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Nuclear incompressibility and speed of sound in uniform matter and finite nuclei
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We have extended the compressible liquid-drop model with a density-dependent surface term which allows for
a unified description of both the nuclear ground-state energies and the incompressibility modulus in finite nuclei
KA. We analyze the role of the nuclear empirical parameters, e.g., Ksat , Qsat , Lsym, and Ksym, which contribute
to the bulk properties, as well as the role of the finite-size contributions. For the bulk properties, the density
and isospin dependencies of the nuclear incompressibility in infinite matter are characterized by introducing
new empirical parameters, and two new constraints for the value of Ksym are suggested. For finite nuclei, we
employ a Bayesian approach coupled to a Markov-Chain Monte Carlo exploration of the parameter space to
confront the model predictions of KA in Zr, Sn, and Pb isotopes to the experimental data. We show that Qsat ≈
−950 ± 200 MeV describes the experimental measurements of KA in these isotopes. This value is different from
those deduced from phenomenological nuclear energy density functionals, suggesting a possible explanation
of their difficulty to accurately describe Zr, Sn, and Pb data all together. In addition we explore the impact of
a fictitious measurement of the giant monopole resonance energy in 132Sn. We show that this measurement,
provided it is accurate enough, will allow us to better determine Ksym and Kτ . Finally we explore the properties
of the speed of sound around saturation density and show the important role of finite-size terms in finite nuclei
since they reduce the speed of sound to approximately half compared with nuclear matter.
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I. INTRODUCTION

The response of nuclear matter to compression and ex-
pansion plays a very important role in many phenomena in
nature, from finite nuclei [1], which can be viewed as nonuni-
form pieces of nuclear matter squeezed by the effects of the
surface terms, up to astrophysical nuclear systems such as
neutron stars, supernovae, or kilonovae [2], where nuclear
matter explores densities and isospin asymmetries in extreme
regimes. In finite nuclei, the repulsive surface tension and the
Coulomb interaction counterbalance the attractive bulk nu-
clear force and allow the exploration of densities close to the
saturation density of nuclear matter (nsat ≈ 0.155 fm−3 [3]),
while in compact stars, the bulk nuclear force resists gravity
for densities corresponding to several times the saturation
density. In these examples, the equilibrium states of these
systems represent a balance between the bulk properties and
the action of external forces (finite-size terms or gravitational
force). It is then important to quantify precisely the response
of bulk nuclear matter (incompressibility) from analyses of
finite nuclei properties (giant monopole resonances), which is
the scope of the present study.

At first order, the energy required to compress matter
from its equilibrium state is given by the incompressibility
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modulus Ksat with an isospin asymmetry dependence driven
by the parameter Kτ [4]: Ksat + δ2Kτ . These nuclear empir-
ical parameters could be extracted from the analysis of the
isoscalar giant monopole resonance (ISGMR), excited by the
scattering of alpha particles, see for instance Ref. [5] and
references therein. The relation between the energy of the
ISGMR, EISGMR, and the incompressibility in finite nuclei KA

is [5]

EISGMR = h̄

√
KA

mN 〈r2〉 � h̄

√
5KA

3mN RA
, (1)

where mN is the nucleon mass and 〈r2〉 is the mean square
radius of the density distribution in finite nuclei. The last
expression is obtained assuming a flat density distribution up
to RA, as in the compressible liquid-drop model (CLDM).
Considering a leptodermous expansion as in the liquid-drop
model, the incompressibility modulus in finite nuclei KA can
be expressed as [4]

KA = Ksat + Kτ δ
2 + KCoul

Z2

A4/3
+ Ksurf A

−1/3 + · · · , (2)

where Ksat and Kτ are the bulk contributions which we aim to
extract from experimental data, KCoul is the Coulomb repulsive
contribution, and Ksurf is the surface attractive contribution.
This leptodermous expansion is, however, difficult to em-
ploy for the determination of Ksat and Kτ from experimental
measurements of EISGMR, as Eqs. (1) and (2) may suggest,
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especially since the term Ksurf is difficult to fix from the few
existing experimental data. The situation is different in the
case of the leptodermous expansion of the nuclear mass, since
more than 2000 nuclei have been measured [6]. In a recent
analysis [7], precise values for Ksat and Kτ have been obtained
from Eq. (2), fixing Ksurf = cKsat (with c ≈ −1.2 ± 0.12 [8])
and KCoul ≈ −5.2 ± 0.7 MeV [9]. This indicates that the key
quantity which would allow the use of such an empirical rela-
tion is the surface term, as discussed in Ref. [10]. In this paper,
we investigate the impact of the surface term in the CLDM
framework and its role to reproduce experimental data.

By using the energy density functional approach, the first
precise extraction of Ksat gave Ksat = 210 ± 30 MeV [4],
corrected to 240 ± 20 MeV later on as a good compromise
between data for 208Pb and 90Zr [5]. The isospin dependence
of the incompressibility Kτ is more difficult to determine
from experimental data. It has recently been extracted from
systematical exploration of Sn isotopic chain, giving Kτ ≈
−550 ± 100 MeV [5]. However, there are several unsettled
questions: by using nonmagic nuclei, the analysis of the
data requires the understanding of many-body correlations
(pairing, deformation, etc.) on the incompressibility of finite
nuclei. The question of the isoscalar and isovector properties
of the incompressibility is also important since the density and
the isospin asymmetry distributions in finite nuclei are differ-
ent from one to another. In addition, a systematic difference
between the incompressibility extracted from 208Pb and from
120Sn (which tends toward Ksat � 205 MeV [11]) remains,
whose origin remains poorly understood. This issue could
be of similar origin as the systematical dispersion for Ksat

obtained by using different models, where Ksat ≈ 220 MeV
is preferred by Gogny forces [12] while nonlinear relativistic
mean-field models favor Ksat ≈ 250 MeV [13]. It was sug-
gested that these systematical differences could be related to
the different density dependence of the models, encoded in the
nuclear empirical parameter (NEP) Qsat [14,15]. It is indeed a
general result that a large uncertainty on a high-order NEP
impacts the precise determination of lower-order ones [16].

In uniform matter (UM), the incompressibility KUM is de-
fined as the second derivative of the energy density, εUM =
EUM/V , as

KUM(n, δ) = 9n
∂2εUM(n, δ)

∂n2
, (3)

= 18

n
PUM(n, δ) + 9n2 ∂2eUM(n, δ)

∂n2
, (4)

where n is the isoscalar density n = nn + np and δ is the
isovector parameter δ = (nn − np)/n, the energy per particle
is eUM = εUM/n, and the pressure PUM is defined as

PUM = n2 ∂eUM

∂n
. (5)

Note that KUM = Ksat if n = nsat and δ = 0. In finite nuclei,
the isovector parameter is denoted δA = (N − Z )/A.

In the absence of external forces, such as gravity for in-
stance, matter minimizes its energy (mechanical equilibrium)
by imposing PUM = 0. We denote nUM

eq the equilibrium density
in symmetric (SM) and isospin asymmetric (AM) matter. The

latter always deals with small isospin asymmetries |δA| � 0.3
as expected in finite nuclei. In nuclear matter and at equilib-
rium, the first term in Eq. (4) vanishes but, in finite nuclei
however, the equilibrium density nA

eq is slightly different from
that in uniform matter, nUM

eq , due to the presence of finite-
size terms which contribute to the pressure. This effect shifts
nUM

eq by about 10% at maximum and impacts the value of
the bulk incompressibility in finite nuclei. One could then
view the finite-size terms as an “external” force probing the
response of the bulk. Consequently, there is a contribution of
the finite-size terms to the incompressibility in finite nuclei,
in addition to the density and isospin asymmetry dependence
of the bulk term [4]. In addition, the equilibrium density
nA

eq in finite nuclei varies around nUM
eq through the nuclear

chart, modifying the value of the energy in the bulk. Since
this value is controlled at first order by the incompressibility
modulus, the energy of finite nuclei in their ground state also
contains a contribution originating from the incompressibility
of nuclear matter, in addition to the symmetry energy and to
the finite-size terms. This contribution is difficult to extract
from microscopic approaches, e.g., energy density functional,
shell-model approaches, as well as ab initio approaches, but it
could be more visible in macroscopic models such the CLDM
that we employ in this study. The fact that the fluctuations in
nA

eq impact both the energy eA and the incompressibility KA

requires the use of a model which could describe these two
quantities in a unique framework. This is the motivation for
the development of the extended CLDM (eCLDM) that we
present in this paper.

The CLDM has been shown to be relevant to describe
nuclear masses [17,18] and was also employed to study the
clusterized matter present on neutron-star crusts [19–23].
Many variations of the model can be found in the literature,
however, it has been argued by Blaizot [4] that the CLDM
is not appropriate to accurately extract the incompressibil-
ity modulus Ksat from finite nuclei. The reason lies in the
contribution of the density-dependent surface term to the in-
compressibility, which is absent in most of the macroscopic
models. In the present work, however, we construct an ex-
tended CLDM (eCLDM) with a density-dependent surface
tension to describe both nuclear masses and incompress-
ibilities. Furthermore, the bulk term of the present model
is described with the meta-model [3], an energy density
functional in which the parameters of the model are the
empirical parameters of nuclear matter. The meta-model has
the advantage of being flexible enough to allow an indepen-
dent variation of the NEP and can thus be used to easily
perform a sensitivity analysis of the individual impact of
the NEP on the incompressibility KA, as well as extensive
searches of the best parameter sets reproducing experimental
data.

The paper is organized as follows: In Sec. II we explore
the incompressibility modulus in nuclear matter in terms of
the NEP, or equivalently as a function of the density and the
isospin asymmetry. A new constraint on Ksym is derived and
compared with other existing ones. Following the line sug-
gested by Blaizot [4], we then address finite nuclei in Sec. III
as described by our eCLDM model (with a density-dependent
surface tension), which allows us to reproduce both finite nu-
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clei and incompressibility modulus from the same approach.
In Sec. IV we compare the predictions of the eCLDM to
experimental data and analyze the role of the NEP Ksat, Qsat,
Lsym, and Ksym in a Bayesian framework. Finally, in Sec. V we
discuss the speed of sound in both uniform matter and finite
nuclei.

II. UNIFORM MATTER

In this section, we briefly summarize the present under-
standing of uniform matter and show how the knowledge
of the NEP could be used to explore its properties around
saturation density. We also present an alternative represen-
tation where the reference density is taken to be nUM

eq , the
equilibrium density which is a function of δ, instead of the
saturation density nsat in the usual approach.

