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Spectroscopic amplitudes (SAs) in the interacting boson fermion fermion model (IBFFM) are necessary for
the computation of 0νββ decay but also for cross sections of heavy-ion reactions, in particular, double charge
exchange reactions for the NUMEN Collaboration, if one does not want to use the closure limit. We present for
the first time (i) the formalism and operators to compute in a general case the spectroscopic amplitudes in the
IBFFM scheme from even-even to odd-odd nuclei, in a way suited to be used in reaction code, i.e., extracting
the contribution of each orbital; (2) the odd-odd nuclei as described by the old IBFFM are obtained for the first
time with the new implementation of machine learning (ML) techniques for fitting the parameters, getting a
more realistic description. The one-body transition densities for 116Cd → 116In and 116In → 116Sn are part of
the experimental program of the NUMEN experiment, which aims to find constraints on 0νββ decay matrix
elements. As a first application of the spectroscopic amplitudes we present the calculation of the 0νββ nuclear
matrix elements in the IBFFM formalism in closure approximation.

DOI: 10.1103/PhysRevC.106.044307

I. INTRODUCTION

The first articles on odd-odd nuclei with algebraic models
date back to the 1980s, when some odd-odd nuclei were stud-
ied by a dynamical symmetry scheme and a supersymmetry
scheme [1–3]. Unfortunately, that approach is suitable only
for a few nuclei that correspond to dynamical supersymmetry.
It must be emphasized that nuclear supersymmetry places
very severe constraints on the form of the boson-fermion
Hamiltonian used to describe nuclei belonging to a supermul-
tiplet. Consequently, applications are restricted to only a few
regions of the nuclear chart. The first possible example of a
supermultiplet involving an odd-odd nucleus was proposed
in the Pt-Au region [1,4] and subsequent investigations [2,3]
focused on the odd-odd member of the quartet, 198Au in [5],
196Au in [6–8], and 194Ir in [9,10].

In a second more general approach, which we will follow
in this paper, the interacting boson model (IBM) was extended
to describe odd-odd nuclei, in which the two fermions (one
neutron and one proton) are coupled to the even-even core
described either by IBM-1 [11–13], or by IBM-2 [14,15].
These extensions to odd-odd nuclei are usually referred to as
the interacting boson-fermion-fermion model, IBFFM-1 and
IBFFM-2, respectively. In this article we use the neutron-
proton version, and we will use the shorthand notation IBFFM
from here on (strictly speaking it is IBFFM-2). The IBFFM
Hamiltonian is derived from semimicroscopic arguments and
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subsequently diagonalized numerically. It was introduced by
Lopac and Bianco [11,12], and it is essentially an IBFM-1
in the proton and an IBFM-1 in the neutron plus a residual
interaction as introduced by Brant and Paar [13]. The original
approach was extended to include the neutron-proton degree
of freedom in the description of the even-even core nucleus
in Ref. [14]. In that work Yoshida and Iachello wrote the
operator expression for single beta decay and two-neutrino
double beta decay, which can be considered as a particular
subset of the general one-body transition operator presented
in this paper.

The aim of this paper is from one side to investigate the
transition from 116Cd to 116In and from 116Sn to 116In, and in-
troduce the formalism of the spectroscopic amplitudes (SAs)
between even-even and odd-odd nuclei in the IBFFM that are
the key ingredient for planned publications of double charge
exchange (DCE) reactions for the NUMEN Collaboration and
the study 0νββ decay. The spectroscopic amplitudes operator
dressed as a charge exchange or as simple transition ampli-
tudes is needed for the theoretical NUMEN project [16,17] to
be inserted into a reaction code.

For the NUMEN experiment at INFN-LNS in particular
there is interest for 116Cd → 116In and 116In → 116Sn [18].

In this article, the SA operator in the scheme of IBFFM
has been derived in a general way and then calculated for
the previous reactions, and the results are given in the form
of spectroscopic amplitudes, which will be used to compute
the nuclear matrix elements of the 0νββ decay in closure
approximation.

