calculations,
which can be understood through Nilsson single-particle or-
bits [35,36]. Calculations using deformed BCS and HFB have
had great success in nuclear physics, but they break both rota-
tional symmetry and particle number. The BCS or HFB vacua
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are actually superpositions of states with different angular mo-
mentum quantum numbers in neighboring (different particle
number) nuclei. One can restore the symmetries, for example
recovering exact particle number by numerical integration
over the gauge angle [35,37], or good angular momentum by
integration over Euler angles, where, for example, the config-
uration space is constructed by angular momentum projection
on quasiparticle states after solving the BCS/HFB equation in
the Nilsson orbits [38–40].

Recently a very fast algorithm has been proposed for the
generalized seniority scheme in deformed orbits, a power-
ful tool to calculate identical particle systems in a valence
space of 15 major shells [41,42]. The generalized seniority
scheme has good particle numbers naturally. As this formal-
ism constructs pairs between time-reversal orbits as in the
BCS theory, we call it the particle number conserved BCS
(NBCS) throughout this paper.

In this work, we extend the NBCS to open-shell nuclei, add
angular momentum projection (denoted by PNBCS), and per-
form calculations in SM single-particle bases with effective
interactions. In other words, the PNBCS can be regarded as
a pair truncation scheme of the SM. We apply the PNBCS
to the study of nuclei with axially symmetric deformation,
triaxial deformation, and shape coexistence in the medium-
and heavy-mass regions.

There exist alternative approaches which restore both ro-
tational symmetry and particle number conservation, such as
the projected HFB [43,44] and the projected general pair con-
densate [45]. Yet such computations are time consuming. For
example, Ref. [44] showed that the variation after projection
for the HFB can be only carried out in the sd shell, because of
the very heavy multidimension integration. In Ref. [45], from
a random start it took hours to optimize a general pair con-
densate before angular momentum projection for open-shell
nuclei in the A ≈ 130 region. On the other hand, the variation
of the NBCS before angular momentum projection used in
this work is very fast, even compared with the already fast
HF calculation. It therefore provides an alternative approach
for variation after projection study, which we leave to future
work.

This paper is organized as follows. In Sec. II we introduce
the framework of the PNBCS, including the HF with Kramers
degeneracy, the NBCS, and the linear algebraic approach of
angular momentum projection [46]. In Secs. III and IV we
compare the results of PNBCS with full SM and the projected
Hartree-Fock (PHF), and show that the PNBCS provides us
with good descriptions for low-lying states of transitional and
rotational nuclei in the p f , p f5/2g9/2, and sdg7/2h11/2 shells.
In particular, since in the absence of pairing PNBCS would be
the same as PHF, our results show the improvement through
the inclusion of pairing correlations in our wave functions.

II. FRAMEWORK

In this paper we use Latin letters a, b, c . . . to denote
SM single-particle states labeled by good quantum numbers n
(radial nodes), l (orbital angular momentum), j (total angular
momentum), and m (z component of angular momentum). We

write the creation operator of a nucleon as

ĉ†
a ≡ ĉ†

nala jama
, (1)

and its time-reversed partner as

ĉ†
ã ≡ (−) ja−ma ĉ†

nala ja−ma
. (2)

We use Greek letters α, β, γ . . . to denote HF single-particle
states, and we write the creation operator as â†

α .

A. HF and NBCS

We start with the HF calculation in a shell model (SM) ba-
sis with Kramers degeneracy [47], that is, our HF calculation
always produces degenerate time reversal single particle part-
ners without enforcing additional constrains such as shape,
orientation, parity. A HF single particle state from our calcu-
lations can be written as a transformation of the original SM
single particle states:

â†
α =

∑
a

Uαaĉ†
a, (3)

and its time-reversed partner can be written by

â†
α̃ =

∑
a

Uαaĉ†
ã. (4)

While details of particle number conserved BCS (NBCS)
can be found in [41,42], here we brief the formulas we use in
this work. The building blocks are collective pairs in the HF
basis, i.e.,

P̂†
τ ≡

∑
α∈Oτ

vτ,αP̂†
τ,α = 1

2

∑
α

vτ,α â†
τ,α â†

τ,α̃, (5)

where

P̂†
τ,α ≡ â†

τ,α â†
τ,α̃ = P̂†

τ,α̃, (6)

Here, τ = π for valence protons and τ = ν for valence neu-
trons; Oτ denotes the indices that picks only one of each
degenerate time-reversed pair α and α̃; vτ,α is the pair struc-
ture coefficient. We emphasize that prior work showed that
using pairs extracted from a deformed HF state provides
an important step towards the good description of rotational
bands [25–27].