A. Representation of the nuclear matter properties in terms of
the nuclear empirical parameters

The NEP, e.g., Esat, Esym, are defined as the coefficients of
the series expansion of the energy per particle in SM (eSM)
and of the symmetry energy (esym) as

eSM(n) = Esat + 1
2 Ksatx

2 + 1
6 Qsatx

3 + 1
24 Zsatx

4 + · · · ,

(6)

esym(n) = Esym + Lsymx + 1
2 Ksymx2 + 1

6 Qsymx3

+ 1
24 Zsymx4 + · · · , (7)

where x = (n − nsat )/3nsat, with nsat being the saturation den-
sity of nuclear matter (nsat = 0.155 ± 0.005 fm−3, see for
instance Ref. [3]). Note that choosing nsat as the reference
density for the parameter x is arbitrary: in Sec. II B, for in-
stance, we explore another reference density. It should also
be noted that, in Eq. (7), the symmetry energy is defined as
the difference between neutron matter (NM) and SM energies,
as esym(n) = eNM(n) − eSM(n). It can be expanded in terms
of δ2 as esym(n) = esym,2(n)δ2 + eNQ, where esym,2 and eNQ

subsume the quadratic and nonquadratic (NQ) contributions
respectively.

It was suggested in Ref. [3] to consider the series expansion
up to order four in the density parameter x in order to represent
accurately the energy per particle, the pressure and the speed
of sound of existing models up to about 4nsat. We adopt this
prescription here as well, even if we do not explore such high
densities.

Note that, since asymmetric matter is mostly quadratic in
δ, as expected [24], Eqs. (6) and (7) could also be written in a
more compact way,

eUM(x, δ) ≈ eSM(n) + esym(n)δ2, (8)

≈ E (δ) + Lsymxδ2 + 1
2 K (δ)x2 + 1

6 Q(δ)x3

+ 1
24 Z (δ)x4 + · · · , (9)

where

E (δ) ≡ Esat + Esymδ2, K (δ) ≡ Ksat + Ksymδ2, (10)

Q(δ) ≡ Qsat + Qsymδ2, Z (δ) ≡ Zsat + Zsymδ2. (11)

Note that the above expression of K (δ) is by no means the
true isospin dependence of the incompressibility, as will be
discussed below. In particular, it neglects the contribution of
the pressure which is different from zero as one gets farther
from saturation. It solely represents the second-order term in
the density expansion of the energy per particle.

From Eq. (9), one could deduce a similar expression for the
energy density εUM = (1 + 3x)eUMnsat as

εUM(x, δ)/nsat = E (δ) + Lε (δ)x + 1
2 Kε (δ)x2 + · · · , (12)

where

Lε (δ) ≡ 3Esat + (3Esym + Lsym )δ2, (13)

Kε (δ) ≡ Ksat + Kε
symδ2, (14)

with

Kε
sym ≡ Ksym + 6Lsym. (15)

The δ dependence of the energy density curvature Kε (δ) is
different from that of the energy per particle curvature K (δ).
Consequences will be discussed in the following, especially
for the incompressibility modulus in asymmetric matter. It
will be shown that Kε (δ) do correspond to the isospin de-
pendence of the incompressibility around saturation density,
contrarily to Ksym, which is only a parameter useful in the
expansion (9)

The general expressions for the pressure (5) and the incom-
pressibility modulus (4) in AM could be expressed in terms of
the parameter x as

PUM(x, δ) = nsat

3
(1 + 3x)2 ∂eUM(x, δ)

∂x
, (16)

KUM(x, δ) = 6(1 + 3x)
∂eUM(x, δ)

∂x
+ (1 + 3x)2 ∂2eUM(x, δ)

∂x2
.

(17)

Injecting Eq. (9) into the expression for the pressure (16),
we obtain

PUM(x, δ) = nsat

3

[
Lsymδ2 + K p(δ)x + 1

2
Qp(δ)x2

]
+ O(x3),

(18)

where K p = Kε and Qp reads

Qp(δ) ≡ Qp
sat + Qp

symδ2, (19)

with

Qp
sat ≡ Qsat + 12Ksat, (20)

Qp
sym ≡ Qsym + 18Lsym + 12Ksym. (21)

Note that, in finite nuclei, |δA| < 0.3 and densities are ex-
plored from about 2/3nsat up to nsat, which implies |xA| � 0.1.
In finite nuclei, we could therefore perform an expansion at
the same level in δ2 and in x.

The equilibrium density in AM is given by the density for
which the mechanical stability is satisfied: ∂eUM(x, δ)/∂x =
0. From the expression of the pressure (16) truncated at order
x, one can deduce in AM [34],

xUM
eq ≈ − Lsym

K (δ)
δ2 ≈ −Lsym

Ksat
δ2. (22)
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The equilibrium density is a function of the isospin asymmetry
parameter δ, and it satisfies the limit nUM

eq → nsat for δ → 0.
At order δ2 and x, one obtains for the equilibrium density nUM

eq

in asymmetric matter, nUM
eq = nsat[1 − 3(Lsym/Ksat )δ2].

In finite nuclei, the situation is more complex than previ-
ously described since (i) the equilibrium density is different
from nsat, due to the finite-size terms, and (ii) the density is
not uniform allowing for surface contributions to be sizable. In
uniform matter however, only isospin asymmetry contributes
to the shift of the equilibrium density from nsat, as shown in
Eq. (22). While neglecting the contribution of the finite-size
(FS) terms, expression (22) provides a good estimation of the
average densities in finite nuclei [35]. In the next section, this
density is named ncl in the CLDM and we have ncl ≈ nUM

eq for
large A.

The pressure could be decomposed into a SM and an
isospin asymmetry terms:

PUM = PSM + Psymδ2, (23)

with

PSM(n) = nsat

3

[
Ksatx + 1

2
Qp

satx
2 + · · ·

]
, (24)

Psym(n) = nsat

3

[
Lsym + K p

symx + 1

2
Qp

symx2 + · · ·
]
. (25)

We have, for instance, Psym(nsat ) = nsatLsym/3, as expected.
Similarly, injecting Eq. (9) into Eq. (17), one obtains the

following expression for the incompressibility modulus:

KUM(x, δ) = Kk (δ) + Qk (δ)x + 1
2 Zk (δ)x2 + O

(
x3

)
, (26)

with Kk = K p = Kε and Qk = Qp, and where the additional
coefficient in asymmetric matter reads

Zk (δ) ≡ Zk
sat + Zk

symδ2, (27)

with

Zk
sat ≡ Zsat + 54Ksat + 18Qsat, (28)

Zk
sym ≡ Zsym + 54Ksym + 18Qsym. (29)

Remark that, while K (δ) controls the isoscalar and isovector
dependence of the curvature of the energy per particle in
uniform matter (9), the incompressibility (17) itself is driven
by the parameter Kk (δ) for x = 0. The difference between
K (δ) and Kk (δ) reflects the contribution of the pressure, which
is nonzero as soon as the density departs from the equilibrium
density nUM

eq , see Eq. (4). This contribution is unavoidable,
making Kk (δ) the true isospin dependence of the incom-
pressibility [34]. Fixing n = nsat for instance, the parameter
which controls the isospin dependence of the incompressibil-
ity is Kk

sym = Ksym + 6Lsym, and not Ksym alone. Considering
Lsym ≈ 50 MeV and Ksym ≈ −100 MeV [36,37], with a lower
limit provided by the unitary limit [38], the parameter Kk

sym is
even mostly controlled by Lsym, and only moderately by Ksym.

In SM the incompressibility modulus can be expressed as
a series expansion in x as

KSM(x) = Ksat + (12Ksat + Qsat )x

+ (27Ksat + 9Qsat )x
2 + O(x3), (30)

and we introduce a new quantity,

Ksat,eq ≡ KSM
(
x = xUM

eq

)
= Ksat + (12Ksat + Qsat )x

UM
eq + O(x2), (31)

which represents the incompressibility modulus of SM for the
equilibrium density nUM

eq .
One can show that in AM the incompressibility modulus at

the equilibrium density (26) can be expressed as

Keq ≡ KUM
(
xUM

eq , δ
) = Ksat,eq + Kk

symδ2 + O(x2, δ4). (32)

In Eq. (32), the isovector term Kk
sym = Kε

sym (15) depends
only on isovector empirical parameters Lsym and Ksym, while
the isoscalar term only depends on isoscalar NEPs Ksat and
Qsat, provided xUM

eq is known (experimentally for instance). To
perform comparisons with incompressibilities in nuclei KA, it
could be relevant to express the incompressibility modulus in
AM at equilibrium density x = xUM

eq as

Keq = Ksat + Kτ δ
2 + O(x2, δ4), (33)

where [34]

Kτ = Ksym − (6 + Qsat/Ksat )Lsym. (34)

We choose nine Skyrme models, BSK14 [25], BSK16 [26],
F0 [27], LNS5 [28], RATP [29], SGII [30], SKI2 [31],
SKO [32], SLy5 [33], whose NEPs are given in Table I. For
these nine interactions, while the parameter Kk

sym is positive
for actual values of the NEPs, the parameter Kτ controlling
the isovector dependence of Keq is negative since Qsat/Ksat ≈
−1.5 from Table I. Note, however, that the value of Qsat has
never been measured and its actual value is not necessar-
ily in the range given in Table I. Aside from the finite-size
contribution, the ISGMR in finite nuclei is mostly correlated
with Keq, whose isospin dependence is given by Kτ [34]. This
is the reason why the isovector dependence of the ISGMR
across isotopic chains has been correlated with the parameter
Kτ [39].

It is clear from the definition of Kτ (34) that, here also, a
precise experimental determination of Kτ does not necessarily
lead to a better value for the NEP Ksym, since Kτ is mostly
correlated with Lsym, which is not precisely known. To extract
Ksym from experimental investigations, one has to precisely
know the values of Lsym and Qsat. Note that with about 10%
accuracy [14,15,40], the NEP Ksat is sufficiently well known
in the present case.

An illustration of the different points where the incom-
pressibility has been introduced is shown in Fig. 1. It displays
the behavior of the equilibrium density as a function of δ, on
the example of the BSk12 functional. The role of the incom-
pressibility at various densities and isospin is also displayed
on the figure. It shows that several incompressibilities at var-
ious densities are probed when the GMR is measured in a
given nuclei. For instance, in addition to the saturation density,
their typical mean density is around 0.11 fm−3 [14,15]. It
should be noted that Kk

sym drives the isospin dependence of the
incompressibility, independently of the considered density,
from x = 0 (saturation point) to x = xUM

eq (equilibrium point).
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TABLE I. Nuclear empirical parameters for the Skyrme interactions used in the present work.

Model BSK14 BSK16 F0 LNS5 RATP SGII SKI2 SKO SLy5
Ref. [25] [26] [27] [28] [29] [30] [31] [32] [33]

Esat (MeV) −15.85 −16.05 −16.03 −15.56 −16.05 −15.59 −15.76 −15.83 −15.98
nsat (fm−3) 0.159 0.159 0.162 0.160 0.160 0.158 0.158 0.161 0.160
Ksat (MeV) 239 242 230 240 240 215 241 223 230
Qsat (MeV) −359 −364 −405 −316 −350 −381 −339 −393 −364
Esym (MeV) 30.00 30.00 32.00 29.15 29.26 26.83 33.37 31.97 32.03
Lsym (MeV) 43.9 34.9 42.4 50.9 32.4 37.6 104.3 79.1 48.3
Ksym (MeV) −152 −187 −113 −119 −191 −146 71 −43 −112
Qsym (MeV) 389 462 658 286 440 330 52 131 501

B. An alternative representation of the nuclear matter energy
and incompressibility modulus

In this section, we explore an alternative representation
of the uniform matter properties, where the equilibrium den-
sity neq is taken in place of the saturation density nsat. This
alternative representation is equivalent to the existing one
up to δ2 but generates nonquadratic terms. In the view of
constraining uniform matter parameters from measurements
of incompressibilities in nuclei, it may be more relevant to
consider such a representation: the equilibrium density in uni-
form matter shall be closer—than the saturation density—to
the average one of the nucleus [14,15].