We introduce a new method to fit the odd-odd nuclei pa-
rameters by creating a multidimensional theoretical dataset
using machine learning libraries such as SCIKIT-LEARN. The
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operators needed to compute the transitions between odd-odd
and even-even nuclei by using IBFFM depend on two factors:
the similarity between the states in the initial and final nu-
cleus, which differ by two nucleons, and the transferred pair
of nucleons’ correlation. We have derived the two different
transition operators’ cases: the case where the numbers of
bosons are conserved between the even-even and odd-odd
nuclei and the one where they are not conserved.

The organization of this paper is the following: In Sec. IV
we briefly review a simple theory of the one-body transitions
density. In Sec. V we present the derivation of the transition
operator for the IBFFM. In Sec. II we discuss the theory of
the odd-odd nucleus in the implemented IBFFM with machine
learning (ML). In Sec. III we compute the nuclear wave func-
tions and spectroscopic amplitudes for the transitions 116Sn
to 116In and 116Cd to 116Sn, that will be used to compute
the nuclear matrix elements 0νββ decay and compare with
the IBM-2 formalism. In our last Sec. VI we present our
conclusions and discuss our results; also we give the future
outlook.

II. DESCRIPTION OF ODD-ODD NUCLEI

In the IBFFM, odd-odd nuclei are described in terms of
a system of Nπ proton bosons (sπ and dπ ) and Nν neutron
bosons (sν and dν) coupled to a single proton ( jπ ) and a single
neutron ( jν). The proton and neutron orbitals are those of the
active major shell for protons and neutrons, respectively.

The Hamiltonian of the IBFFM for the odd-odd nuclei can
be written as

H = HB + HF
π + V BF

π + HF
ν + V BF

ν + Vres. (1)

HB is the IBM-2 Hamiltonian. HF
π and HF

ν are the proton and
neutron single-particle terms

HF
ρ =

∑
jρ

ε jρ n̂ jρ , (2)

where ε jρ is the quasiparticle energy of the extra nucleon and n̂
is the number operator. The quasiparticle energies ε jρ are ob-
tained within the BCS approximation with a gap � = 12/

√
A

MeV, where A is the mass number of the even-even core
nucleus. In the BCS approximation, the quasi-particle ener-
gies are related to the single-particle level Ej , the occupation
probabilities v j , and the Fermi level λ as follows:

ε j =
√

(Ej − λ)2 + �2,

v2
j = 1

2

(
1 − Ej − λ

ε j

)
, (3)

u2
j = 1 − v2

j .

V BF
π and V BF

ν describe the core-particle coupling of the odd
proton and odd neutron in the IBFM-2 model [19–21] as the
sum of a quadrupole term (	ρ), an exchange term (
ρ), and a
monopole term (Aρ):

V BF
ρ = 	ρQ(2)

ρ ′ · q(2)
ρ + 
ρFρ ′ρ + Aρ n̂dρ′ · n̂ρ (4)

where ρ ′ �= ρ and ρ, ρ ′ = ν, π . The first term in Eq. (4) is a
quadrupole-quadrupole interaction with

q(2)
ρ =

∑
jρ , j′ρ

(u jρ u j′ρ − v jρ v j′ρ )Qjρ j′ρ (a†
jρ

× ã j′ρ )(2),

Q(2)
ρ = (s†

ρ × d̃ρ + d†
ρ × s̃ρ )(2) + χρ (d†

ρ × d̃ρ )(2). (5)

The second term is the exchange interaction

Fρ,ρ ′ = −
∑
jρ j′ρ j′′ρ

β jρ j′ρ β j′′ρ jρ

√
10

Nρ (2 jρ + 1)

× Q(2)
ρ ′ · : [(dρ × ã j′′ρ )( jρ ) × (a†

j′ρ
× s̃ρ )( j′ρ )](2) : +H.c.

(6)

The coefficients β jρ j′ρ are related to the single-particle matrix
elements of the quadrupole operator Qjρ j′ρ by

β jρ j′ρ = (u jρ v j′ρ + v jρ u j′ρ )Qjρ j′ρ ,

Qjρ j′ρ = 〈 jρ‖Y (2)‖ j′ρ〉. (7)

The last term is the monopole-monopole interaction with

ndρ
=

∑
m

d†
ρ,mdρ,m,

n̂ρ =
∑

jρ

n̂ jρ =
∑
jρ ,m

a†
jρ ,majρ ,m.