In the NBCS, the ground state of 2N valence protons (or
neutrons) is assumed to be an N-pair condensate

|φτ,N 〉 = 1√
χτ,N

(P̂†
τ )N |0〉 , (7)

where χτ,N is the normalization factor. In order to facilitate a
fast method for computing the NBCS energy, Refs. [41,42,48]
introduced the α-orbit blocked N-pair condensate

∣∣φ[α]
τ,N

〉 ≡ 1√
χ

[α]
τ,N

⎛
⎜⎜⎝∑

β∈Oτ

β �=α

vτ,β P̂†
τ,β

⎞
⎟⎟⎠

N

|0〉

= 1√
χ

[α]
τ,N

(P̂†
τ − vτ,αP̂†

τ,α )N |0〉 , (8)
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the effect of which is to remove the pair of single-particle
states α and α̃. Similarly, the αβ- and αβγ -orbit blocked
N-pair condensates are defined by

∣∣φ[αβ]
τ,N

〉 ≡ 1√
χ

[αβ]
τ,N

(P̂†
τ − vτ,αP̂†

τ,α − vτ,β P̂†
τ,β )N |0〉 , (9)

∣∣φ[αβγ ]
τ,N

〉 ≡ 1√
χ

[αβγ ]
τ,N

(P̂†
τ − vτ,αP̂†

τ,α− vτ,β P̂†
τ,β − vτ,γ P̂†

τ,γ )N |0〉 ,

(10)

respectively, where α, β, and γ are not equal to each other.
The normalization factors χτ,N , χ

[α]
τ,N , χ

[αβ]
τ,N , and χ

[αβγ ]
τ,N can be

calculated using recursive formulas; see Eqs. (A1)–(A4) in the
Appendix.

B. NBCS energy for identical particles

The Hamiltonian for identical particles is written as

Ĥ = Ĥ0τ + Ĥττ

=
∑
αβ

εαβ â†
τ,α âτ,β + 1

4

∑
αβγ δ

Vαβγ δ â†
τ,α â†

τ,β âτ,δ âτ,γ , (11)

where Vαβγ δ are antisymmetrized two-body matrix elements
in the HF single-particle basis. Using Eqs. (A5)–(A8) in the
Appendix, the energy of the N-pair condensate is given by

Eτ ≡ 〈φτ,N | Ĥ |φτ,N 〉

=
∑
α∈Oτ

(2εαα + Gαα )

(
1 − χ

[α]
τ,N

χτ,N

)

+
α �=β∑

αβ∈Oτ

[
GαβN2vτ,αvτ,β

χ
[αβ]
τ,N−1

χτ,N

+Aαβ

(
1 − χ

[α]
τ,N + χ

[β]
τ,N − χ

[αβ]
τ,N

χτ,N

)]
, (12)

where

Gαβ ≡ Vαα̃ββ̃ , Aαβ = Vαβαβ + Vαβ̃αβ̃ . (13)

The energy of the N-pair condensate, Eτ , varies with the
pair structure coefficient vτ,α . In general vτ,α is determined by
minimizing Eτ , so that

∂Eτ

∂vτ,α

= 0, (14)

leading to the iterative formula

vτ,α = −∑β �=α

β∈Oτ
Gαβvτ,βχ

[αβ]
τ,N−1(

dτ,α + 〈
φ

[α]
τ,N−1

∣∣ Ĥ
∣∣φ[α]

τ,N−1

〉 − Eτ

)
χ

[α]
τ,N−1

, (15)

where

dτ,α ≡ 2εαα + Gαα + 2(N − 1)2

×
β �=α∑
β∈Oτ

Aαβ (vτ,β )2
χ

[αβ]
τ,N−2

χ
[α]
τ,N−1

, (16)

〈
φ

[γ ]
τ,N

∣∣ Ĥ
∣∣φ[γ ]

τ,N

〉 ≡
α �=γ∑
α∈Oτ

(2εαα + Gαα )

(
1 − χ

[αγ ]
τ,N

χ
[γ ]
τ,N

)

+
α �=β,α �=γ ,β �=γ∑

αβ∈Oτ

[
GαβN2vτ,αvτ,β

χ
[αβγ ]
τ,N−1

χ
[γ ]
τ,N

+ Aαβ

(
1− χ

[αγ ]
τ,N + χ

[βγ ]
τ,N − χ

[αβγ ]
τ,N

χ
[γ ]
τ,N

)]
.

(17)

C. For a system with both valence protons and neutrons

In this work, we extend the NBCS to the case of open-shell
nuclides, that is, a pair-condensate ansatz with both valence
protons and valence neutrons:

|〉 = |φπ,Nπ
φν,Nν

〉 = 1√
χπ,Nπ

χν,Nν

(P̂†
π )Nπ (P̂†

ν )Nν |0〉 . (18)

The Hamiltonian for open-shell nuclides is written as

Ĥ =
∑

τ=π,ν

(Ĥ0τ + Ĥττ ) + Ĥπν, (19)

where

Ĥπν =
∑
αβγ δ

Vαβγ δ â†
π,α â†

ν,β âν,δ âπ,γ . (20)

The energy is

E =
∑

τ=π,ν

Eτ + Eπν, (21)

where the valence proton energy Eπ and the valence neutron
energy Eν are obtained by Eq. (12), and the valence proton-
neutron energy Eπν is given by

Eπν ≡ 〈| Ĥπν |〉

=
∑

α∈Oπ ,β∈Oν

2Aαβ

(
1 − χ

[α]
π,Nπ

χπ,Nπ

)(
1 − χ

[β]
ν,Nν

χν,Nν

)
. (22)

The energy of an open-shell nucleus, E , varies with the pair
structure coefficients vπ,α and vν,α . We determine vπ,α and
vν,α by minimizing E , which leads to the iterative formula

vτ,α = −∑β �=α

β∈Oτ
Gαβvτ,βχ

[αβ]
τ,Nτ −1(

dτ,α + 〈
φ

[α]
τ,Nτ −1

∣∣ H
∣∣φ[α]

τ,Nτ −1

〉 − Ēτ

)
χ

[α]
τ,Nτ −1 + Y [α]

τ,γ β

.

