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Nuclear shell structure in a finite-temperature relativistic framework
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The shell evolution of neutron-rich nuclei with temperature is studied in a beyond-mean-field framework
rooted in the meson-nucleon Lagrangian. The temperature-dependent Dyson equation with a dynamical kernel
taking into account the particle-vibration coupling (PVC) is solved for the fermionic propagators in the basis
of the thermal relativistic mean-field Dirac spinors. The calculations are performed for 68–78Ni in a broad range
of temperatures 0 � T � 4 MeV. Special focus is put on the fragmentation pattern of the single-particle states,
which is further investigated within toy models in truncated model spaces. Such models allow for quantifying the
sensitivity of the fragmentation to the phonon frequencies, the PVC strength, and the mean-field level density.
This study provides insights into the temperature evolution of the PVC mechanism in real nuclear systems
under the conditions which occur in astrophysical environments. In this connection, we discuss the temperature-
dependent nucleon effective mass and symmetry energy coefficient, which are key ingredients of the nuclear
equation of state.
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I. INTRODUCTION

Understanding the behavior of atomic nuclei and nu-
clear matter at finite temperature is extremely important for
advancements at the frontiers of nuclear science. The modifi-
cation of in-medium nucleonic correlations with temperature
changes considerably the nuclear structure, leading to the
transition to the nonsuperfluid phase, weakening of collec-
tive effects, the appearance of shape fluctuations, and the
formation of new structures in the excitation spectra due
to thermal unblocking [1–6]. Microscopic interpretation of
these phenomena is crucial for accurate predictions of nu-
clear processes in astrophysical environments, such as neutron
star mergers and supernovae [7–12]. As found in the recent
studies of Refs. [6,13], the emergent effects of many-body
correlations, of both collective and noncollective origin, play
a decisive role in the key nuclear reaction rates employed
in r-process nucleosynthesis and core-collapse supernovae
(CCSN) simulations. Precise knowledge of the evolution of
nuclear emergent phenomena with temperature is, therefore,
mandatory for a high-quality nuclear physics input utilized in
astrophysical modeling [7,14–16].

The equation of motion (EOM) method builds a systematic
framework for the description of many-body correlations, in
particular, in strongly coupled fermionic systems [17–22].
Within this framework, EOMs are generated for various time-
dependent quantities, such as the correlation functions of field
operators. One of the simplest correlation functions is the
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fermionic propagator through the correlated medium, which
is directly related to the energies of quasiparticles and their
occupancies of the basis orbitals [23,24]. In principle, the
single-particle propagators of the states below the Fermi en-
ergy define completely the total ground state energy of the
system, if the underlying Hamiltonian is confined by the two-
body interaction, via the Midgal-Galitski-Koltun sum rule
[25,26]. This fact is, in turn, in compliance with the density
functional theory, where the total ground state energy is de-
fined by the one-body density, which is the static limit of
the single-particle propagator. Thus, the correlated one-body
propagator plays a fundamental role in the description of
quantum many-body systems.

However, the exact EOM for the one-body propagator
does not have a closed form. Instead, it contains higher-rank
propagators in the dynamical part of the interaction kernel,
namely, the two-body propagator in the nonsymmetric form
and the three-body propagator in the symmetric form of this
kernel [27,28]. This requires external EOMs for the latter
propagators, which, in turn, are coupled to even higher-rank
ones through the more complex dynamical kernels, leading to
a hierarchy of coupled EOMs. In nuclear physics applications,
however, quantitatively most important coupling is the one
between the one-body and two-body propagators, while the
two-body EOM can be formulated in various approximations
which allow one to truncate the hierarchy of EOMs on a
certain level with a reasonable accuracy.