(8)

The residual interaction between the odd-proton and odd-
neutron is defined as [13,14]

Vres = Hδ + Hσσδ + Hσσ + HT , (9)

with

Hδ = 4πVδδ(	rπ − 	rν )δ(rπ − R0)δ(rν − R0),

Hσσδ = 4πVσσδδ(	rπ − 	rν )(	σπ · 	σν )

× δ(rπ − R0)δ(rν − R0),

Hσσ = −
√

3Vσσ 	σπ · 	σν,

HT = VT

[
3(	σπ · 	rπν )(	σν · 	rπν )πν

r2
− 	σπ · 	σν

]
, (10)

where 	rπν = 	rπ − 	rν and R0 = 1.2A1/3fm. The matrix el-
ements of the residual interaction are calculated in the
quasiparticle basis, which is related to the particle basis by
[14]

〈 j′ν j′π ; J|Vres| jν jπ ; J〉qp = (u j′ν u j′π u jν u jπ + v j′ν v j′π v jν v jπ )

×〈 j′ν j′π ; J|Vres| jν jπ ; J〉
− (u j′ν v j′π u jν v jπ + v j′ν u j′π v jν u jπ )

×
∑

J ′
(2J ′ + 1)

{
j′ν jπ J ′
jν j′π J

}

×〈 j′ν jπ ; J ′|VRES| jν j′π ; J ′〉, (11)

where v2
j = 1 − u2

j denotes the occupation probability.
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TABLE I. IBM-2 parameters in MeV taken from Ref. [22]. χν and χπ are dimensionless.

Nucleus Nν Nπ εd κ χν χπ ξ1 = ξ3 ξ2 c(0)
ν c(2)

ν c(4)
ν vν

0 vν
2

116Sn 8 0 1.32 −0.50 −0.22 −0.07 −0.06 0.04
118Sn 7 0 1.31 −0.50 −0.23 −0.08 −0.11 0.09
116Cd 7 1 0.85 −0.27 −0.58 0.00 −0.18 0.24 −0.15 −0.06

III. NUMERICAL RESULTS

In the context of the IBFFM, the odd-odd nucleus is
described by coupling a proton and a neutron to its core
(even-even nucleus). Thus the first step is to construct the core
nucleus. It is described by the IBM-2 Hamiltonian (HB) [23],
which only depends on the neutron- and proton-boson degrees
of freedom, the expression of the boson Hamiltonian HB is
taken as in Ref. [14].

In the IBM and its extensions the boson and fermion de-
grees of freedom are counted with respect to the nearest closed
shell. The initial even-even nucleus 116

48 Cd68 has Nπ = 1 pro-
ton bosons and Nν = 7 neutron bosons, and the final nucleus
116
50 Sn66 has Nπ = 0 and Nν = 8. The intermediate odd-odd
nucleus 116

49 In67 is described in the IBM as a proton hole and a
neutron hole coupled to the core nucleus 118

50 Sn68 with Nπ = 0
and Nν = 7. The charge-exchange reaction from 116Cd to 116In
involves a change in the number of proton bosons, and from
116In to 116Sn a change in the number of neutron bosons. The
parameters in the boson-fermion Hamiltonians are determined
in a study of the corresponding odd-even nucleus: V BF

ν from
the odd-neutron nucleus 117Sn and V BF

π from the odd-proton
nucleus 117In.

The parameters for the even-even nucleus are taken from
the literature [22]. They are shown in Table I. In Figs. 1 and
2 we compare the calculated spectra of 116Cd and 116Sn with
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FIG. 1. The energy levels obtained in the calculation in compari-
son with the available experimental data for even-even nucleus 116Cd
[24].

the experimental data [24]. We can see that the agreement is
quite good [25].

The second step is to construct the two odd-even associated
nuclei, i.e., the core nucleus plus an extra neutron and the
core nucleus plus an extra proton. It allows us to get a reliable
set of parameters that we use to construct the odd-odd wave
function. In this case, the odd-even nuclei are described in
the context of the IBFM-2 [19,20,26], where the degrees of
freedom of the extra nucleon are taken into account. In the
IBFM-2, the Hamiltonian is given by

H = HB + HF
ρ + V BF

ρ , (12)

where HB is the boson Hamiltonian that describes the core
nucleus, and the label ρ refers to the π (extra proton) or ν

(extra neutron) is added in the even-even core to form the odd-
even nucleus.