(23)
Equation (23) differs from Eq. (15) by the Y [α]

τ,γ β term, which
itself is obtained from the variational principle for the proton-
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neutron energy Eπν , i.e.,

Y [α]
τ,γ β =

∑
γ∈Oτ ,β∈Oτ ′

2Aγ β

× χ
[α]
τ,Nτ −1χ

[γ ]
τ,Nτ

− χ
[αγ ]
τ,Nτ −1χτ,Nτ

χτ,Nτ

(
1 −

χ
[β]
τ ′,Nτ ′

χτ ′,Nτ ′

)
, (24)

where τ ′ = ν if τ = π , and vice versa.
In our NBCS calculations, we use the conjugate gradient

method to quickly minimize the energy E [see Eq. (21)], and
then use Eq. (23) to iterate vπ,α and vν,α until convergence.
Unsurprisingly, the NBCS energy is lower than the HF energy,
as the ansatz wave function of a pair condensate is more
general than that of a Slater determinant.

D. PNBCS: The angular momentum projection for NBCS

In general, both the HF and NBCS break rotational sym-
metry. To cure this problem, projection on angular momentum
is necessary. While it is usually implemented as a numerical
quadrature on Euler angles [35,49], a recently proposed linear
algebra projection (LAP) [46] is more than 10 times faster
than the quadrature in nuclear structure computations [50].
LAP has been successfully implemented to project nuclear
states out of both Slater determinants [46,50] and out of a
general pair condensate [45]. Here, we outline the application
of LAP to NBCS.

The N-pair condensate |〉 [see Eq. (18)] usually breaks
rotational invariance. The condensate can be decomposed as a
linear combination of normalized spherical tensors,

|〉 =
∑
JK

cJK |J, K〉. (25)

The projection operator P̂J
MK picks out the component |J, K〉,

and rotates it to |J, K → M〉, i.e.,

P̂J
MK |〉 = cJK |J, K → M〉. (26)

For states with angular momentum J , we diagonalize the
Hamiltonian in the space spanned by

{
P̂J

M,−J |〉, P̂J
M,−J+1|〉, · · · , P̂J

M,J |〉}, (27)

that is, we solve the discrete Hill-Wheeler equation

∑
K

HJ
K ′K gr

JK = εJr

∑
K

N J
K ′K gr

JK , (28)

where εJr is energy of the rth state with angular momentum J;
gr

JK is the expansion coefficient of the projected eigenstate;
and HJ

K ′K and N J
K ′K are the Hamiltonian and norm matrix

elements (or kernels), respectively:

HJ
K ′K = 〈

P̂J
MK ′

∣∣Ĥ ∣∣P̂J
MK

〉 = 〈


∣∣Ĥ ∣∣P̂J
K ′K

〉
,

N J
K ′K = 〈

P̂J
MK ′

∣∣P̂J
MK

〉 = 〈


∣∣P̂J
K ′K

〉
. (29)

In traditional angular momentum projection, Eq. (29) is
calculated by numerical integrals:

HJ
K ′K = 2J + 1

8π2

∫
d�DJ∗

K ′K (�)〈|ĤR̂(�)|〉,

N J
K ′K = 2J + 1

8π2

∫
d�DJ∗

K ′K (�)〈|R̂(�)|〉, (30)

where DJ
K ′K (�) is the Wigner D matrix. In the LAP [46,50],

the Hamiltonian and norm matrix elements are found by solv-
ing linear equations. It is noticed that

〈|Ĥ R̂(�)|〉
=

∑
JJ ′KK ′M

c∗
J ′K ′cJK DJ

MK (�)〈J ′, K ′|Ĥ |J, K → M〉

=
∑
JKK ′

DJ
K ′K (�)HJ

K ′K , (31)

and similarly

〈|R̂(�)|〉 =
∑
JKK ′

DJ
K ′K (�)N J

K ′K , (32)

that is to say, 〈|Ĥ R̂(�)|〉 is a linear combination of HJ
K ′K ,

and 〈|R̂(�)|〉 is a linear combination of N J
K ′K . With a

given set of Euler angles, one computes 〈|ĤR̂(�)|〉 and
〈|R̂(�)|〉, and then finds HJ

K ′K and N J
K ′K as solutions of

the linear Eqs. (31) and (32).
To compute 〈|R̂(�)|〉, we use the Wigner D matrix for

SM single-particle states, i.e.,

Dab(�) = 〈nala jama|R̂(�)|nblb jbmb〉
= δnanbδlalbδ ja jbD

ja
mamb

(�), (33)

and rewrite a collective pair [see Eq. (5)] as

P̂†
τ =

∑
α∈Oτ

vτ,α â†
τ,α â†

τ,α̃

= −
∑

ab;α∈Oτ

vτ,αUαaUαb̃ĉ†
τ,aĉ†

τ,b

=
∑

ab

pabĉ†
τ,aĉ†

τ,b. (34)

Under rotational transformation, the collective pair becomes

R̂(�)P̂†
τ R̂−1(�) = P̂′†

τ (35)

with p′ = DpD�. The matrix elements of R̂(�) for the NBCS
is

〈(P̂†
τ )N | R̂(�) |(P̂†

τ )N 〉 = 〈(P̂†
τ )N | |(P̂′†

τ )N 〉 , (36)

and similarly

〈(P̂†
τ )N | Ĥ R̂(�) |(P̂†

τ )N 〉 = 〈(P̂†
τ )N | Ĥ |(P̂′†

τ )N 〉 . (37)

A fast algorithm for computing Eqs. (36) and (37) was given
in Ref. [45].