The simplest descriptions of quantum many-body systems
take the dynamical kernels of the EOMs into account in
static approximations. Such descriptions are confined by one-
body densities and propagators and include the Hartree-Fock
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approach [29–31], the random phase approximation (RPA)
[32], the Gor’kov theory of superfluidity [33], and the
Bardeen-Cooper-Schrieffer (BCS) model [34], to name a few.
Needless to say, such approximations neglect the explicit
coupling between the one-body and two-body EOM’s and,
thus, are insufficient for an accurate description of nuclear
phenomena, which is required for modern applications and for
a deep understanding of emergent effects. A better accuracy
can be achieved by cluster expansions of the dynamical ker-
nels of both the one-body and two-body fermionic EOMs in
terms of the two-time two-body correlation functions, as dis-
cussed, e.g., in the context of condensed matter and quantum
chemistry applications [17–19,21]. For the nuclear physics
calculations, possible truncation schemes of the dynamical
kernels on the two-body level were discussed, for instance,
in Ref. [27]. The great advantage of the EOM method is that
both the static and dynamical kernels are derived consistently
from the same underlying bare interaction. In nuclear physics,
however, the implementations of EOM-based methods with
dynamical kernels still mainly employ effective interactions.

Early approaches postulated phenomenological Hamil-
tonians implying the existence of fermionic quasiparticles
and phonons of a bosonic origin [35–43]. In such ap-
proaches the effective residual interaction between fermions
is supplemented by the phonon-exchange interaction, or
(quasi)particle-vibration coupling [(q)PVC]. Relatively sim-
ple calculation schemes are possible with the use of effective
phenomenological interactions; however, more accurate and
sophisticated versions of PVC were successfully implemented
over the years [27,44–52]. The models, which operate mostly
the phonon degrees of freedom [40–43], include correlations
of high complexity, and a few attempts using bare nucleon-
nucleon interactions were reported [53–56].

In this work we examine the EOM for the one-body
propagator, which is, in its most general form, the Dyson
equation. We consider the finite-temperature case and employ
the approach developed in Ref. [57] as an extension of the
zero-temperature PVC model [58,59]. These approaches are
both built upon relativistic quantum hadrodynamics [60–63],
adopting the PVC mechanism [27,64–66] for the induced
interaction. As follows from Refs. [27,65], PVC is the lead-
ing contribution to the one-fermion dynamical kernel, or
the self-energy, in finite nuclei. Qualitatively similar to the
phenomenological PVC proposed quite early by Bohr and
Mottelson [35,36], further developed in Refs. [64,67–72] and
later in self-consistent approaches [58,59,73,74], it is now
understood in terms of the EOM derived from bare nucleon-
nucleon interactions [27,28]. In this work we still keep the
phenomenological effective interaction adjusted in the frame-
work of the covariant density functional theory (CDFT) [63]
for the static part of the EOM kernel and the PVC, that allows
one to obtain the PVC vertices and phonon propagators within
the relativistic random phase approximation (RRPA) with
good accuracy. This feature remains intact also at finite tem-
perature, which is another important ingredient of our present
study. We focus on a systematic application of the approach
to the temperature evolution of the PVC mechanism in the
neutron-rich even-even nuclei 68–78Ni, which are of interest for
various astrophysical applications. These nuclei represent a

high-sensitivity region of the nuclear chart for both r-process
nucleosynthesis and CCSN. In particular, the PVC effects are
responsible for a nontrivial behavior of the nucleon effective
mass and symmetry energy, and this connection propagates to
a non-negligible temperature dependence of these quantities
in stellar environments with sizable impacts on the stellar
evolution [14,15,75–77].

II. DYSON EQUATION FOR THE FERMIONIC
PROPAGATOR AT FINITE TEMPERATURE

We define the hot nucleus as a system of Dirac nucleons
moving in a self-consistent field generated by an effective
meson-nucleon interaction at finite temperature. The elec-
tromagnetic interaction between protons is mediated by the
photon. One of the most convenient ways to quantify the
single-particle motion in a fermionic many-body system is
to evaluate the one-fermion propagator (also called Green
function), which describes the motion of a fermion through
the correlated medium formed by N identical interacting
fermions. The advantage of such a description is the sim-
ple relationship of this propagators to the excitation spectra
and ground-state properties of the systems with (N + 1) and
(N − 1) fermions. In this work we are interested in nuclear
systems in thermal equilibrium with the surroundings, that can
be associated with a certain temperature. The temperature, or
Matsubara, propagator of a fermion is defined as [78–80]

G (1, 1′) ≡ Gk1k1′ (τ1 − τ1′ ) = −〈Tτψ (1)ψ (1′)〉, (1)

where the angular brackets stand for the thermal average
[79,80] and the chronological ordering operator Tτ acts on the
fermionic field operators in the Wick-rotated picture:

ψ (1) ≡ ψk1 (τ1) = eH τ1ψk1 e−H τ1,

ψ (1) ≡ ψ
†
k1

(τ1) = eH τ1ψ
†
k1

e−H τ1 . (2)

In Eq. (2), the evolution is determined by the operator H =
H − μN , where H is the many-body Hamiltonian, μ is the
chemical potential, and N denotes the particle number. The
subscript k1 defines the full set of the single-particle quantum
numbers in a given representation, while the imaginary time
variable τ is related to the real time t as τ = it . The fermionic
fields ψk1 and ψ

†
k1

satisfy the usual anticommutation relations.
For the many-body Hamiltonian H containing only the

free-motion and the mean-field contributions, i.e., confined
by the one-body part, the single-fermion Matsubara Green
function reads

G̃ (2, 1) =
∑

σ=±1

G̃ σ (2, 1),

G̃ σ (2, 1) = −σδk2k1 n( − σ (εk1 − μ), T )e−(εk1 −μ)τ21θ (στ21),

(3)

where τ21 = τ2 − τ1 and εk1 are the eigenvalues of the single-
particle Hamiltonian diagonal in the {ki} basis. Accordingly,
n(ε, T ) is the Fermi-Dirac distribution

n(ε, T ) = 1

exp(ε/T ) + 1
(4)
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at the temperature T and characterizes the mean-field occu-
pancies of the orbits with the given single-particle energies.
The Fourier transform of the propagator (3) to the energy
domain,

G̃k2k1 (ε�) =
∫ 1/T

0
dτeiε�τ G̃k2k1 (τ ), (5)

leads to its spectral representation

G̃k2k1 (ε�) = δk2k1 G̃k1 (ε�), G̃k1 (ε�) = 1

iε� − εk1 + μ
, (6)

defined at the discrete Matsubara frequencies ε�,

ε� = (2� + 1)πT, (7)

with the integer �. In Eqs. (3)–(6) we indicate the mean-field
character of the respective Green function by the “̃ ” symbol.

The presence of two-body and higher-rank terms in the
many-body Hamiltonian induce correlations beyond mean
field originated from the residual interaction. The correlated
propagator can be found as a solution of the Dyson equation

Gk1k2 (ε�) = G̃k1k2 (ε�) +
∑
k3k4

G̃k1k3 (ε�)
e
k3k4

(ε�)Gk4k2 (ε�), (8)

where the energy-dependent mass operator (i.e., self-energy)

e describes the coupling between single fermions and in-
medium emergent degrees of freedom. In this work, we
employ the PVC model for 
e, which approximates the ex-
act energy-dependent self-energy 
e by a cluster expansion
truncated at the two-body level [27]. This self-energy, in the
leading approximation, reads


e
k1k2

(ε�) = −T
∑
k3,m

∑
�′

∑
σ=±1

G̃k3 (ε�′ )
σgm(σ )

k1k3
gm(σ )∗

k2k3

iε� − iε�′ − σωm
, (9)

where gm are the phonon vertices and ωm are their frequencies.
The vertices corresponding to the specific frequencies can be
extracted from the EOM for the two-fermion propagators as
follows:

gm
k1k2

=
∑
k3k4

Ũk1k4,k2k3ρ
m
k3k4

, (10)

gm(σ )
k1k2

= δσ,+1gm
k1k2

+ δσ,−1gm
k2k1

, (11)

where ρm
k3k4

are the matrix elements of the transition density
for the mth mode of excitation of the N-particle system and
Ũk1k4,k2k3 are the matrix elements of the nucleon-nucleon inter-
action. As shown in Ref. [27], the relationship (10) is model
independent and includes the exact transition densities, while
the interaction Ũ is the bare interaction between nucleons in
the vacuum. In practice, employing effective interactions and
the random phase approximation based on these interactions
for the computation of the phonon characteristics provides
quite a realistic description of the dynamical self-energy. In
this work, we use the effective interaction of the covari-
ant energy density functional (CEDF) [62,63] with the NL3
parametrization [82] and the relativistic random phase ap-
proximation [83] adopted to finite temperature in our previous
developments for calculations of the phonon modes [4,5,81].