The quasiparticle energies and occupation probabilities
were obtained solving the BCS equations with the single-
particle energies calculated and reported in Table II. The value
of λ is constrained to the conservation of the number of
particles as follows:

2Nρ =
∑

jρ

v2
jρ (2 jρ + 1). (13)

The odd-odd 116In nucleus uses the quasiparticle energies
obtained from the single-particle energies for the odd-neutron
nucleus 117Sn and the odd-proton nucleus 117In. Both odd-
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FIG. 2. The spectrum of 116Sn in comparison with the experi-
mental data [24].
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TABLE II. Single-particle energies Ej (MeV), quasiparticle en-
ergies ε j (MeV), and occupation probabilities v2

j .

Ej ε j v2
j

2νd5/2 0.20 2.17 0.93
1νg7/2 0.60 1.84 0.90
3νs1/2 2.10 1.11 0.48
1νh11/2 3.00 1.45 0.18
2νd3/2 2.60 1.23 0.28
2π p1/2 1.05 2.69 0.96
2π p3/2 0.20 3.48 0.97
1π f5/2 0.45 3.25 0.97
1πg9/2 1.50 2.29 0.94

even nuclei have the same even-even core nucleus 118Sn. The
core-particle coupling parameters reported in Table III were
obtained by fitting the experimental data for 117Sn and 117In.

For the odd-odd nucleus 116In, the tensor and surface delta
interaction (SDI) play an essential role. In this work, the
parameters are obtained by minimization of the mean square
error (MSE) on the test set given by MSE = 1

N

∑N
n ( fn(x) −

cn)2, where fn(x) are our theoretical calculations and cn are
the experimental values [24]. We are interested in studying
the low-lying spectra of the odd-odd nucleus. We consider the
first three levels of 116In, and this procedure may be applied to
as many levels as are needed. We computed the mean square
error for different values of the parameters tensor and SDI. We
see that the MSE is very sensitive to the parameters, as shown
in Fig. 3. The theoretical energy surface of the 1+ ground
state of 116In is depicted in Fig. 4.

The minimization procedure consists of the creation of an
uninterpolated contour surface with a given set of parameters
over a grid of dimensions at least of dimension 11 × 11. After
that, we generate an interpolated function of a grid dimension
30 × 30, which is used to determine the best parameters to
fit the experimental data. The fitting method is given by the
Nelder-Mead simplex algorithm to find the minimum of a
function of one or more variables. The library used is the that
uses NUMPY, the machine learning Python library used for
scientific and technical computing. We obtain the minimum
of the surface for Vδ = −0.40 MeV and VT = 0.80 MeV with
min MSE = 0.011 MeV. The remaining parameters are zero
(see Table IV). The result is depicted in Fig 5.

The spectrum of 116In is presented in Fig. 6.
This method also can be used for the fitting parameters for

the odd-even nuclei and even-even nuclei. In this work, the
parameters are fitted to reproduce the experimental level ener-
gies and are depicted in Fig. 6 and reported in Table V. In the

TABLE III. Parameters in boson-fermion interaction in MeV.

ρ 	ρ 
ρ Aρ

π 0.2 0.0 −0.8
ν 0.0 0.0 0.0

FIG. 3. Values of the values of the mean square error (MSE) for
different values of the parameters SDI Vδ and tensor VT .

following section, we compute the spectroscopic amplitudes
by using the previous nuclear wave functions.

IV. SPECTROSCOPIC AMPLITUDES

The microscopic theory for direct charge exchange process
by heavy ions following the approach by Greiner [27] and
Etchogoyen [28] requires the one-body transition densities
(OBTDs) that are needed in the form factors of the direct
charge exchange reactions. Nuclear initial and final states can
be presented in the proton-neutron formalism; the one-body
transition densities without the isospin indices can be repre-
sented by

OBTD(AB; λ) = 〈JB‖[c†
jπ

× c̃ jν ](λ)‖JA〉√
2λ + 1

, (14)

where |JA〉 represents the vector of the state of the initial
nucleus and |JB〉 the final nucleus, and the tilde denotes a
time-conjugated state c̃ j = (−1) j−mc j,−m. We define the spec-
troscopic amplitudes (SAs) as the the reduced matrix element
〈JB‖[c†

jπ
× c̃ jν ](λ)‖JA〉.