III. PARAMETER-DRIVEN SHAPE EVOLUTION IN PNBCS

We investigate the validity and utility of the PNBCS as the
nuclear shape evolves from spherical to quadrupole deforma-
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FIG. 1. The excitation energy Ex (I+), the level energy ratios
R(I+2)/2 [where RI/2 ≡ Ex (I+)/Ex (2+)], and the B(E2; I → I − 2)
values for 6 protons and 6 neutrons in the p f shell with the schematic
interaction Ĥ (x) [see Eq. (38)]. (a), (b), (c) correspond to I = 2
and (a′), (b′), (c′) to I = 4. SM is the abbreviation for the full shell
model; PHF is for the angular momentum projected Hartree-Fock;
and PNBCS is for the angular momentum projected particle number
conserved BCS.

tion. Here, the shape evolution is realized by changing the
ratio of pairing and quadrupole-quadrupole interactions in a
schematic Hamiltonian

Ĥ (x) = x

(∑
ja

ε ja n̂ ja + gV̂P

)
+ κV̂Q. (38)

The first term
∑

ja
ε ja n̂ ja is single particle energy term. The

second term is the monopole pairing interaction:

V̂P = −Â(0)†
π Â(0)

π − Â(0)†
ν Â(0)

ν , (39)

Â(0)† =
∑

ja

√
2 ja + 1

2
(ĉ†

ja
× ĉ†

ja
)(0). (40)

The last term is the quadrupole-quadrupole interaction:

V̂Q = −(Q̂π + Q̂ν ) · (Q̂π + Q̂ν ). (41)

We study the system of six protons and six neutrons in the
p f shell using the schematic Hamiltonian. The single particle
energies are taken from the KB3G effective interaction [51],
i.e., ε0 f7/2 = 0 MeV, ε1p3/2 = 2.0 MeV, ε0 f5/2 = 6.5 MeV,
ε0p1/2 = 4.0 MeV. The strength parameter of the monopole
pairing interaction and quadrupole-quadrupole interaction are
set to be g = 0.4 MeV and κ = 0.1 MeV, respectively. The
adjustable parameter x ranges from 0 to 1.5.

We calculate level energies and the electric quadrupole
reduced transition probabilities B(E2) (taking the standard
effective charges eπ = 1.5 and eν = 0.5) in the SM using the
BIGSTICK code [52,53], and in angular momentum projected

HF (PHF) and in PNBCS using unpublished codes. Figure 1
shows the results of the excitation energies Ex(I+

1 ), the en-
ergy ratios R(I+2)/2 [where RI/2 ≡ Ex(I+

1 )/Ex(2+
1 )], and the

B(E2; I → I − 2) values with I = 2 and 4. The SM result ex-
hibits nuclear shape evolution. For small x, i.e., dominated by
the quadrupole-quadrupole interaction, the 2+

1 and 4+
1 excita-

tion energies are small with the energy ratios R4/2 ≈ 3.33 and
R6/2 ≈ 7, and the B(E2) values are large. These are typical
features of rotational nuclei in the Elliott’s SU(3) dynamical
symmetry limit. As x increases, the 2+

1 and 4+
1 excitation

energies increase and the B(E2) values decrease. For large
x, i.e., large monopole pairing interaction and single-particle
splittings, the 2+

1 and 4+
1 excitation energies are large and the

energy ratios and the B(E2) values are small, typical behavior
of spherical nuclei.

In general the PNBCS result is better than PHF one. In the
limiting case of x ≈ 0, that is, large quadrupole-quadrupole
interaction, both the PHF and PNBCS well reproduce the
excitation energies, energy ratios, and B(E2) values. This
result can be understood as follows. The pure quadrupole-
quadrupole interaction in a harmonic-oscillator shell (i.e.,
Elliott’s model) provides us with a HF state with an axially
symmetric quadrupole deformed shape. From this HF state,
one can project out the exact ground rotational band. For
0.5 < x < 0.75, the PNBCS also provides a good description
for the 2+

1 and 4+
1 states of transitional nuclei with 2.2 <

R4/2 < 2.8, while the PHF result quickly deteriorates. In the
limiting case of x ≈ 1.5, that is, large monopole pairing

FIG. 2. The yrast states of 44,46,48Ti, 48,50Cr, and 52Fe. SM is
the abbreviation for the full shell model; PNBCS is for the angular
momentum projected particle number conserved BCS; and PHF is
for the angular momentum projected Hartree-Fock. The experimental
data are taken from Refs. [54–58].
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TABLE I. B(E2; I → I − 2) (in W.u.) for the yrast states of
44,46,48Ti, 48,50Cr, and 52Fe. The experimental data are taken from
Refs. [54–58].