The summation over �′ in Eq. (9) is transformed into a
contour integral by the standard technique [80]. The final
expression for the mass operator 
e, after the analytical con-
tinuation to complex energies, takes the form


e
k1k2

(ε) =
∑
k3,m

{
gm

k1k3
gm∗

k2k3

N (ωm, T ) + 1 − n(εk3 − μ, T )

ε − εk3 + μ − ωm + iδ

+ gm∗
k3k1

gm
k3k2

n(εk3 − μ, T ) + N (ωm, T )

ε − εk3 + μ + ωm − iδ

}
, (12)

where δ → +0, and

N (ωm, T ) = 1

exp(ωm/T ) − 1
(13)

are the occupation numbers of phonons with frequencies ωm,
which arise from the summation over �′ in Eq. (9).

As in Ref. [57], in this work the self-energy (12) is treated
in the diagonal approximation: 
e

k1k2
(ε) = δk1k2


e
k1

(ε). Fur-
thermore, Eq. (8) is equivalent to the nonlinear equation

[ε − εk + μ − 
e
k (ε)]Gk (ε) = 1 (14)

for each single-particle state k. The poles of the propagator
Gk (ε) correspond to the zeros of the function

f (ε) = ε − εk + μ − 
e
k (ε). (15)

For each single-particle mean-field state k, there exist multiple
solutions ε

(λ)
k numbered by the additional index λ. In other

words, the pole character of the energy-dependent self-energy

e

k (ε) causes fragmentation of the single-particle states k due
to the PVC mechanism. The solutions ε

(λ)
k can be determined

by finding the zeros of f (ε) or, alternatively, by the diagonal-
ization of the arrowhead matrix [58,67]:⎛⎜⎜⎜⎜⎝

εk − μ ξ
m1(σ )
n1k ξ

m2(σ )
n2k · · ·

ξ
m1(σ )∗
n1k εn1 − μ − σωm1 0 · · ·

ξ
m2(σ )∗
n2k 0 εn2 − μ − σωm2 · · ·

...
...

...
. . .

⎞⎟⎟⎟⎟⎠,

(16)
where

ξ
m(σ )
nk = gm(σ )

nk

√
N (ωm, T ) + n(σ (εn − μ), T ), σ = ±1.

(17)
In the vicinity of the pole ε

(λ)
k , where the function f (ε) can be

approximated by

f (ε) ≈ (
ε − ε

(λ)
k

)[
1 − d

dε

e

k (ε)

]
ε=ε

(λ)
k

, (18)

the correlated Matsubara Green function Gk (ε) reads

G (λ)
k (ε) ≈ S(λ)

k

ε − ε
(λ)
k

, (19)

with the spectroscopic factor

S(λ)
k =

[
1 − d

dε

e

k (ε)

]−1

ε=ε
(λ)
k

. (20)

The spectroscopic factor S(λ)
k provides a measure for the occu-

pancy of the state λ with the single-particle quantum number
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k. The spectroscopic factors S(λ)
k and the energies of the cor-

related states ε
(λ)
k satisfy the well-known sum rules [84]∑
λ

S(λ)
k = 1,

∑
λ

ε
(λ)
k S(λ)

k = εk, (21)

which remain valid at finite temperature.

III. NUMERICAL SCHEME

The numerical implementation is performed in three steps.
(i) The closed set of the relativistic mean-field (RMF) equa-
tions with the NL3 parametrization [82] and the thermal
fermionic occupation numbers (4) is solved in a self-
consistent cycle. This procedure outputs the single-particle
spectrum as a set of temperature-dependent single-particle
Dirac spinors and the corresponding energies, which form
the basis {ki} employed in further calculations. (ii) The finite-
temperature RRPA (FT-RRPA) equations are solved to obtain
the phonon vertices gm and their frequencies ωm. The FT-
RRPA phonon spectrum with the RMF single (quasi)particles
build the p ⊗ phonon and h ⊗ phonon configurations for
the PVC self-energy 
e(ε). (iii) Equation (8) is solved in
the configuration space, truncated as described in [57]. The
PVC self-energy 
e(ε) is treated in the diagonal approx-
imation, i.e., 
e

k1k2
(ε) = δk1k2


e
k1

(ε). Pairing correlations at
T = 0 are taken into account in all the three steps: in the
Bardeen-Cooper-Schrieffer (BCS) approximation [34] for the
mean-field calculations, in the relativistic quasiparticle RPA
(RQRPA) [85] for the calculations of the phonon spectra, and
in the approach of Ref. [59] for the solution of the Dyson
equation. Pairing correlations were neglected in calculations
at temperature T � 1 MeV as the critical temperature of the
superfluid phase transition is around 1 MeV for the considered
nuclei.