In this alternative approach, the associated density parame-
ter is set to be x̃ = (n − nUM

eq )/(3nUM
eq ), from which the density

n is obtained as n/nUM
eq = 1 + 3x̃.

The alternative density parameter x̃ can be expressed in
term of x as,

x̃ = x + (Lsym/Ksat )δ2

1 − 3(Lsym/Ksat )δ2
. (35)

FIG. 1. Equilibrium points for the BSk12 functional [using its
Lsym and Ksat values in Eq. (22)] in the (density, isospin asymmetry)
map. The corresponding incompressibilities are schematically indi-
cated. The upper (lower) box are drawn around saturation (mean)
densities of experimentally accessible nuclei (δ < 0.2).

Similarly to Eq. (9) one can expand the energy per particle
in term of x̃ as

eUM(x̃, δ) = Ẽ (δ) + 1
2 K̃ (δ)x̃2 + 1

6 Q̃(δ)x̃3 + 1
24 Z̃ (δ)x̃4 + · · · ,

(36)
with

Ẽ (δ) = e(x̃ = 0, δ) = Esat + Eτ δ
2, (37)

K̃ (δ) = ∂2e(x̃, δ)

∂ x̃2

∣∣∣∣
x̃=0

= Ksat + Kτ δ
2 = Keq, (38)

Q̃(δ) = ∂3e(x̃, δ)

∂ x̃3

∣∣∣∣
x̃=0

= Qsat + Qτ δ
2, (39)

Z̃ (δ) = ∂4e(x̃, δ)

∂ x̃4

∣∣∣∣
x̃=0

= Zsat + Zτ δ
2. (40)

It should be noted that Kτ in Eq. (38) corresponds to
Eq. (34), because it is the incompressibility at the equilibrium
density, namely, K̃ (δ) = Keq.

Imposing the equality between the δ2 terms in the series
expansions (9) and (36) orders by orders in x, one obtains the
following relations:

Eτ = Esym, (41)

Kτ = Ksym − Lsym(6Ksat + Qsat )/Ksat, (42)

Qτ = Qsym − Lsym(9Qsat + Zsat )/Ksat, (43)

Zτ = Zsym − Lsym(12Zsat + Ysat )/Ksat, (44)

where Ysat is the fifth order NEP. Note that these equations are
a generalization of Eq. (16) of Ref. [34] up to the fourth order,
and hence the above equation for Kτ is the same than the one
of the previous section.

Equations (9) and (36) are identical up to terms in δ2.
In Eq. (36) there are, however, nonquadratic terms, which
are small even when δ ≈ 1. The contribution of these non-
quadratic terms [because of the denominator in Eq. (35)] is
even more suppressed by the fact that finite nuclei do not
explore large values for δ, since |δA| < 0.3, as previously
discussed. So it is possible to use both Eq. (9) or (36) to
describe the energy in finite nuclei.

Expressing the incompressibility modulus in asymmetric
matter (17) as a function of the density parameter x̃:

KUM(x̃, δ) = 6(1 + 3x̃)
∂e(x̃, δ)

∂ x̃
+ (1 + 3x̃)2 ∂2e(x̃, δ)

∂ x̃2
, (45)
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where we have used (1 + 3x)∂/∂x = (1 + 3x̃)∂/∂ x̃, allows us
to derive the following expression for the incompressibility:

KUM(x̃, δ) = K̃ (δ) + [12K̃ (δ) + Q̃(δ)]x̃

+ [
27K̃ (δ) + 9Q̃(δ) + 1

2 Z̃ (δ)
]
x̃2 + O(x̃3).

(46)

Equation (46) provides a series expansion of the incompress-
ibility modulus in asymmetric matter up to x̃2 and δ2, which
is convenient to use when constraining the uniform matter
incompressibility from measurements in nuclei.

We use the alternate representation developed in this sec-
tion and confront it with the standard expansion of the nuclear
matter energy in Sec. V where we present our analysis of the
speed of sound.

C. Constraints on Ksym

From the existence of a lower bound on the energy of
NM, on the basis of unitary-gas considerations, the following
constraint on Ksym was obtained [38],

Ksym ≈ −306.0 + 3.41Lsym ± 28.3 MeV , (47)

when models with Ksat > 275 MeV are excluded. Considering
Lsym ≈ 50 MeV for instance, this constraint imposes Ksym �
−150 MeV (see Table I).

In Eq. (47), the coefficients of the correlation are obtained
from a fit to a given set of model realizations. In the following,
we demonstrate the existence of a lower limit from purely
theoretical considerations.

It is possible to express the equilibrium density
from Ksym by solving the mechanical stability condition
∂eUM(x, δ)/∂x = 0, with an expansion of the energy to x3 and
beyond the δ2 approximation. The physical solution of this
second-order equation is

xUM
eq,2(δ) = K (δ)

Q(δ)

[
−1 +

√
1 − 2

LsymQ(δ)

K (δ)2 δ2

]
, (48)

satisfying the limit nUM
eq,2 → nsat as δ → 0. Equation (48) is

well defined if K (δ)2 � 2LsymQ(δ)δ2 for all values of δ for
which equilibrium density is defined, which ranges from SM
to very asymmetric matter. There is no equilibrium density
in NM, but there is still an equilibrium very close to NM.
Since Eq. (48) weakly depends on δ for isospin asymmetries
close to NM, we fix δ = 1 in Eq. (48) for simplicity. We then
obtain Ksym � −Ksat + √

2LsymQ(δ = 1) or Ksym � −Ksat −√
2LsymQ(δ = 1). Considering typical values for the NEPs

extracted from Table I,
√

2LsymQ(δ = 1) ≈ 70–100 MeV, so
the previous condition gives Ksym � −150 MeV or Ksym �
−350 MeV. Since the second case is excluded by the con-
straint on Ksym given by considerations based on the unitary
gas [38], we are then left with the first condition alone:

Ksym � −Ksat + √
2LsymQ(δ = 1) ≈ −150 MeV. (49)

Note that, using the model averaged values of Qsat and
Qsym [3], we have the following condition: Q(δ) > 0 for all δ,
constraining Qsat and Qsym, as Qsym > −Qsat. However, this
relation is not always satisfied, as shown in Table I.

Other estimates of Ksym from neutron stars observa-
tions have been suggested: from x-ray thermal emission
on seven low-mass x-ray binaries, it was found Ksym =
−85+82

−70 MeV [36]; from the analysis of GW170817 it was
determined that −259 < Ksym < 32 MeV [41].

Using the recent finite-range droplet model (FRDM) as
a mass model [42] and the neutron skin of 48Ca extracted
from (p, p′) experiments and fixing the nuclear incompress-
ibility Ksat = 225 ± 20 MeV from up-to-date experimental
data of ISGMR of 208Pb, it was found that Ksym = −120 ±
40 MeV [37]. The constraint obtained from the FRDM mass
model leads to fix Esym = 32.3 ± 0.5 MeV and Lsym = 53.5 ±
15 MeV. The neutron skin experiment gives Lsym = 42 ±
15 MeV.

A compilation of 16 results from independent analyses
of neutron-star observational data since GW170817 lead to
the following expectation: Ksym ≈ −107 ± 88 MeV [43]. All
these data tend to point towards negative values of Ksym,
with a centroid located around −100 MeV. The uncertainty is
difficult to estimate, but a conservative value may be around
−100 MeV. Note that these results are compatible with the
constraint (49) that we derived.

III. THE COMPRESSIBLE LIQUID DROP MODEL WITH A
DENSITY DEPENDENCE OF THE SURFACE TENSION

The CLDM has been originally developed on top of the
liquid drop model, where the bulk term is a constant [17]. In
the CLDM [17,18], the bulk term is density dependent and
the density is fixed variationally by the mechanical stability
condition. In the present approach, we suggest an extension of
the CLDM by introducing a density-dependent surface term.
We show that the present eCLDM could describe accurately
both the energy of finite nuclei in their ground state as well as
the ISGMR energy.

A. Density-dependent surface tension

The novelty of the present work is the introduction of a
density-dependent surface tension, which is expressed as

σsurf (ncl, Icl ) = σsurf (Icl )
[
1 + asurf f (Acl )x

2
cl

]
, (50)

where xcl = (ncl − nsat )/3nsat and the parameter asurf controls
the density dependence of the surface energy. In practice, it
encodes the deviation from nsat. It is then larger for nuclei for
which ncl is farther from nsat, i.e., for light- and intermediate-
mass nuclei as well as for exotic nuclei. In Appendix A 3 we
suggest a way to estimate asurf by using a single microscopic
calculation of KA in 100Sn.

In Eq. (50), the function f (Acl ) is defined as

f (Acl ) = 1

1 + exp [−(Acl − A0)/Aw]
, (51)

where Acl is the mass number of the nucleus considered. This
function has been introduced to suppress the density depen-
dence of the surface tension in light nuclei, where it appears to
be unrealistically large. From a qualitative study, we suggest
the following values for the parameters of the function f :
A0 = 70 and Aw = 10.
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FIG. 2. Surface tension for 120Sn. Continuous gray line show the
result without density dependence on σsurf . Dashed line shows the
result with density-dependent surface tension given by Eq. (50).

Figure 2 shows a comparison of the surface tension σsurf

from the CLDM and eCLDM as function of the cluster density
ncl. The figure shows a bell shape for the eCLDM due to its
quadratic dependence on xcl, in contrast with the horizontal
line of the CLDM which does not depend on the density.
The eCLDM simulates a decrease of the surface tension by
about 30% from ncl ≈ 0.16 fm−3 down to ncl ≈ 0.10 fm−3.
So for typical values of the cluster density, eCLDM reduces
the surface tension to a large amount.

Note that we have also investigated other functionals of
the density. For instance, we have studied a correction term
similar to Eq. (50), replacing xcl by ncl and fixing asurf as
described in Appendix A 3. We found that this correction
changes the pressure to a large amount, shifting up the cluster
density ncl to unrealistic values (above 0.25 fm−3 in some
cases).

It should be noted that we have chosen the exponent of
the density-dependent term in Eq. (50) to be two. The reason
is twofold: first, it approximately satisfies the stationarity of
the surface tension with respect to the density, see Ref. [4]
for more details, and second, with such a power, it directly
contributes to the incompressibility modulus in finite nuclei.
Note that a correction proportional to xcl has been suggested
in Ref. [44] and analyzed in view of its impact on the neutron
skin. However, such a term does not satisfy the requested
stationary of the surface tension and does not contribute to
the incompressibility in finite nuclei.