Nuclide Iπ Exp. SM PNBCS PHF

44Ti 2+ 13(4) 12.9 12.9 13.7
4+ 30(5) 17.0 18.3 18.9
6+ 17.0(24) 14.2 18.3 18.8
8+ − 10.1 16.5 16.9

46Ti 2+ 19.5(6) 12.9 14.2 15.1
4+ 20.2(13) 17.0 20.6 21.0
6+ 16.4(15) 17.2 21.6 21.7
8+ 11.3(14) 15.7 20.0 20.1

48Ti 2+ 14.7(4) 10.1 11.2 11.6
4+ 18.4(17) 15.0 16.7 16.5
6+ − 6.2 17.0 16.5
8+ − 5.1 14.8 13.9

48Cr 2+ 31(4) 20.6 24.0 24.6
4+ 27(3) 28.2 34.2 34.4
6+ 29(8) 28.3 36.9 36.5
8+ 24(7) 26.2 36.9 36.0

50Cr 2+ 19.3(6) 16.9 19.7 20.2
4+ 14.6(16) 24.0 28.6 28.1
6+ 22(5) 20.4 31.0 29.3
8+ 19(5) 17.6 30.7 28.4

52Fe 2+ 14.2(19) 16.0 15.8 15.7
4+ 26(6) 21.3 22.1 21.5
6+ 10(3) 11.8 22.8 22.0
8+ 9(4) 7.2 20.9 20.4

interaction and single-particle splittings, neither the PHF nor
PNBCS is good, and it is expected that the PNBCS general-
ized with broken-pair configurations, that is, a multi-reference
PNBCS related to generator-coordinate and other beyond-
mean-field methods, will greatly improve the results, which
we leave to future work.

IV. FOR NUCLEI IN THE MEDIUM-HEAVY MASS REGION

In this section, we show that the PNBCS provides us
reasonably good description for low-lying states of transi-
tional and deformed nuclei. We exemplify this with 44,46,48Ti,
48,50Cr, 52Fe in the p f shell, 60,62,64Zn, 66,68Ge, 68Se in the
p f5/2g9/2 space, and 108,110Xe in the sdg7/2h11/2 space, by
comparing the results of the SM, PHF, and PNBCS. We also
predict low-lying levels for 112,114Ba and 116,118,120Ce.

A. 44,46,48Ti, 48,50Cr, 52Fe in the p f shell
44,46,48Ti, 48,50Cr, and 52Fe are typical transitional and de-

formed nuclei in the p f shell. In our calculation, we use the
KB3G interaction [51] and take the standard effective charges
eπ = 1.5 and eν = 0.5 for B(E2)s. The low-lying states are
well reproduced by the SM calculation, except for 44Ti.

Figure 2 and Table I compare the excitation energies and
B(E2; I → I − 2) values for the yrast states of 44,46,48Ti,
48,50Cr, and 52Fe from the experimental data [54–58], the full
SM, the PNBCS, and the PHF. The PNBCS results are in
good agreement with the data and/or the SM results. The level

FIG. 3. The yrast state of 60,62,64Zn. The experimental data are
taken from Refs. [59–61].

energies of the 2+, 4+, 6+, 8+ states obtained by the PNBCS
are very close to those by the SM.

The level energies obtained by the PHF are visibly smaller
than those by the PNBCS, and the B(E2) values obtained by
the former are slightly larger than those by the latter. This
indicates that the pair correlation plays an important role in
reduction of the moment of inertia but plays a limited one in
reduction of the electric quadrupole transition probability; the
electric quadrupole transition strength is affected mainly by
the deformation encoded in HF. The PNBCS results may be
improved if the variation of the HF single particle states is
simultaneously taken into account within the NBCS variation,
and result will be equivalent to that of the particle number
projected Hartree-Fock-Bogoliubov [35,37], which we leave
to future work.

B. 60,62,64Zn, 66,68Ge, 68Se in the p f5/2g9/2 space

We calculate low-lying states of 60,62,64Zn, 66,68Ge, and
68Se in the p f5/2g9/2 space (i.e., the 1p1/21p3/20 f5/20g9/2

space), using the JUN45 interaction [65,66] and the standard
effective charges eπ = 1.5 and eν = 0.5 for B(E2)s. The de-
formations of these nuclei are not very strong. Therefore the
low-lying states are appropriately reproduced by the above
SM calculations.

TABLE II. B(E2; I → I − 2) (in W.u.) for the yrast states of
60,62,64Zn. The experimental data are taken from Refs. [60–62].

Nuclide Iπ Exp. SM PNBCS PHF

60Zn 2+ − 10.9 10.3 10.6
4+ − 12.8 13.0 13.0
6+ − 11.9 10.8 10.4
8+ − 7.4 6.1 5.7

62Zn 2+ 16.8(8) 11.1 11.5 12.1

4+ 26(+7
−12) 10.0 12.5 12.3

6+ 19(3) 14.2 12.3 14.2

8+ 7.9(+20
−40) 12.1 10.4 12.2

64Zn 2+ 20.0(6) 10.6 11.7 12.4
4+ 12.2(5) 12.7 14.9 16.4
6+ 23(6) 13.3 14.2 15.4
8+ − 14.8 11.6 12.1
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FIG. 4. The ground rotational band and the side band of 66Ge,
68Ge, and 68Se. The experimental data are taken from Refs. [63,64].