In the isospin formalism, the nuclear states have a cer-
tain isospin, which results in a nontrivial isospin factor. The
IBFFM can be mapped into the proton-neutron formalism

FIG. 4. Energy surface for the 1+ ground state of 116In.
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TABLE IV. Parameters of proton-neutron residual interaction in
MeV.

Parameter Value

Vδ −0.40
Vσσδ 0.00
Vσσ 0.00
VT 0.80

allowing one to derive the one-body transition densities for
the bosonic-fermionic space. In the followings sections, we
present the derivation of the OBTD operator for the IBFFM
framework, and we study the transitions 116Sn to 116In and
116In to 116Cd, that are of interest for the NUMEN experiment.

V. TRANSITION OPERATOR

The one-body transition density operator from even-even
to odd-odd in the IBFFM formalism can be obtained con-
sidering the mapping from the fermionic space into the
boson-fermion-fermion space. The operator for one-nucleon
transfer in which the number of bosons is conserved is given
by [21]

c†
jρ

→ P†
jρ

= ξ jρ a†
jρ

+
∑

j′ρ

ξ jρ j′ρ [[s†
ρ × d̃ρ](2) × a†

j′ρ
]( jρ ), (15)

where s† is the creation operator and s = s̃ the annihilation
operator of the s boson, and d̃ is related to the d-boson anni-
hilation operator by d̃μ = (−1)μd−μ.

In case the number of bosons is changed by one unit,

c†
jρ

→ Q†
jρ

= θ jρ (s†
ρ × ã jρ )( jρ ) +

∑
j′ρ

θ jρ j′ρ [d†
ρ × ã j′ρ ]( jρ ),

(16)
The coefficients ξ jρ , ξ jρ j′ρ and θ jρ , θ jρ j′ρ are defined in
Refs. [21,26].

FIG. 5. Interpolated surface of the mean square error. The mini-
mum of the surface is shown with the white dot.
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FIG. 6. Energy spectrum of 116In.

The transitions between even-even nuclei and odd-odd nu-
clei can be computed by considering the tensorial product of
the transfer operator of a proton and a neutron coupled to
the angular momenta λ, which is the value of the spin of the
final state of the odd-odd nucleus. For the transition between
116Cd and 116In, the one-body transition in the IBM and its
extensions is given by

T (λ)
jν jπ

= [
P†

jν
× Q̃ jπ

](λ)
(17)

and for the transition between 116In and 116Sn by

T (λ)
jν jπ

= [
Q†

jν
× P̃jπ

](λ)
(18)

We proceed to compute the matrix elements of the operators
of Eqs. (17) and 18.

A. Spectroscopic amplitudes in IBFFM

The model space of transition is given by the model space
of the odd-odd nucleus. The model is given by five active
neutron orbitals, 2d5/2, 1g7/2, 3s1/2, 1h11/2, and 2d3/2, and by
four active proton orbitals, 2p1/2, 2p3/2, 1 f5/2, and 1g9/2.

TABLE V. Comparison of theoretical and experimental energy
levels in keV of the odd-odd nucleus 116In [24].

Expt. Theor.
JP E JP E

1+ 0.0 1+ 0.0
5+ 127.3 5+ 23.9
4+ 223.3 3+ 120.3
2+ 273.0 2+ 307.9
4+, 5+ 313.5 6+ 359.8
4+ 425.9 4+ 373.9
4+, 5+ 460.0 3+ 401.7
3+ 508.2 5+ 489.8

4+ 491.1
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TABLE VI. Spectroscopic amplitudes (SAs) and one-body tran-
sition densities (OBTDs) for transitions from the 0+

1 ground state of
116Sn and 116Cd to the JP

i states of 116In.