B. Incompressibility in finite nuclei: KA

The incompressibility KA in finite nuclei is defined as

KA ≡ 9ncl
∂2εA

∂n2
cl

∣∣∣∣
A

= R2
A

∂2eA

∂R2
A

, (52)

with the energy density given by εA = eAncl and RA the radius
of the nucleus A. In the CLDM approach, we have RA =
rclA1/3 with r3

cl = 3A/(4πncl ). In Appendix D we connect
these the definitions of KA given in Eq. (52).

TABLE II. For a set of Skyrme interactions, microscopic con-
strained Hartree-Fock-Bogoliubov predictions for KA in 100Sn used
in the calibration of the parameter asurf .

KA,CHFB(100Sn) asurf

(MeV)

BSK14 [25] 153.6 −19.95
BSK16 [26] 154.4 −20.00
F0 [27] 142.3 −19.90
LNS5 [28] 150.7 −20.95
RATP [29] 147.9 −20.85
SGII [30] 133.2 −19.55
SKI2 [31] 155.2 −20.00
SKO [32] 139.3 −19.55
SLy5 [33] 142.8 −20.05

According to Eq. (52), by deriving twice the energy density
with respect to the cluster density, we obtain the incompress-
ibility in a nucleus as

KA = Ksat + Kτ δ
2 + CCoul

3

5

e2

rcl

(
8 + Qsat

Ksat

)
Z2A−4/3

+ Csurf

[
8πr2

clσsurf

(
11 + Qsat

Ksat

)

− 12πnclr
2
cl

∂σsurf

∂ncl

(
10 + Qsat

Ksat

)

+ 36πn2
clr

2
cl

∂2σsurf

∂n2
cl

]
A−1/3. (53)

where CCoul and Csurf are coefficients (close to 1) optimized
in order to reproduce nuclear experimental masses. A detailed
derivation of KA is given in Appendix A. The values of the
parameters used in the present work are given in Table VI.
We can identify in the above expression the incompressibility
modulus Ksat, the isospin term Kτ , the Coulomb and sur-
face terms, respectively. We have arranged this expression to
be comparable with Eq. (6.3) of Blaizot [4]. Note that the
terms in the surface contribution which are proportional to
the derivative of the surface tension with respect to the cluster
density are absent in usual CLDM, while in the eCLDM, these
terms become proportional to the constant asurf introduced in
Eq. (50).

C. Definition of the parameter asurf and incompressibility
predictions within the extended compressible liquid drop model

The new parameter asurf controlling the density depen-
dence of the surface tension is fixed to reproduce the
microscopic prediction for the incompressibility KA in the
doubly magic N = Z nucleus 100Sn. The values asurf and
the microscopic prediction from constrained Hartree-Fock-
Bogoliubov (CHFB), KA,CHFB(100Sn), are shown in Table II
for the nine Skyrme interactions. The accuracy with which the
microscopic prediction is reproduced by the eCLDM is fixed
to <1 MeV.

Since the parameter asurf is found to be very stable and
close to ≈ − 20, the fit of the eCLDM is made into two steps:
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FIG. 3. Comparison of KA for Pb a Sn isotopic chains. Continu-
ous (dashed) lines show results with CLDM (eCLDM). Constrained
Hartree-Fock-Bogoliubov (CHFB) calculations are shown in dots.
Red triangles shows CHF calculations for SLy5, i.e., microscopic
calculations for Sn isotopes without pairing.

First, the values of the coefficients Csurf,sat, Csurf,sym, and CCoul

are fit to better reproduce the experimental nuclear masses,
using an initial value asurf = −20 (see Table VI), then in a
second step, the value of asurf is accurately fixed by fitting
KA,CHFB(100Sn) for each of the Skyrme model (see Table II).
For details about the microscopic CHFB approach, we refer,
for instance, to Ref. [40].

In Fig. 3, we show as a function of A, for Sn and Pb
isotopes, the comparison of the CLDM (solid lines) and
eCLDM (53) (dashed lines) predictions against the micro-
scopic predictions (circles) for KA, based on the constrained
Hartree-Fock-Bogoliubov (CHFB) approach, for the set of
Skyrme interaction listed in Table II (see Refs. [14,15] for
more details on the microscopic CHFB approach). We use
the microscopic radii calculated by each interaction to trans-
form EISGMR into KA using Eq. (1). For SLy5, our results
are identical to those given in Ref. [40]. By comparing CHF
(red triangles) and CHFB (red circles), we see that pairing
contributes to reduce the shell effects around A ≈ 140 in Sn
and makes the isotopic evolution of KA smoother.

As stated by Blaizot [4], the CLDM predictions are largely
overestimating KA, since the surface energy is not explicitly
density-dependent. By adding the new term (50) for the sur-
face energy (Eq. (A6)), the eCLDM reproduces the isotopic
dependence of KA as predicted by the microscopic CHFB
approach (note that only one nucleus (100Sn) has been used
for the calibration of asurf ).

In Sn isotopes, one can note a marked step for KA for
A � 132, in microscopic predictions, which is not present
in the eCLDM prediction. The eCLDM predicts instead a
continuous decrease of KA over the isotopic chain. A similar
feature, while not as pronounced, is observed for Pb isotopes
for A � 208. Microscopically, these steps are understood as
originating from shell effects: in 132Sn, they are 12 occupied
1h11/2 states below the Fermi level and 10 unoccupied 1h9/2

states. For 208Pb, the Fermi level is for 1i13/2 and the next
orbital is 1i11/2. The �L = 0 isoscalar oscillation is therefore
enhanced for neutron-rich systems belonging to these two iso-
topic chains. Since shell effects are not present in the eCLDM,
such steps could not be described by our macroscopic ap-
proach. The decrease of KA as nuclei get more and more
neutron rich is, however, well reproduced by the eCLDM
approach. Such a dependence on A depends on the choice of
the NEP, as illustrated in the Appendix A 5.

As a first application of the eCLDM, we compute the bind-
ing energies, the incompressibilities KA, and ISGMR energies
for several Sn and Pb isotopes and for the SLy5 Skyrme
interaction (see Table III). All these quantities are given for
both the eCLDM and the CLDM approaches. Experimental
data for the binding energies from AME2020 table [6] are also
given. We have also calculated the ratio cA = KA,surf/Ksat for
the set of nuclei. Interestingly, we found cA ≈ −1.3, which
is compatible with the calculations of Ref. [8] deduced from
a microscopic approach. Consistently with Fig. 3, the value
obtained for KA with the eCLDM is considerably reduced,
compared with the one provided from the CLDM, illustrating
the impact of the density-dependent surface energy term. Ksurf

is also given in Table III. The contribution of the density-
dependent surface energy term is large: it changes the sign of
the term Ksurf , from positive (CLDM) to negative (eCLDM).
The A dependence of Ksurf is also strongly modified with the
density-dependent surface energy term. The importance of the
surface nuclear properties for determination of the incom-
pressibility parameters were also studied in Ref. [10] where
the authors used a toy model to demonstrate a connection
between the density dependence of the surface diffuseness and
the ratio KA,surf/Ksat. The value for KCoul is not much impacted
by the density-dependent surface energy term. In addition,
KCoul is compatible with the value extracted from the liquid
drop expansion [9] and is rather insensitive to the nuclear
interaction. Finally, we show, in the last column, the values for
ISGMR energies. Since this values are directly impacted by
KA, see Eq. (1), the eCLDM shows a reduction for the EISGMR

energies. Note that this reduction makes the eCLDM results
closer to the experimental values.

Table III illustrates one of the main feature of the eCLDM
approach: the present density-dependent surface energy term
has a small impact on the binding energies, but a large con-
tribution to the incompressibility modulus KA in finite nuclei.
This justifies our fitting protocol previously described. It also
shows that the low-order NEP could be adjusted to the nuclear
mass table quite independently to the higher-order NEP which
are fit to KA.

IV. CONFRONTATION TO THE NUCLEAR
EXPERIMENTAL DATA

In this section, we confront the eCLDM to the nuclear
data. To do so, we first list the experimental data used for the
analysis. By using the Markov chain Monte Carlo (MCMC)
approach, we then vary a set of NEP all together in order to
extract the best parameters set reproducing the experimental
data. A sensitivity analysis is shown in Appendix A 5 where
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TABLE III. Binding energies, ratio cA = K̄A,surf/Ksat , incompressibility KA in finite nuclei and the contributions from the surface and
Coulomb terms, and the ISGMR energies for a set of Sn and Pb isotopes using the meta-model version of the SLy5 nuclear interaction. On
the two sides of the bar “|” are compared the values obtained from the eCLDM and the CLDM approaches. The experimental values for the
binding energies and for the EISGMR, when available, given by the 2020 Atomic Mass Evaluation (AME) Table [6] and by Garg et al. [5],
respectively, are given inside brackets.

A Z eA cA KA K̄surf K̄Coul EISGMR

(MeV) (MeV) (MeV) (MeV) (MeV)

100 50 −8.11 | −8.08 [−8.25] −1.2 | 1.5 143.2 | 278.3 −276.7 | 347.7 −5.0 | −4.9 19.5 | 26.6
106 50 −8.40 | −8.38 [−8.43] −1.3 | 1.5 142.7 | 277.3 −289.6 | 345.2 −5.0 | −4.9 19.1 | 26.0
114 50 −8.55 | −8.53 [−8.52] −1.3 | 1.5 139.5 | 272.2 −305.1 | 336.5 −5.0 | −4.9 18.3 | 25.1 [15.9]
120 50 −8.53 | −8.52 [−8.50] −1.4 | 1.4 136.1 | 266.6 −315.0 | 327.4 −5.0 | −4.9 17.6 | 24.4 [15.5]
180 82 −7.72 | −7.72 [−7.73] −1.6 | 1.5 130.0 | 256.8 −366.7 | 348.2 −4.9 | −4.9 14.9 | 20.8
200 82 −7.87 | −7.88 [−7.88] −1.6 | 1.4 128.6 | 247.9 −367.4 | 329.7 −4.9 | −4.9 14.2 | 19.6
208 82 −7.83 | −7.84 [−7.87] −1.6 | 1.4 127.1 | 243.1 −367.0 | 320.5 −4.8 | −4.8 13.8 | 19.1 [13.5]

we illustrate, in a complementary way, the individual influ-
ence of the NEP to the prediction of KA.

A. Experimental data for KA

We aim at reproducing together the values of KA in 90,92Zr,
112–124Sn, 204–208Pb from Ref. [5], see Table IV for detailed
values. We do not consider here the experimental GMR energy
measured for 94Zr and reported in Ref. [5], since it is very
different from the one measured in 90Zr and 92Zr. It is not
possible for our modeling to reproduce these data, as shown
hereafter in Fig. 7. In addition, we investigate the role of

TABLE IV. Experimental data for EISGMR and KA considered in
this work.