The 60,62,64Zn isotopes are transitional nuclei. Figure 3
and Table II compare for the yrast states the experimental
data [59–62], full SM, PNBCS, and PHF. Both the level
energies and the B(E2) values obtained by the PNBCS are
very close to the data or the SM results. For 62Zn and 64Zn,
the moment of inertia and the electric quadrupole transition
probability obtained by PHF is (slightly) larger than those by
PNBCS, similar to the cases in the p f shell.

Shape coexistence [67] has been observed in 66,68Ge and
68Se [63,64], and both the ground and side rotational bands
are well reproduced by the SM calculation (Fig. 4).

For 66Ge, our HF calculation produces an oblate minimum
with 〈β〉 = 0.21 and 〈γ 〉 = 60◦ and a triaxially deformed
one with 〈β〉 = 0.24 and 〈γ 〉 = 8◦, separated only by 0.58
MeV, and the configuration spaces constructed by the angular
momentum projection on them are denoted by L1 and L2,
respectively. We carry out the PHF calculation in two different
ways: (1) the oblate and γ bands are calculated by solving the
Hill-Wheeler equation in the L1 and L2 spaces, respectively
(the calculation results are denoted by PHF1); (2) the bands
are calculated in the L1 ⊕ L2 space, i.e., the configuration

TABLE III. B(E2; I → I − 2) (in W.u.) for the ground and side
bands of 66Ge, 68Ge, and 68Se. The experimental data are taken from
Refs. [63,64].

Nuclide Iπ Exp. SM PNBCS1 PNBCS2 PHF1 PHF2

66Ge (ground
band)

2+ 12.0(23) 15.9 12.3 12.7 12.4 12.4

4+ >9.6 18.2 16.7 14.3 16.5 13.8
6+ >1.2 19.9 16.8 17.4 15.8 14.4
8+ − 9.0 14.9 16.1 13.2 12.8

66Ge (side
band)

2+ − 6.7 17.3 12.4 18.9 18.7

4+ − 11.4 22.4 11.8 25.0 21.7
6+ − 13.0 23.2 10.4 24.0 22.2
8+ − 1.6 14.8 11.2 16.9 16.9

68Ge (ground
band)

2+ 15.3(8) 15.4 13.2 14.2 11.8 14.5

4+ 12.8(15) 21.3 16.4 20.2 16.2 21.4
6+ 12 (4) 24.1 17.6 27.2 13.2 31.9
8+ 14 (3) 16.6 9.8 28.6 8.8 37.5

68Ge (side
band)

2+ − 10.7 21.2 14.7 24.4 18.5

4+ − 12.7 27.6 16.6 32.2 10.0
6+ − 8.3 31.6 13.0 37.9 10.6
8+ − 5.0 31.1 9.5 38.7 8.6

68Se (ground
band)

2+ 27(4) 21.1 22.4 22.4 23.0 23.0

4+ − 30.1 30.5 30.5 31.0 31.0
6+ − 30.8 30.5 30.5 30.4 30.4
8+ − 23.7 26.9 26.9 26.4 26.4

68Se (side
band)

2+ − 19.4 20.1 20.1 21.0 21.0

4+ − 26.8 27.7 27.7 28.6 28.6
6+ − 26.8 28.0 28.0 28.5 28.5
8+ − 22.7 24.9 24.9 25.1 25.1

mixing between the two HF states is allowed (denoted by
PHF2). Similarly, we carry out the PNBCS calculation with
and without the configuration mixing (denoted by PNBCS2
and PNBCS1), respectively.

In Fig. 4 we see the energy levels in both the ground
and side γ bands of 66Ge are well reproduced by the calcu-
lations, including PNBCS1, PNBCS2, PHF1, and PHF2. In
Table III we see for the B(E2) values in the ground band,
the results of PNBCS1, PNBCS2, PHF1, and PHF2 are all in
good agreement with the SM one, but for the B(E2) values
in the side γ band, only the PNBCS2 result are close to
the SM one. The above results indicate that both the pair
correlation and the configuration mixing between the oblate
and triaxially deformed states are important in reproducing
the electric quadrupole transition rate in 66Ge. Both the SM
and the PNBCS2 predict the γ band head is a 0+ state, which
has not yet been found experimentally.

For 68Ge, our HF calculation with Kramers degeneracy
produces two minima differing in energy by only 0.76 MeV,
both of which are triaxially deformed: the first minimum has
〈β〉 = 0.17 and 〈γ 〉 = 38◦, and the second one has 〈β〉 = 0.24
and 〈γ 〉 = 18◦. It is worth mentioning that the probability of

044309-7



YU, LU, FU, JOHNSON, AND REN PHYSICAL REVIEW C 106, 044309 (2022)

FIG. 5. The ground band of 108,110Xe. SDGI represents the result
calculated by the SDGI-pair approximation in Ref. [25]. The experi-
mental data are taken from Ref. [68].

the second minimum showing up in the HF calculation with
Kramers degeneracy is ≈3%, and that in the time-reversal-
unconstrained HF calculation is ≈0.03%. Similar to the case
of 66Ge, both the PNBCS and PHF calculations are carried
out in two different ways, i.e., PNBCS1, PNBCS2, PHF1,
and PHF2. The results are presented in Fig. 4 and Table III.
The PNBCS2 results are in good agreement with the data or
the SM results, but the PNBCS1, PHF1, and PHF2 fail to
reproduce the level energies of the side band. For the B(E2)
values of the side band, the PNBCS2 and PHF2 results are
much better than the PNBCS1 and PHF1 ones. Both the pair
correlation and the configuration mixing between the two HF
states are important.