116In 116Sn(0+
1 ) 116Cd(0+

1 )
JP

i jν jπ SA OBTD SA OBTD

1+
1 1g7/2 1g9/2 0.0650 0.0375 −0.0788 −0.0455

5+
1 2d5/2 1g9/2 −0.0300 −0.0090 0.0055 0.0016

1g7/2 1g9/2 −0.0270 −0.0081 0.0187 0.0056
3s1/2 1g9/2 −0.0677 −0.0204 0.2289 0.0690
2d3/2 1g9/2 −0.0338 −0.0102 0.1576 0.0475
1h11/2 2p1/2 0.0134 0.0040 −0.1451 −0.0438
1h11/2 2p3/2 −0.0045 −0.0014 0.0666 0.0201
1h11/2 1 f5/2 0.0042 0.0013 −0.0554 −0.0167

4+
1 2d5/2 1g9/2 0.0083 0.0028 −0.0226 −0.0075

1g7/2 1g9/2 0.0195 0.0065 0.0015 0.0005
3s1/2 1g9/2 0.0271 0.0090 −0.1058 −0.0353
2d3/2 1g9/2 0.0323 0.0108 −0.2125 −0.0708
1h11/2 2p3/2 0.0006 0.0002 −0.0050 −0.0017
1h11/2 1 f5/2 0.0032 0.0011 −0.0523 −0.0174

2+
1 2d5/2 1g9/2 −0.0036 −0.0016 0.0055 0.0025

1g7/2 1g9/2 0.0453 0.0203 −0.0667 −0.0298
4+

2 2d5/2 1g9/2 0.0014 0.0005 0.0064 0.0021
1g7/2 1g9/2 −0.0066 −0.0022 −0.0053 −0.0018
3s1/2 1g9/2 0.0205 0.0068 −0.0884 −0.0295
2d3/2 1g9/2 0.0138 0.0046 −0.0651 −0.0217
1h11/2 2p3/2 −0.0001 −0.0000 0.0035 0.0012
1h11/2 1 f5/2 0.0007 0.0002 −0.0003 −0.0001

3+
1 2d5/2 1g9/2 −0.0196 −0.0074 0.0262 0.0099

1g7/2 1g9/2 −0.0359 −0.0136 0.0301 0.0114
2d3/2 1g9/2 −0.0437 −0.0165 0.2567 0.0970
1h11/2 1 f5/2 0.0110 0.0042 −0.1473 −0.0557

The nuclear states of the 116In system are in our model
restricted to be JP = 0+, 1+, 2+, 3+, 4+, 5+, 6+, 7+, and
8+, within the first 14 excited states. The calculated excitation
energies are in MeV. We have decided to use the calculated
rather than experimental energies because some of the experi-
mentally known states may not correspond. In the calculations
we study the positive parity states in the odd-odd nucleus
116In. In the 0νββ nuclear matrix elements we are going to
consider contributions from states with positive parity. This
affects the selection rules of the available orbitals of the transi-
tion operator for neutrons and protons. The neutron and proton
model space chosen in the IBFFM depends on the active pro-
tons’ and neutrons’ shells. The neutron’s shell chosen for 116In
is the 50-82 shell, and for the protons the 28-50 shell. For the
numerical calculations of the normalization coefficients of the
single nucleon transfer of neutron and proton for particle and
hole coupling, we have considered the first 14 excited states.
The numerical results of the spectroscopic amplitudes are
exhibited in Table VI for various cases of interest. We denote
the spectroscopic amplitudes as SA1 for the transitions 116Cd
to 116In and SA2 for the transitions 116Sn to 116In. It was found
that the squared spectroscopic amplitudes for both transitions
(SA12 and SA22) tends to zero within higher energies of 3
MeV (see Fig. 7). That means that the main contributions of
the intermediate states are � 3 MeV. Therefore we do not need
an infinite number of intermediate states to compute the SAs.

FIG. 7. (a) Spectroscopic amplitudes for the transitions 116Cd →
116In denoted as SA1 and (b) transitions 116Sn → 116In denoted as
SA2. The squares of the spectroscopic amplitudes are denoted as
SA12 and SA22 respectively.

B. Application to 0νββ decay in IBFFM in closure
approximation

The neutrinoless double-beta decay operators are derived
from the Feynman diagram of the 0νββ [30]. Considering the
situation where the energy of the virtual neutrino (| 	p| 
 100
MeV) is much larger than the excitation energy of the inter-
mediate states: | 	p| � (En − Ei ), and taking into account this
inequality, we can replace the energies of the intermediate
states En with the average energy 〈E〉,

Ek − (Ei + E f )/2 → 〈E〉; (19)

then neutrino potential Hα (r), may be written in terms of
integrals over the neutrino exchange momentum p with parity
π :

Hα (r) = 2

π

∫ ∞

0

fα (pr)h̃α (p)pd p

p + 〈E〉 , (20)

where fGT,F (pr) = j0(pr) and fT (pr) = j2(pr) are spherical
Bessel functions. The form factors h̃α (p) are defined in Table
II of Ref. [22] and they include vector and axial nucleon form
factors that take into account nucleon size effects.