EISGMR EISGMR RA KA

(MeV) (MeV) (fm) (MeV)
from Ref. [5] (this work) (SLy5) from Eq. (1)

90Zr 17.58+0.06
−0.04 17.62 ± 0.07 4.256 135.6 ± 1.1

17.66+0.07
−0.07

92Zr 17.71+0.09
−0.07 17.62 ± 0.12 4.293 138.0 ± 1.9

17.52+0.04
−0.04

94Zr 15.75+0.27
−0.15 15.80 ± 0.21 4.330 112.9 ± 3.0

112Sn 15.23+0.26
−0.14 15.69 ± 0.44 4.556 123.2 ± 6.9

16.10+0.10
−0.10

114Sn 15.90+0.10
−0.10 15.90 ± 0.10 4.585 128.2 ± 1.6

116Sn 15.70+0.10
−0.10 15.70 ± 0.10 4.614 126.5 ± 1.6

118Sn 15.60+0.10
−0.10 15.60 ± 0.10 4.641 126.4 ± 1.6

120Sn 15.50+0.10
−0.10 15.50 ± 0.10 4.667 126.2 ± 1.6

122Sn 15.20+0.10
−0.10 15.20 ± 0.10 4.691 122.6 ± 1.6

124Sn 14.33+0.17
−0.14 14.72 ± 0.40 4.715 116.2 ± 6.3

15.10+0.10
−0.10

132Sna 14.80 14.80 4.803 121.8
204Pb 13.70+0.10

−0.10 13.70 ± 0.10 5.516 137.7 ± 2.0
206Pb 13.60+0.10

−0.10 13.60 ± 0.10 5.532 136.5 ± 2.0
208Pb 13.50+0.10

−0.10 13.50 ± 0.10 5.548 135.3 ± 2.0

aFictitious data.

a fictitious measurement of the GMR energy in 132Sn and
explore possible consequences for the determination of NEP.

We first report, in Table IV, the experimental data listed
in Ref. [5]. For some nuclei there are different values ob-
tained from different experiments, see for instance 90Zr, 92Zr,
112Sn, and 124Sn (the largest differences between different
experimental measurements are for 112Sn and 124Sn). In the
following, we adopt an agnostic approach with respect to these
data and we then equally treat the measurements. It should
be noted that we have then recalculated averaged centroids
and standard deviations for nuclei were two experimental
values are reported, generating a new distribution summing
the individual ones. We have then determined the value for
KA using Eq. (1), where the total radius RA is provided by a
CHFB calculation [45] using SLy5 [33] Skyrme interaction.
The last column in Table IV gives the experimental values
for KA which are used in the confrontation of our eCLDM to
nuclear data.

B. Best parameter set from Markov-chain Monte Carlo
approach

In this section, we vary a set of NEP in order to determine
the best parameters reproducing the experimental data. We
first present the experimental data and then the Markov-chain
Monte Carlo (MCMC) approach that we adopt.

The confrontation between the experimental data for the in-
compressibility KA (see Table IV), and the model predictions,
is based on the loss functions χKA , which is defined as

χ2
KA

= 1

NKA

∑
i

(
Kexpt

A,i − KeCLDM
A,i

δKexpt
A,i

)2

, (54)

where i runs over the following isotopes: 90,92Zr, 112–124Sn,
204–208Pb. We also explore a fictitious data for 132Sn, since and
experimental value of the GMR centroid is currently under
analysis [46].

The eCLDM is also fine-tuned to experimental nuclear
masses. The associated loss function χE is defined as

χ2
E = 1

NE

∑
i

(
E expt

i − E eCLDM
i

δE expt
i

)2

, (55)
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TABLE V. Priors for the NEP from Ref. [3] (first row) and priors considered in the present analysis to setup dist1f, dist2f, and dist3f. The
values given in interval [a, b] imply that a flat prior is considered in the MCMC approach. Other NEPs are fixed to the indicated values. We
considered also the following parameters: M∗

sat = 0.7, �M∗
sat = −0.1, bsat = 6.9, and bsym = 0.

Esat nsat Ksat Qsat Zsat Esym Lsym Ksym Qsym Zsym

(MeV) (fm−3) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)

From Ref. [3] −15.8 ± 0.3 0.155±0.005 230 ± 20 300 ± 400 −500 ± 1000 32± 2 60 ± 15 −100 ± 100 0 ± 400 −500 ± 1000
dist1f and dist2f −15.8 0.155 [210,250] [−1800, 600] −500 32 [40,60] [−300, 100] 0 −500
dist3f −15.8 0.155 [210,250] [−1800, 600] −500 32 [80,100] [−300, 100] 0 −500

where i runs over a subset of experimental binding energy
extracted from the 2020 AME mass table [6]. To speed up
the computing time, we do not consider all nuclei in the mass
table, as in Ref. [22] for instance, but instead we confront the
mass model to a subset of it. To do so, we picked up one out
of hundred data. We have checked that this selection does not
impact our results, as discussed below.

In the following we fix the NEP Esat, Esym, and nsat to their
empirical expectations, as reported in Table V. We vary the
other NEP, Ksat, Qsat, Lsym, and Ksym, considering flat priors
inside the boundaries given in Table V and defining the prior
loss function χprior. The higher-order NEP Qsym, Zsat, and Zsym

have no impact on the present analysis. Hence, they are fixed
to values determined from analyses of model predictions, see
Ref. [3]. Their value is also given in Table V. Finally, the
effective mass, which is parametrized by M∗

sat and �M∗
sat, is

also fixed in the present study.
The total loss function is obtained as the sum of χKA , χE ,

and χprior. We explore three scenarios in the present study:

(1) dist1 & dist1f: all known experimental data are con-
sidered for KA (90,92Zr, 112–124Sn and 204–208Pb) and the
priors are taken flat, as given in Table V.

(2) dist2 & dist2f: same as dist1 & dist1f but considering
a fictitious value for KA in 132Sn, as given in Table IV.

(3) dist3 & dist3f: same as dist2 & dist2f but considering
a large prior for Lsym, as given in Table V.

The difference between the cases disti and distif (i = 1,
2, 3) are that distif includes the fine tuning of the eCLDM
to the experimental nuclear masses while disti does not. In
the following results, we observe that there are very little
differences between disti and distif, since the NEPs (Esat,
Esym, and nsat) which play a major role in the determina-
tion of the nuclear masses are not varied in the present
study.

The marginalized distributions for the NEP parameters are
shown in Figs. 4 and 5. The corner plot representation in Fig. 4
shows the one parameter distributions on the diagonal and the
correlation between the parameters off the diagonal, while in
Fig. 5 we show a zoom of the one parameter distributions.
We compare in the distributions obtained without the fictitious
data for 132Sn (dist1f, blue) and with this fictitious data (dist2f,
red). We also show the marginalized distribution when the
slope of the symmetry energy Lsym is taken to be large and
around 90 MeV (dist3f, green), as suggested by the analysis
of PREX2 experimental data [47]. The Gaussian distributions
in dashed lines represent the expected distributions for these

parameters from Ref. [3]. They are also given in the first row
of Table V.

Let us first remark that the value for the parameter Qsat

is very different from the expected values given in Table V.
The distribution for Qsat is very similar for the three cases:
it is peaked at around ≈ − 950 MeV with an uncertainty of
about 150–200 MeV. The value extracted from an analysis
of models predictions, since there are no direct extraction
from experimental data of this parameter, is expected to be
quite different: ≈300 ± 400 MeV Ref. [3]. These values are
extracted from an analysis over existing nonrelativistic and
relativistic phenomenological approaches. However, it was
already noticed that the value of this parameter changes a
lot from a type of nuclear interaction to another: about−350
MeV in average for Skyrme models, around 0 for relativistic
mean-field (RMF) models, and around 390 MeV for relativis-
tic Hartree-Fock (RHF) ones. There is therefore a large model
dependence of Qsat, which may be related to its correlation

FIG. 4. Marginalized distributions for the NEP parameters in the
three cases which are considered here: dist1f (considering all exper-
imental data), dist2f (adding a fictitious measurement for 132Sn) and
dist3f (with a prior for Lsym = 90 ± 10 MeV). Note that, for dist1f
and dist2f, the prior is Lsym = 50 ± 10 MeV.
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FIG. 5. One parameter marginalized distributions for the NEP
parameters Ksat , Qsat , Lsym, and Ksym. The distributions distif are
shown in solid lines with same colors as in Fig. 4. They are compared
with the distributions disti (without fine tuning to experimental nu-
clear masses) in thin dotted lines. The differences between distif and
disti are small.

with Ksat, as suggested in Ref. [15]. The value preferred by
the GMR data points toward a region which is orthogonal
to any value of existing models. We can then deduce that in
order to reproduce correctly several isotopic chains from Zr to
Pb, including Sn isotopes, the required value for Qsat is quite
different from the typical values given in phenomenological
approaches. So the possible origin of the difficulties faced
by the usual phenomenological models in reproducing both
the Sn and Pb isotopes could take its origin in the values of
the NEP Qsat in these models. To reproduce better Sn and
Pb isotopes, more flexibility shall be given to these models,
in particular the breaking of the correlation between Ksat and
Qsat. For Skyrme models, this could come with an additional
density-dependent term, or the “t3” kind, as suggested in
Ref. [27].

The second remark is about the role of a fictitious measure-
ment of the GMR energy in 132Sn. For simplicity, we assumed
an accurate measurement as EISGMR(132Sn) = 14.8 MeV, see
dist2f. An uncertainty in EISGMR(132Sn) will produce a re-
sult between the one suggested by dist1f and dist2f, except
if the measurement is lower than the value we considered.
Let us simplify the discussion of this fictitious data by not
considering such a case. The role of this fictitious data for
EISGMR(132Sn) can be seen from the difference between dist1f
(blue) and dist2f (red) distributions. While the isoscalar NEP
are weakly impacted, the isovector NEP Ksym is largely im-
pacted by the fictitious data: such a new measurement would
shift the expected value for Ksym towards large and negative
values.

Note also that the value of Lsym is not constrained by the
considered experimental values: Lsym fully explores the flat
prior without specific structure and it is also not correlated
to other NEP. There are however correlations between Ksat

and Qsat, as well as between Ksat and Ksym and Qsat and Ksym.

FIG. 6. Marginalized distributions for the parameter Kτ . Same
legend as in Figs. 4 and 5. The centroids for Kτ are given in the
figure for the cases distif.

The distribution for Ksat is more peaked than the empirical
expectation (with a width of ±20 MeV). One of the reason is
that there is correlation between the parameter asurf , control-
ling the density dependence of the surface energy, and Ksat.
In the present study we have fixed asurf = −20, as resulting
from the typical value we obtained in the previous section.
This parameter is not, however, fixed by any experimental
data and including its uncertainty may contribute to widen
the Ksat distribution. Another reason comes from the bet-
ter agreement of our model with the experimental data, in
comparison with other phenomenological approaches, e.g.,
Skyrme or RMF [40]. Since in our model we can fix the value
of Qsat independently of Ksat, it results in a better description
of the experimental KA values and the parameters Ksat and
Qsat are better determined, see Figs. 4 and 5. In other words,
the uncertainties in Qsat impacts the one in Ksat, as suggested
in Ref. [16]. Since Qsat is better known from the present
approach, it results that Ksat is also determined with a better
accuracy.