For 68Se, our HF calculation produces an oblate minimum
with 〈β〉 = 0.22 and 〈γ 〉 = 60◦ and a prolate one with 〈β〉 =
0.21 and 〈γ 〉 = 0◦. Our PNBCS1, PNBCS2, PHF1, and PHF2
results are all closed to the SM results. The pair correlation
and the configuration mixing between the oblate and prolate
states are not important here.

C. 108,110Xe, 112,114Ba, 116,118,120Ce in the sdg7/2h11/2 space

The nuclides around the N = Z line above 100Sn are of
great interest due to their potential importance in the study of
superallowed α decay and nucleosynthesis. In this work, we
calculate low-lying states of 108,110Xe, 112,114Ba, 116,118,120Ce
in the sdg7/2h11/2 space (i.e., the 2s1/21d3/21d5/20g7/20h11/2

space), using the monopole-optimized effective interaction
based on the CD-Bonn potential renormalized by the per-
turbative G-matrix approach [69], and the standard effective
charges eπ = 1.5 and eν = 0.5 for B(E2)s.

The N = Z nuclide 108Xe has been observed recently [70],
but the low-lying spectrum remains unknown. The excitation
energies of low-lying states of its neighbor 110Xe has been
measured [68], showing collective rotational features, and are
well reproduced by the SM calculation (see Fig. 5). Figure 5
and Table IV compare for the ground band of 108,110Xe from
the full SM, PNBCS, PHF (and the experimental data for
110Xe). Since the nucleon-pair approximation [16,17,24] is an
efficient truncation model of the full SM, the results obtained
by the SDGI-pair approximation [25] are also included for

TABLE IV. B(E2; I → I − 2) (in W.u.) for the ground band of
108,110Xe.

Nuclide Iπ Exp. SM PNBCS PHF SDGI

108Xe 2+ − 30.9 30.6 32.4 28.3
4+ − 41.8 39.9 44.1 38.1
6+ − 44.9 45.4 48.8 38.7
8+ − 47.4 48.2 50.9 41.6

10+ − 44.8 47.0 49.3 40.2
12+ − 39.3 43.5 45.3 36.0

110Xe 2+ − 34.3 35.1 37.0 36.2
4+ − 48.4 49.5 52.0 51.1
6+ − 51.7 53.2 55.5 54.8
8+ − 52.1 53.5 55.4 54.5

10+ − 50.8 51.9 53.2 51.8
12+ − 46.9 48.6 49.4 47.4

comparison. As shown in Fig. 5 and Table IV, the PNBCS
results are in good agreement with the data or the SM results.
The excitation energies obtained by the PHF and the SDGI-
pair approximation are slightly lower.

The low-lying spectra of 112Ba, 114Ba, 116Ce, 118Ce, and
120Ce are not known experimentally. The SM M-scheme di-
mensions of them are around 2 × 1010, 2 × 1011, 2 × 1012,
1 × 1013, and 5 × 1013, respectively, at the edge or beyond the
reach of what the modern large-scale SM can do. We calculate
these five nuclei using the PNBCS and PHF. The calculated
results are presented in Fig. 6 and Table V, and the results
of the SDG- and SDGI-pair approximations for 112,114Ba [25]
are also included. Coincidentally, the excitation energies of
112,114Ba obtained by the PNBCS and SDG are close to each
other, and those obtained by the PHF and SDGI are close to
each other. The B(E2) values of 112,114Ba obtained by the
PNBCS, PHF, and SDGI are close to each others, while the
SDG result is ≈8% smaller.

V. SUMMARY

In this work, we propose a simple approach to study the
pair truncation of the shell model (SM) for rotational nuclei:
the projected number conserved BCS (PNBCS). We generate
deformed single-particle states by the HF calculation with
Kramers degeneracy in a shell model basis, generalize the
number conserved BCS to the case of open-shell nuclei, and

FIG. 6. The ground band of 112,114Ba and 116,118,120Ce.
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TABLE V. B(E2; I → I − 2) (in W.u.) for the ground state band
of 112,114Ba and 116,118,120Ce.

Nuclide Iπ PNBCS PHF SDGI SDG

112Ba 2+ 52.2 54.4 54.0 50.3
4+ 73.7 76.5 76.0 70.7
6+ 79.3 81.9 81.3 75.5
8+ 80.0 82.2 81.5 75.6

114Ba 2+ 54.4 55.6 54.6 50.2
4+ 77.0 78.2 76.9 70.6
6+ 82.9 83.8 82.4 75.5
8+ 83.8 84.2 82.8 75.9

116Ce 2+ 74.4 76.7 − −
4+ 101.4 104.7 − −
6+ 125.3 129.2 − −
8+ 136.1 140.0 − −

118Ce 2+ 64.3 64.0 − −
4+ 91.1 90.5 − −
6+ 98.6 97.9 − −
8+ 100.8 99.3 − −

120Ce 2+ 67.9 79.9 − −
4+ 97.9 107.7 − −
6+ 109.6 131.8 − −
8+ 117.4 142.8 − −

project out collective states of good angular momentum using
the linear algebraic projection approach. We study the shape
evolution in the case of a six-proton, six-neutron system in
the p f shell by changing the relative strength of the schematic
pairing and quadrupole-quadrupole interactions. We find the
PNBCS provides a good description for low-lying states of
well deformed and transitional nuclei.