The nuclear matrix elements of the 0νββ decay can be
calculated as

M0ν
α =

∑
κ

∑
j1 j2, j′1, j′2

〈 j1, j2; J|Oα (r)| j′1, j′2; J〉

× 〈 f |c†
2c̃′

1|κ〉〈κ|c†
1c̃′

2|i〉, (21)

where c†
jρ

and c̃ jρ′ are the fermion creation and annihila-

tion operators and |i〉 = |0+
i 〉 represents the initial nucleus,

| f 〉 = |0+
f 〉 the final nucleus, and |κ〉 = |Jπ

κ 〉 intermediate nu-
clear states with certain angular momentum Jκ . The operators
Oα (r), α = {GT, F, T }, contain neutrino potentials and spin
and isospin operators. The standard operator for the 0νββ is
given by [25]

Oα (r) = 1

2

∑
n,n′

τ+
n τ+

n′
[
�s1

n × �
s2
n′

]λ · V (r)Cλ(�nn′ ), (22)
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where s1 and s2 can be only 0 or 1, �0 = 1, and �1 =
	σ . There are thee contributions: Fermi (s1 = s2 = λ =
0), Gamow-Teller (s1 = s2 = 1, λ = 0) and tensor (s1, s2 =
1, λ = 2). The Gamow-Teller contribution is multiplied by
a factor of −√

3 and the tensor part
√

2/3 (see Ref. [25]).
V (r) is a generic radial form that depends on the mechanism
of 0νββ and Cλ = √

4π/(2λ + 1)Y λ. In the proton-neutron
space, by using the standard second quantized form [32], the
nuclear matrix elements of Eq. (21) between the initial nuclear
states �

(A′ )
J ′ and the final nuclear states �

(A′′ )
Jk

with odd-odd

intermediate states �
(A)
J may be written as

M0ν
α = −1

4

∑
j1 j2

∑
j1′ j2′

∑
J

∑
k

(−1)J

×
√

1 + (−1)Jδ j1 j2

√
1 + (−1)Jδ j′1 j′2

×√
2J + 1〈 j1, j2; J|Oα (r)

∣∣ j′1, j′2; J
〉

×〈
�(A′ )

gs

∣∣(c†
n2l2 j2

c̃n′
1l ′1 j′1 )(Jk )

∣∣�(A′′ )
Jk

〉
×〈

�
(A′′ )
Jk

∣∣(c†
n1l1 j1

c̃n′
2l ′2 j′2 )(Jk )

∣∣�(A)
gs

〉
. (23)

For the numerical calculations we consider the active neutrons
and protons of identical nucleons coupled to J = 0, 2, and the
value of the nuclear matrix elements will be obtained from the
IBFFM space by

〈�(116Sn)gs|[Q†
jν

× P̃j′π ](λ)|�(116In)J〉,
〈�(116In)J |[P†

jν
× Q̃ j′π ](λ)|�(116Cd)gs〉. (24)

The closure energy used for the neutrinoless double beta de-
cay is 12.1 MeV, the same value used in the IBM-2 closure
calculation [22].

We consider the light neutrino potential V (r) as in
Ref. [25]. In the calculation of the matrix elements, two cor-
rections are included: the finite nucleon size (FNS) and the
short range correlations (SRCs). The short-range correlations
are usually taken into account by multiplying the potential
H (r) by the Jastrow function squared, f (r)2, with f (r) =
1 − e−ar2

(1 − br2), where a = 1.1 fm−2 and b = 0.68 fm−2.
The finite nucleon size (FNS) is taken into account by taking
the coupling constants gV and gA as momentum dependent,

gV (p2) = gV

(1 + p2/M2
V )2

,

gA(p2) = gA

(1 + p2/M2
A)2

. (25)

The value of MV is well fixed by the electromagnetic form
factor of the nucleon, M2

V = 0.71 (GeV/c2)2 [33], and gV =
1 by the hypothesis of conserved vector current (CVC). The
value of MA is estimated to be MA = 1.09 (GeV/c2)2 [34] and
gA = 1.269.