We represent in Fig. 6 the marginalized distribution for
the parameter Kτ , defined from Eq. (34) for the cases disti
(think dotted lines) and distif (thick solid lines). Without
the fictitious GMR energy in 132Sn (dist1 and dist1f) the Kτ

distribution is quite flat, while when the 132Sn fictitious data
is considered, the Kτ distribution is better localized. For the
value we considered including an accurate experimental data,
we obtain Kτ ≈ −358 ± 40 MeV (Kτ ≈ −356 ± 50 MeV)
for Lsym ≈ 50 ± 10 MeV (Lsym ≈ 90 ± 10 MeV). Here also,
we note the relative independence of the Kτ distribution in the
parameter Lsym.

Our results also differ from others if we do not consider
the fictitious data in 132Sn. The value Kτ ≈ −550 ± 100 MeV
was extracted from the analysis of the Sn isotopic chain only
(from 112Sn to 124Sn [39]). Note also the value Kτ ≈ −500 ±
50 MeV extracted from the same experimental data, using
different Skyrme Hamiltonians and RMF Lagrangians [9]. If
we apply our analysis to the same data points as in Ref. [9,39],

044305-11



GRAMS, SOMASUNDARAM, MARGUERON, AND KHAN PHYSICAL REVIEW C 106, 044305 (2022)

FIG. 7. Comparison of the best parameter set against the experi-
mental data for Zr, Sn, and Pb isotopes.

then we obtain Kτ ≈ −330 ± 120 MeV and Kτ ≈ −270 ±
100 MeV if we impose to reproduce KA in Pb as well. Note,
however, that when we consider the fictitious data in 132Sn, the
value for Kτ become more peaked. This illustrates the role of
isotopes with large isospin asymmetry in the determination of
Kτ . However, for these data on exotic nuclei to be effective,
they need to be as accurate as the data obtained for stable
nuclei.

Finally, we show in Fig. 7 the comparison between the
experimental values for KA and the values obtained with our
best parameter set for each cases disti (thin lines) and distif
(thick lines). Our eCLDM model is able to well reproduce
the experimental points in Zr, Sn, and Pb isotopes with a
very good accuracy. Once again, this is possibly due to the
large negative Qsat value, which points to a hint for solving
the so-called Sn softness puzzle. Note that the experimental
point in 94Zr is out of reach from our model. The difference
between KA in 92Zr and 94Zr is too large to be reproduced. For
this reason, we decided not to include 94Zr in our fit. We also
advocate for a new measurement in 94Zr, since the present
data are surprising.

In the case dist1 and dist1f, the best parameter sets provide
a consistent description of the experimental value in Zr, Sn,
and Pb isotopes. Note, however, that the data in 124Sn is not
very constraining in our case, since the uncertainty is large.
Therefore, the evolution of KA over the Sn isotopic chain is
quite flat in our model. The effect of including the fictitious
data in 132Sn with small uncertainty, forces our model to de-
crease KA as function of A in Sn isotopes (see dist2 and dist2f).
The description of Pb isotopes, while still good, is slightly de-
teriorated. It is however restored with dist3 and dist3f, where
a larger value for Lsym ≈ 90 ± 10 MeV is explored. However,
these results are still exploratory and no conclusion could be
given without an accurate measurement of the GMR energy in
132Sn.

V. SOUND SPEED IN NUCLEI AND UNIFORM MATTER

The speed of sound is an important property in trans-
port models [49]. It is interesting to address the effects of

FIG. 8. Correlation of the speed of sound in NM at nsat with the
parameter Ksym for the three cases: dist1f, dist2f, and dist3f. The
horizontal red band (Drischler 2021) depicts the constraint on the
speed of sound from χEFT Hamiltonians calculated at nsat [48].
The vertical line at Ksym = −150 MeV separates the excluded values
obtained from our Eq. (49) (left side) from the authorized ones (right
side).

the nuclear properties, e.g., NEPs, on the speed of sound in
uniform matter and in finite nuclei. Moreover, the speed of
sound is an important ingredient in the calculation of the
tidal deformation in binary neutron stars [50–53]. Therefore
a connection between the speed of sound in finite nuclei and
infinite matter could help in constraining NS observables from
nuclear experiments.

The speed of sound cs in a nuclear fluid is largely de-
termined from the nuclear incompressibility in asymmetric
matter. It is defined as [4]

c2
s = K (n, δ)

9h(n, δ)
, (56)

where h is the enthalpy per particle h = mc2 + e + P/n. In
uniform matter, we determine the speed of sound from the
following quantities eUM (9), PUM (5), and KUM (4), while
in finite nuclei, we use eA (A1), PA (A9), and KA (52). All
these quantities have been defined in previous sections and in
Appendix A.

We show in Fig. 8 the correlation between the speed of
sound in NM at nsat and the NEP Ksym. We have used the
posterior distributions corresponding to the three cases: dist1f,
dist2f, and dist3f for all the NEP (here Ksat, Qsat, Ksym, and
Lsym). The findings of Fig. 8 suggest that a tight constraint on
the value of the speed of sound in NM at around the saturation
density could turn into a constraint of the value of Ksym. With
the advent of ab initio calculations such as χEFT [48] it is
possible to determine a band for the speed of sound in NM.
In Fig. 8, the red band shows chiral EFT calculations for
the speed of sound in NM at nsat obtained in Ref. [48]. At
nsat, the intersection of the red band (χEFT) and blue contour
(dist1f) suggests that −200 MeV � Ksym � 50 MeV. We have
performed a similar analysis at 2nsat but it does not bring any
additional information on Ksym.

It should be noted from Fig. 8 that the inclusion of a ficti-
tious datum in 132Sn (see the contour dist2f) may contribute to
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FIG. 9. Similar to Fig. 8 but at half saturation density and with
δ = 0.5.

the reduction of the bandwidth for the speed of sound in NM,
reducing the values for Ksym to be Ksym � −100 MeV and
c2

s � 0.055c2 (instead of 0.06c2). The case of dist3f is even
more interesting: if only large values for Lsym ≈ 90 ± 10 MeV
compatible with PREX2 are authorized then the overlap be-
tween dist3f and χEFT occurs in the forbidden region for
Ksym. In other words, there is no overlap between dist3f and
χEFT. The speed of sound in NM therefore contributes to
exclude large values for Lsym, as suggested by PREX2.

It is also relevant to explore the correlation between the
speed of sound and Ksym in cases similar to what exists in
heavy-ion collisions at the Fermi energy. In Fig. 9, we fix the
density to be nsat/2 and isospin asymmetry parameter δ = 0.5.
Interestingly we see that, in contrast with the NM case (δ = 1)
shown in Fig. 8, the correlation is negative (anticorrelation).
This is due to the dominant contribution of the pressure to the
enthalpy, for which Ksym contributes to a large extent: Ksym

contributes to the first power in the density parameter x to
the pressure, while only to the second power to the energy
per particle. The isoscalar contribution to the pressure is small
in the vicinity of saturation density. Since the leading-order
impact of Ksym is an odd power in x, it has an opposite corre-
lation below saturation density as compared with above. As in
Fig. 8, we see that the uncertainty in Lsym plays a large role, as
can be inferred by comparing dist3f with the other cases. The
uncertainty induced by Lsym is of similar magnitude as the
one originating from Ksym. We can thus conclude that tighter
constraints on both Lsym and Ksym will reduce the uncertainty
in the speed of sound.

We now come back to finite nuclei, where FS terms also
play a role in speed of sound. These FS terms impact the
connection between the speed of sound in finite nuclei and
the speed of sound in nuclear matter. In Fig. 10, we show
the speed of sound in finite nuclei as a function of A for two
isotopic chains: Sn and Pb. For this calculation, we have used
the SLy5 interaction. In both panels, the speed of sound in
infinite matter at nsat is shown as black horizontal lines. The
solid black line represents SM. The red dashed line represents
AM with δ = 0.2 and for neq = 0.157 fm−3. So the effect of
asymmetry itself is to slightly increase the speed of sound,

FIG. 10. The speed of sound in finite nuclei is shown (blue curve)
as a function of A for Sn (top) and Pb (bottom). The black lines
represent nuclear matter results, as indicated in the legend.

while shifting down the equilibrium density from SM to AM
reduces the speed of sound. The main differences between
the blue curve and the straight lines originate from the con-
tribution of the FS terms in finite nuclei. There is a factor
approximately two between uniform matter and finite nuclei.
The same difference has been observed between Ksat and KA,
see for instance the middle panel of Fig. 11. Interestingly, we
see that the deviation between the black and the blue lines
increases with A due to the fact that nuclei get more and more
neutron rich, and therefore the cluster density decreases. At
much larger A (above the values shown in the figures), the FS
terms finally decrease in size and at the limit A → ∞ finite
nuclei and uniform matter results do get closer.

VI. CONCLUSIONS

In this work we have explored various ways to encode
the density and isospin asymmetry dependence of the incom-
pressibility in nuclear matter. We have discussed the dominant
contribution of Lsym in the determination of the isospin depen-
dence of the incompressibility modulus. A better knowledge
of the incompressibility modulus in AM requires therefore an
accurate knowledge of Lsym. In finite nuclei, by introducing
an extended CLDM (eCLDM) that adds a density dependence
to the surface tension proportional to x2

cl, where xcl = (ncl −
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FIG. 11. Incompressibility for Sn and Pb isotopes. Black dots with error bars show the results of experimental data of Garg et al. [5]. Red
dashed lines (squares) shows the predictions from eCLDM (CHFB) with SLy5 interaction. Different line colors (light gray to black) show
variation on isoscalar empirical parameters Esat (top left), nsat (top right), Ksat (bottom left), and Qsat (bottom right).

nsat )/3nsat, we were able to provide a unified macroscopic
model for nuclear masses and incompressibility modulus. We
then rederived KA from the eCLDM framework along the lines
originally suggested by Blaizot [4]. In this way, the contribu-
tion of the new density-dependent term in the surface tension
to KA is explicitly shown in the equations.

We have compared the predictions of the eCLDM for
the nucleus incompressibility KA with microscopic calcula-
tions and experimental data. Thanks to the flexibility of the
meta-model, a sensitivity analysis on the impact of individ-
ual nuclear empirical parameter is made. As expected, the
isoscalar channel influences the absolute values of the en-
ergies while the isovector channel impacts the slope of KA

as a function of the isospin asymmetry. A full exploration
in the parameter space formed by Ksat, Qsat, Lsym, and Ksym

is also performed, showing that the parameter Qsat must
be approximately Qsat ≈ −950 ± 200 MeV to reconcile the
experimental GMR energies measured in Zr, SN, and Pb
isotopes. Since this suggested value is different from those
of phenomenological forces, we then suggest a possible ex-
planation of the origin of the difficulties these forces face in

reproducing the experimental data on KA for both Sn and Pb
nuclei.