Applying the PNBCS to calculations of medium- and
heavy-mass nuclei with SM effective interactions, we find that
the low-lying level energies and B(E2) values of the rota-
tional bands are well reproduced by the PNBCS. In particular
our study of shape coexistence show that while both of the
pair correlation and the configuration mixing between two
different intrinsic states play a key role in reproducing the
collective feature of the ground and side rotational bands in
66Ge and 68Ge, neither of them is important in 68Se. Finally
we point out our PNBCS prediction of low-lying states of
112,114Ba and 116,118,120Ce, which are beyond or almost beyond
the capability of full-scale configuration-interaction SM.

The PNBCS computation is fast. For the nucleus with the
largest dimension in this work, i.e., 120Ce, the PNBCS code
takes about 17 min to compute level energies and B(E2) val-
ues on a workstation with a 20-core 2.2 GHz CPU. For 154Gd
in the rare-earth region, the PNBCS code takes about 40 min if
154Gd is regarded as a system of fourteen valence protons and
eight valence neutrons in the πsdg7/2h11/2 and νp f h9/2i13/2

(namely, Z = 50–82 and N = 82–126) space. The PNBCS
can be a powerful tool to study well deformed heavy-mass
nuclei in a space larger than one major shell, e.g., the so-
called extended extruded-intruded space [4]. Considering the
variation after angular momentum projection and the number
conserved Hartree-Fock-Bogoliubov are expected to further
improve the results. The generalization with broken-pair con-

figurations can be a useful tool to study the phenomena
of backbending and nuclear shape-phase transition in heavy
nuclei.
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APPENDIX: FORMULAS OF OVERLAPS BETWEEN PAIR
CONDENSATES AND AVERAGE ENERGY OF

HAMILTONIAN

One refers to Ref. [42] for the following formulas. The
normalization factors χτ,N and χ

[α]
τ,N are calculated in the fol-

lowing recursive formulas:

χτ,N = N
∑
α∈Oτ

v2
τ,αχ

[α]
τ,N−1, (A1)

χτ,N − χ
[α]
τ,N = (Nvτ,α )2χ

[α]
τ,N−1 = χτ,N 〈φτ,N |n̂α|φτ,N 〉 . (A2)

With the initial values χ
[α]
τ,N=0 = 1, one obtains χτ,N by

Eq. (A1) and then χ
[α]
τ,N by Eq. (A2). χ

[αβ]
τ,N and χ

[αβγ ]
τ,N are

successively calculated in the following recursive formulas:

χ
[β]
τ,N − χ

[αβ]
τ,N = (Nvτ,α )2χ

[αβ]
τ,N−1 = χ

[β]
τ,N

〈
φ

[β]
τ,N

∣∣n̂α

∣∣φ[β]
τ,N

〉
,

(A3)

χ
[βγ ]
τ,N − χ

[αβγ ]
τ,N = (Nvτ,α )2χ

[αβγ ]
τ,N−1 = χ

[βγ ]
τ,N

〈
φ

[βγ ]
τ,N

∣∣n̂α

∣∣φ[βγ ]
τ,N

〉
(A4)

with the initial values χ
[αβ]
τ,N=0 = χ

[αβγ ]
τ,N=0 = 1.

Using Eq. (A2), the expectation value of an one-body op-
erator, a†

τ,αaτ,β , for the N-pair condensate is given by

〈
φτ,N

∣∣a†
τ,αaτ,β

∣∣φτ,N
〉

= δαβ 〈φτ,N |n̂α|φτ,N 〉 = δαβ

(
1 − χ

[α]
τ,N

χτ,N

)
, (A5)
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which is nonvanishing if α = β. For two-body operators
a†

τ,αa†
τ,βaτ,δaτ,γ , there are three types contribute nonvanishing

values: a†
τ,αa†

τ,α̃aτ,α̃aτ,α , a†
τ,αa†

τ,α̃aτ,β̃aτ,β , and a†
τ,αa†

τ,βaτ,βaτ,α

(α �= β). The expectation values are given by

〈φτ,N |a†
τ,αa†

τ,α̃aτ,α̃aτ,α|φτ,N 〉 = 〈φτ,N |n̂α|φτ,N 〉

= 1 − χ
[α]
τ,N

χτ,N
, (A6)

〈φτ,N |a†
τ,αa†

τ,α̃aτ,β̃aτ,β |φτ,N 〉 = 〈φτ,N |P†
τ,αPτ,β |φτ,N 〉

= N2vτ,αvτ,β

χ
[αβ]
τ,N−1

χτ,N
, (A7)

〈φτ,N |a†
τ,αa†

τ,βaτ,βaτ,α|φτ,N 〉 =
(

1 − χ
[α]
τ,N + χ

[β]
τ,N − χ

[αβ]
τ,N

χτ,N

)
.

(A8)
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