We have considered the high order corrections (HOCs)
[31] of the nuclear matrix elements in neutrinoless double
beta decay, denoted by VV, MM, AA, PP, and AP, indicating
their origin from the vector, weak-magnetism, axial, and pseu-
doscalar couplings and the interference of the axial-vector and
pseudoscalar couplings, respectively.

FIG. 8. Numerical results of nuclear matrix elements of the
0vββ decay in closure approximation by using IBFFM (yellow)
and IBM-2 (blue) The values of the nuclear matrix elements are
dimensionless.

We have calculated the nuclear matrix elements in the
IBFFM formalism and in IBM-2 [25], and our results, ex-
pressed in units of fm−1, are reported in Table VII. The
comparison between our results in IBFFM with IBM-2 from
Ref. [22] are depicted in Fig. 8. The Fermi, Gamow-Teller,
and tensor contributions and the total M0ν values are reported
in the last four columns of Table VII. To make them dimen-
sionless the nuclear matrix elements are multiplied by 2R,
where R = 1.2 × A1/3 is the nuclear radius in fm.

VI. SUMMARY AND CONCLUDING REMARKS

We presented for the first time the explicit operator of
the IBFFM for calculating one-body transition densities in
terms of active orbitals. We derived the odd-even and odd-
odd parameters by implementing a method of fitting using
machine learning libraries, which allowed computing more
realistic nuclear wave functions, and we presented the spec-
troscopic amplitudes needed to calculate the double charge
exchange without closure. For spins of intermediate states
higher than 3 MeV, the SA tends to zero. To summarize, the
spectroscopic amplitudes of the 116Cd, 116Sn, and 116In nuclei
are investigated within the IBFFM approach. The boson core
Hamiltonian and the particle-core couplings were determined
in a study of the even-even core nucleus and the neighboring
odd-proton and odd-neutron nuclei, were determined.

The only remaining free parameters are a few coupling
constants of the boson-fermion Hamiltonians and the resid-
ual neutron-proton interaction, and they are determined to
reasonably reproduce the low-energy levels of each of the
neighboring odd-A and odd-odd nuclei. The IBM and IBFFM
wave functions were obtained after diagonalization of the
corresponding Hamiltonians for the parent and daughter nu-
clei. For the first time, the parameters of the odd-odd 116In
are presented. This is attributed to the combination of vari-
ous factors adopted in the theoretical procedure, such as the
chosen boson-fermion coupling constants, residual neutron-
proton interaction, and underlying microscopic inputs. The
spectroscopic amplitudes converge to zero after a certain
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TABLE VII. 116Cd → 116Sn 0νββ matrix elements in IBFFM and IBM-2 in closure approximation with gV = 1 and gA = 1.269 [29].
Here M0ν = −( gV

gA
)2M (0ν )

F + M (0ν )
GT + M (0ν )

T .

AA+VV AP PP MM Sum (fm−1) M (0ν )
F M (0ν )

GT M (0ν )
T M0ν

IBM-2 0.251 −0.0304 0.00696 0.00925 0.237 −0.2246 2.481 0.152 2.77
IBFFM 0.228 −0.0236 0.00497 0.00558 0.214 −0.121 2.34 0.0917 2.51

energetic value of the odd-odd nuclei’s intermediate states, as
shown in Fig 7.

As a first application of the spectroscopic amplitudes ob-
tained in the IBFFM formalism, we presented the evaluation
of 0νββ nuclear matrix elements in closure approximation
and compared them with the 0νββ nuclear matrix elements in
the framework of the IBM-2 closure approximation. We found
that the closure approximation in the IBFFM gives smaller
NME, M0ν , by about 9.46%. Increasing the number of states
does not increase the value of the matrix elements because the
spectroscopic amplitudes converges to zero after 3 MeV. Both
in the IBFFM and the IBM-2 calculations the Gamow-Teller

is the main contribution. A first application of the spectro-
scopic amplitudes obtained in the IBFFM formalism is the
the evaluation of the 0νββ nuclear matrix elements in clo-
sure approximation. A complete calculation without closure
approximation will be the main subject of future research [35].
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