In addition, we explore the impact of a fictitious accurate
measurement for the GMR energy in 132Sn. We show that,
with such a measurement, the value of Ksym and Kτ would be
much better determined than they are with the present data.

We have also derived two new constraints on Ksym:

(1) From the equilibrium density: Ksym � −Ksat +√
2LsymQ(δ = 1) ≈ −150 MeV and Qsym > −Qsat.

(2) From the confrontation of our prediction for the speed
of sound in NM with the χEFT, we found −200 �
Ksym � 50 MeV. This constraint could be more accu-
rate if a measurement of the GMR energy in 132Sn is
known.

Let us remark that the constraint on Qsym combined with
the MCMC exploration for Qsat leads to the following conse-
quence: Qsym � 950 ± 200 MeV.

In conclusion, the present work suggests a new way to
analyze the experimental KA and to extract the values of the
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NEP Ksat, Qsat, Lsym, and Ksym, which are the most influential
ones. This method is comparable to the microscopic Hartree-
Fock method, except that it does not describe shell effects.
However, these shell effects are reduced by the treatment
of the pairing, as shown in the microscopic Hartree-Fock-
Bogoliubov calculations [5]. The advantage of our method is
that we use the flexible nuclear meta-model to simulate the
role of the nuclear interaction. At variance with phenomeno-
logical forces, the nuclear meta-model is able to freely choose
the best NEP which describes the experimental data. We found
that the data favor a large and negative value for Qsat which is
not possible with phenomenological forces. We then suggest
a possible origin for the observed limitations of these forces.

We note that our ability to extract information on Qsat and
Ksym from finite nuclei is based on the variation in density
and isospin asymmetry explored by the isotopes defining the
loss function χE . For simplicity we based our analysis on
the results of an eCLDM where the densities and isospin
asymmetries are taken flat in finite nuclei. This is clearly an
important feature which has to be improved in the future. One
may think, for instance, of implementing the meta-model in a
modeling of finite nuclei with better density profiles compared
with the eCLDM. Further works in this direction are therefore
envisioned.
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APPENDIX A: DERIVATION OF THE
INCOMPRESSIBILITY KA IN FINITE NUCLEI

In this Appendix we derive KA in finite nuclei and obtain
an expression similar to the one obtained by Blaizot [4], but
for the eCLDM approach and where we have introduced the
NEP explicitly. We detail the derivation step by step, starting
with the definition for the nuclear binding energy, going to the
pressure in the nucleus to have in the end a clear expression for
the incompressibility. In the last section of this Appendix we
take advantage of the present approach to analyze the impact
of the NEP to reproduce KA.

1. Energy per particle: eA

We define the binding energy eA for the nucleus A in the
CLDM as

eA ≡ eA,UM + eA,FS, (A1)

where the uniform matter energy eA,UM is defined from the
symmetric matter and symmetry energy terms eSM (6) and
esym (7) as eA,UM(ncl, δcl ) ≡ eSM(ncl ) + esym(ncl )δ2

cl, where ncl

and δcl are the equilibrium density and isospin asymmetry
δcl = (N − Z )/A of a given nucleus. The density ncl is ob-
tained assuming that the nucleus is at mechanical equilibrium,
i.e., PA = 0, see discussion in the next section.

The finite-size contribution is defined as

eA,FS ≡ eA,surf + eA,Coul, (A2)

where we consider only the surface and Coulomb terms in
the present work. The contributions originating from higher-
order terms in the leptodermous expansion are disregarded in
this analysis, where we present an eCLDM with a density-
dependent surface energy. However, they shall be studied in a
future work. Note also that by considering only the FS terms
as given in Eq. (A2), our equations are consistent with the
seminal paper by Blaizot [4] [see for example Eq. (2.17)].

Considering the direct Coulomb contribution only, as well
as a uniform charge distribution in the nucleus, the Coulomb
energy reads

eA,Coul = CCoul
3

5

Z2e2

RA

1

A
, (A3)

where the nucleus radius is RA = rclA1/3 and rcl =
(3/4πncl )1/3. The parameter CCoul, which is fit on experi-
mental nuclear masses (see Ref. [22] for details of the fit
procedure), represents an effective way to incorporate the
effect of exchange as well as of the surface on the Coulomb
energy. In the present fit, the experimental masses are cor-
rected by the odd-even mass staggering as Ẽ i

ex = Ei
ex − �Ei

ex,
with

�Ei
ex =

[
�sat + �sym

(Ni − Zi

Ai

)2]
A−1/3

i δ(N, Z ), (A4)

where δ(N, Z ) = 1 if N and Z are odd, 0 if either N or Z is
odd, and −1 if both N and Z are even [54]. The parameters
�sat and �sym are varied together with the CLDM parameters
Ci in the fit to the experimental masses. We show the opti-
mal CLDM parameters Ci and the odd-even mass staggering
parameters for each Skyrme model in Table VI. Note that
the values we obtain for �sat and �sym are similar to those
determined in Ref. [55].

The surface energy is given by

eA,surf = Csurf 4πσsurf R
2
A

1

A
. (A5)

In the CLDM approach the surface tension is usually ap-
proximated by the following formula [56]:

σsurf (Icl ) ≈ σsurf,sat
2psurf +1 + bsurf

Y −psurf

p,cl + bsurf + (1 − Yp,cl )−psurf
, (A6)

where Yp,cl = Zcl/Acl = (1 − Icl )/2, Icl = (Ncl − Zcl )/Acl, and
σsurf,sat is a parameter that determines the surface tension of
symmetric nuclei. The isospin dependence is controlled by
the parameters bsurf and psurf . Fixing the parameter σsurf,sat

to an average value, see Table VII, the parameters Csurf and
bsurf are fit from the nuclear chart, while the parameter psurf is
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TABLE VI. Optimized finite-size parameters and loss function (χ2)1/2 with eCLDM|CLDM. For eCLDM we use asurf = −20.0.

Model BSK14 BSK16 F0 LNS5 RATP SGII SKI2 SKO SLy5

CCoul 0.93|0.94 0.95|0.95 0.93|0.94 0.91|0.91 0.95|0.95 0.92|0.92 0.93|0.93 0.93|0.93 0.94|0.94
Csurf 1.03|1.02 1.07|1.06 1.09|1.08 0.98|0.97 1.07|1.06 0.97|0.96 1.00|1.00 1.03|1.03 1.07|1.06
Csurf,sym 0.98|0.94 0.92|0.87 1.30|1.24 0.93|0.90 0.81|0.76 0.58|0.54 1.40|1.45 1.26|1.25 1.31|1.25
�sat (MeV) 12.5|12.4 12.1|12.0 12.5|12.4 12.8|12.7 11.9|11.8 12.1|12.0 13.3|13.4 13.0|12.9 12.2|12.1
�sym (MeV) −37.5|−34.6 −22.1|−19.5 −38.3|−34.8 −51.9|−49.8 −14.8|−12.4 −24.9|−21.7 −73.2|−77.1 −58.0|−57.2 −42.4|−38.9√

χ 2 (MeV) 3.3|3.2 3.3|3.1 3.4|3.3 3.6|3.4 3.3|3.1 3.5|3.3 3.7|3.5 3.6|3.3 3.4|3.3

usually fixed to a value close to ≈3 [56] since it controls the
isospin dependence of the surface energy for large asymme-
tries, which are not reached in finite nuclei.

For small asymmetries we could expand σsurf (Icl ) as

σsurf (Icl ) ≈ σsurf,sat − σsurf,symI2
cl, (A7)

with

σsurf,sym = σsurf,sat
2psurf psurf (psurf + 1)

2psurf +1 + bsurf
. (A8)

Equation (A8) relates the parameter bsurf to the surface sym-
metry energy σsurf,sym, see also Ref. [22] for more details.
We fit the isoscalar and isovector surface parameters from the
experimental nuclear masses. The standard surface parameters
in the CLDM approach are given in Table VII. The optimized
parameters CCoul, Csurf , and Csurf,sym are given in Table VI for
the different NEP used in the present work, together with the
respective (χ2)1/2, where χ2 = 1

N

∑N
i=1(Ei

expt − Ei
A)2. Ei

expt

are the experimental masses, Ei
A are the predictions for the

CLDM or eCLDM models for given nucleus i, and N = 3375
is the number of considered nuclei from the 2020 Atomic
Mass Evaluation (AME) [6].

The novelty of the present work is the introduction of
a density-dependent surface tension, see Eq. (50). It should
be noted that we have chosen the exponent of the density-
dependent term in Eq. (50) to be two. The reason is twofold:
first, it approximately satisfies the stationarity of the surface
tension with respect to the density, see Ref. [4] for more
details, and, second, with such a power, it directly contributes
to the incompressibility modulus in finite nuclei. Note that a
correction proportional to xcl has been suggested in Ref. [44],
and analyzed in view of its impact on the neutron skin. How-
ever, such a term does not satisfies the requested stationary of
the surface tension and does not contribute to the incompress-
ibility in finite nuclei.

TABLE VII. Standard surface parameters for the CLDM consid-
ered in this work. Note the associated value bsurf = 29.9 deduced
from Eq. (A8).

σsurf,sat σsurf,sym

MeV fm−2 MeV fm−2 psurf

1.1 2.3 3.0

2. Pressure in finite nuclei: PA

The pressure PA in finite nuclei is defined as

PA ≡ n2
cl

∂eA

∂ncl

∣∣∣∣
A

, (A9)

which can be decomposed into a bulk term, originating from
uniform matter, and a finite-size contribution PA = PA,UM +
PA,FS. The bulk term is decomposed into SM and isospin
asymmetry contributions, as in Eq. (5): PA,UM = PA,SM +
PA,symδ2, taking PA,SM = PSM(ncl ) and PA,sym = Psym(ncl ).

Note that the functions of RA in the binding energy also
contribute to the pressure as

PA = −RAncl

3

∂eA

∂RA

∣∣∣
A
, (A10)

since the partial derivative with respect to ncl at fixed A is
equivalent to a partial derivative with respect to RA, with an
appropriate factor, see Appendix D.

The finite-size pressure is PA,FS = PA,surf + PA,Coul, with the
Coulomb pressure term derived as

PA,Coul = CCoul

5

Z2e2ncl

RA

1

A
. (A11)

The surface term is decomposed into two contributions,

PA,surf = PCLDM
A,surf + PDD

A,surf , (A12)

where the first term is the usual CLDM contribution, while the
second term originates from the new density-dependent (DD)
term. They are defined as

PCLDM
A,surf = −Csurf

3
8πσsurf R

2
Ancl

1

A
, (A13)

PDD
A,surf = Csurf 4πR2

An2
cl

∂σsurf

∂ncl

1

A
. (A14)

Note that, since ∂σsurf/∂ncl ∝ xcl ≈ 0, the contribution of the
new DD term to the pressure is small.

Numerically, the cluster density ncl is obtained from the
mechanical stability condition PA = 0 using the Newton-
Raphson algorithm with nUM

eq as the starting solution.

3. Incompressibility in finite nuclei: KA

The incompressibility KA in finite nuclei is defined in
Eq. (52). Similarly to the energy and the pressure, the lin-
earity of the derivative operator allows us to decompose the
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incompressibility KA in finite nuclei as bulk and FS terms,

KA = KA,UM + KA,FS, (A15)

where KA,UM = KA,SM + KA,symδ2, KA,SM = KSM(ncl ), and
KA,sym = Ksym(ncl ).

The finite-size contribution to the incompressibility are
given as KA,FS = KA,surf + KA,Coul, where the Coulomb term
reads

KA,Coul = CCoul
12

5

Z2e2

RA

1

A
, (A16)

and the surface term is expressed as

KA,surf = Csurf

[
−8πR2

Aσsurf + 24πnclR
2
A

∂σsurf

∂ncl

+ 36πn2
clR

2
A

∂2σsurf

∂n2
cl

]
1

A
. (A17)

4. Re-expression of KA

The first time a CLDM model was used to compute the
incompressibility of nuclei goes back to the seminal work of
Blaizot [4]. To compare our expression for KA with his work,
we dedicate this section to rewrite our equations and obtain the
equivalent of Eq. (6.3) of Ref. [4]. In finite nuclei, the density
is different from the saturation density due to the contribution
of FS and isospin asymmetry terms. If the density parameter
xcl remains small, Blaizot suggests to express KA as [4]

KA = Ksat + δ2K̄A,sym + K̄A,FS. (A18)

The new terms K̄A,sym and K̄A,FS incorporate, in addition to
the contribution KA,sym and KA,FS , the shift in density between
ncl and nsat, see Appendix B, and more specifically Eq. (B6).
To do so, we consider the expression for KA,SM up to the linear
order in xcl from Eq. (30), where the expression for xcl in terms
of PA,sym and PA,FS from Eq. (B6) is injected:

KA,SM = Ksat − 3PA,sym

nclKsat
δ2(12Ksat + Qsat )

− 3PA,FS

nclKsat
(12Ksat + Qsat ). (A19)

Re-ordering the different terms into KA gives Eq. (A18), where

K̄A,sym = KA,sym − 3PA,sym

nclKsat
(12Ksat + Qsat ), (A20)

K̄A,FS = KA,FS − 3PA,FS

nclKsat
(12Ksat + Qsat ). (A21)

At O(xcl ), the term K̄A,sym can be expressed as

K̄A,sym ≈ Ksym − Lsym

(
6 + Qsat

Ksat

)
= Kτ . (A22)

The FS terms could be decomposed into the Coulomb and
surface contributions. The Coulomb term reads

K̄A,Coul = −3CCoul

5

Z2e2

RA

1

A

(
8 + Qsat

Ksat

)
= K̄CoulZ

2A−4/3,

(A23)

with

K̄Coul = −3CCoul

5

e2

r0

(
8 + Qsat

Ksat

)
. (A24)

The surface term reads

K̄A,surf = (
K̄CLDM

surf + K̄DD,σ̇
surf + K̄DD,σ̈

surf

)
A−1/3, (A25)

with

K̄CLDM
surf = Csurf 8πr2

clσsurf

(
11 + Qsat

Ksat

)
, (A26)

K̄DD,σ̇
surf = −Csurf 12πnclr

2
cl

∂σsurf

∂ncl

(
10 + Qsat

Ksat

)
, (A27)

K̄DD,σ̈
surf = Csurf 36πn2

clr
2
cl

∂2σsurf

∂n2
cl

. (A28)

Note that the first-derivative term, K̄DD,σ̇
surf , is expected to

be small since ∂σsurf/∂ncl ∝ xcl ≈ 0. To compare the above
finite-size contributions for Eq. (A18) with Eq. (6.3) of
Blaizot [4], we shown in Appendix C how to write K̄A,FS in
Blaizot notation.

5. Sensitivity analysis

We analyze the impact of both the isoscalar NEPs (Esat,
nsat, Ksat, and Qsat) in Fig. 11, and the isovector NEPs (Esym,
Lsym, and Ksym), in Fig. 12. The results obtained from the
microscopic CHFB calculation based on the Skyrme SLy5
Hamiltonian [33] are shown in red square for the two figures.
The experimental data of Table IV are shown in black with
their error bars.

In Fig. 11 we show the impact of the isoscalar parameters
Esat and nsat (top), Ksat and Qsat (bottom). The effects of Esat

and nsat are very small and almost unnoticeable. However,
the incompressibility modulus Ksat largely impacts KA with
a positive correlation: the larger Ksat the larger KA. The impact
of Qsat is also large but less linear: there is a crossing value
for A for which the impact of Qsat is negligible. On the left
of this crossing A, Qsat is correlated with KA and on the right
of it, it is anticorrelated. The red dashed line represents the
eCLDM results using SLy5 Skyrme force. The value for Ksat

which predict KA above the experimental data in Sn, predict
KA below them in Pb. It is then difficult to fix accurately Ksat

to reproduce experimental data in both Sn and Pb isotopes.
The difficulty to reproduce Sn and Pb isotopes within the same
nuclear force is indeed well known in the literature [57–59].
However, it is possible to use the NEP Qsat which impact KA,
in a different way compared with Ksat, as previously com-
mented. To reconcile eCLDM with nuclear data, a low value
for Qsat is preferred.

We now analyze the impact of the isovector NEPs. In
Fig. 12 we plot eCLDM predictions assuming the Skyrme
SLy5 Hamiltonian (red dashed lines), and then as for the
isoscalar NEPs, we vary the NEPs one after another. As
expected, these parameters do not impact KA in symmetric
nuclei, and have an impact which increases as the isospin
asymmetries increase. The impact of Esym (top panel) is, how-
ever, invisible at the scale of the figure, while Lsym (middle
panel) and Ksym (bottom panel) have larger impacts: Lsym is
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FIG. 12. Same as Fig. 11 but for variation on the isovector em-
pirical parameters Esym (top), Lsym (center), and Ksym (bottom).

anticorrelated with KA, while Ksym is correlated with KA. As
the isospin asymmetry of the isotopes increases, the impact
of these isovector NEPs gets larger and larger. The larger
decrease of KA as function of A in Sn isotopes, is obtained
for large values of Lsym, but a low value of Ksym could also
simulate the same effect.

None of the variations around the SLy5 Skyrme force
seems to be preferred by the data. It is then difficult, from
this sensitivity analysis, to detect which parameter set best
reproduces the experimental nuclear data: the role of the
different NEPs is complex and the values which suggest
a better description of the data seem far from the SLy5
values. To search for the best parameter set, it is then
necessary to have a more global approach, where all the
NEPS could be varied together, which is what we present in
Sec. IV B.

APPENDIX B: EXPRESSION FOR xcl IN FINITE NUCLEI

We follow the approach of Blaizot [4] and rewrite xcl as
follows: From the definition of the compressibility χ (n),

χ = 1

n

(
dP

dn

)−1

, we have
dP

dn
= 1

nχ
. (B1)

In N = Z nuclei, P = PA,SM, and by integrating (B1) from
saturation (nsat) to equilibrium (ncl),

PA,SM(ncl ) − PA,SM(nsat ) =
∫ ncl

nsat

1

nχ
dn. (B2)

By definition PA,SM(nsat ) = 0, and for xcl is close to nsat we
approximate χ (n) ≈ χ (n0) with n0 ∈ [nsat, ncl], leading to

PA,SM(ncl ) ≈ 1

χ (n0)
ln

ncl

nsat
≈ 1

χ (n0)

ncl − nsat

nsat
. (B3)

Since K = 9/(nχ ), we have

1

χ (n0)
= n0KA,SM(n0)

9
≈ nclKsat

9
, (B4)

since KA,SM is an increasing function of the density. Finally,
we obtain

xcl = ncl − nsat

3nsat
= 3

nclKsat
PA,SM(ncl ). (B5)

Equation (B5) could be interpreted as follows: there is an
equivalence between the density shift xcl which is different
from zero for densities different from nsat, as an effect of an
external pressure PA,SM, shifting the equilibrium density to a
slightly different one. In finite nuclei, this extra-pressure is
originating from the FS and isospin asymmetry terms, since
PA(ncl ) = 0. We therefore deduce PA,SM(ncl ) = −PA,FS(ncl ) −
δ2PA,sym(ncl ), and we can rewrite Eq. (B5) as

xcl = − 3

nclKsat
[PA,FS(ncl ) + δ2PA,sym(ncl )]. (B6)

APPENDIX C: CONTRIBUTIONS TO THE
INCOMPRESSIBILITY MODULUS WITHIN

THE BLAIZOT NOTATION

In the original notations of Blaizot [4], the NEP where
not used but instead the third derivative of the energy density
ε was used. Using the original notations, we obtain for the
Coulomb contribution,

K̃A,Coul = 3

5

Z2e2

ARA

(
1 − 27n2

sat

Ksat

d3ε

dn3

)
, (C1)

and for the surface contribution,

K̃CLDM
surf = 16πr2

clσsurf

(
1 + 27

2

n2
sat

Ksat

d3ε

dn3

∣∣∣∣
nsat

)
, (C2)

K̃DD,σ̇
surf = −12πnclr

2
cl

∂σsurf

∂ncl

(
1 + 27

n2
sat

Ksat

d3ε

dn3

∣∣∣∣
nsat

)
, (C3)

K̃DD,σ̈
surf = 36πn2

clr
2
cl

∂2σsurf

∂n2
cl

, (C4)
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where the relation between the NEP and the third derivative
of the energy density can be obtained by using

27n2
sat

d3ε

dn3

∣∣∣∣
nsat

= 9Ksat + Qsat. (C5)

APPENDIX D: RELATION BETWEEN THE DERIVATIVES
IN ncl AND THOSE IN RA IN THE EXTENDED

COMPRESSIBLE LIQUID DROP MODEL

In this section, we provide the relations between derivative
as function of ncl and as function of RA, considering the

conservation of mass number A = 4
3πR3

Ancl. These relations
are employed in finite nuclei, see for instance Eq. (52), since
the FS terms have an explicit dependence on RA while the bulk
terms depend on ncl.

We have the following relations for the first-order deriva-
tives:

∂

∂ncl

∣∣∣∣
A

= − RA

3ncl

∂

∂RA

∣∣∣∣
A

,
∂

∂RA

∣∣∣∣
A

= −3ncl

RA

∂

∂ncl

∣∣∣∣
A

, (D1)

and for the second derivative:

∂2

∂R2
A

∣∣∣∣
A

= 12
ncl

R2
A

∂

∂ncl

∣∣∣∣
A

+ 9
n2

cl

R2
A

∂2

∂n2
cl

∣∣∣∣
A

. (D2)
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