The particle-hole (ph) configurations with the energies
εph � 100 MeV and the antiparticle-hole (αh) ones with
εαh � −1800 MeV, with respect to the positive-energy contin-
uum, were included in the particle-hole basis for the FT-RRPA
and RQRPA calculations of the phonon spectra. The exci-
tation spectra converge reasonably well with this truncation,
as verified by direct calculations within the complete RMF
basis. The resulting vibrations with the spin-parities Jπ =
2+, 3−, 4+, 5−, 6+ below the energy cutoff of 20 MeV
formed the phonon model space. This cutoff is also justified
by our previous calculations [57]. A further truncation of the
phonon space was made according to the values of the reduced
transition probabilities of the corresponding electromagnetic
transitions B(EL). Namely, the phonon modes with B(EL)
values equal to or more than 5% of the maximal one for
each Jπ were retained in the self-energy 
e(ε). The same
truncation criteria were applied for all temperature regimes.
As in our previous calculations [4,5,57,81], at high tempera-
tures many additional phonon modes appear in the excitation
spectra as a consequence of the thermal unblocking, which
leads to a significant expansion of the phonon model space
with the temperature growth. The single-particle intermediate
states k3 were included in the summation of Eq. (12) under
the condition |εk3 − εk1 | � 50 MeV. The latter implies another

TABLE I. The zero-temperature pairing gaps �p(T = 0) and
critical temperatures Tc for even-even 68–76Ni nuclei.

68Ni 70Ni 72Ni 74Ni 76Ni

�p(T = 0) (MeV) 1.57 1.55 1.41 1.49 1.30
Tc (MeV) 0.94 0.93 0.85 0.90 0.78

truncation of the model space, which is mild enough that the
results converge. In contrast to the number of phonon modes,
the number of intermediate fermionic states changes only little
with temperature.

IV. RESULTS AND DISCUSSION

A. The single-(quasi)particle states: (q)PVC and temperature
evolution in 68–78Ni isotopic chain

The numerical implementation was performed for the
chain of neutron-rich even-even Ni isotopes with atomic num-
bers A = 68–78, which lie on the r-process path and belong
to the high-sensitivity region of the nuclear landscape with
respect to the electron capture in CCSN [7–12]. We investi-
gated the thermal evolution of the single-particle states located
within the 20 MeV energy window around the respective
Fermi energies of the neutron and proton subsystems. Among
the selected isotopes, 78Ni is a closed-shell nucleus as well as
the proton subsystems of the other five Ni isotopes. The neu-
tron subsystems of 68,70,72,74,76Ni are open shell. As discussed
in detail in Refs. [57,86], the superfluidity in the Bogoli-
ubov or BCS sense vanishes at the critical temperature Tc ≈
0.6�p(T = 0), where �p(T = 0) is the pairing gap �p at zero
temperature. In realistic self-consistent finite-temperature cal-
culations the coefficient between Tc and �p(T = 0) can be
slightly different, for instance in the relativistic RMF+BCS
calculations it can get close to 0.7 [57,86]. In the approaches
beyond BCS the critical temperature further increases as
shown, in particular, in Ref. [86]. In this work, however, we
stay within the RMF+BCS description, where the critical
temperature is around or below 1 MeV for the selected nuclei.
Their zero-temperature neutron pairing gaps �p(T = 0) were
determined using the three-point formula [87] and the data
on the nuclear binding energies from Ref. [88]. The empirical
values of the pairing gap �p(T = 0) and the corresponding
empirical critical temperature Tc for the even-even 68–76Ni nu-
clei are shown in Table I. Since our results below are presented
on 1 MeV temperature grid, the pairing correlations are taken
into account only at T = 0.

The reference single-particle spectra for 68–78Ni isotopes
obtained within the RMF(+BCS) approach at zero and fi-
nite temperature are shown in Figs. 1(a)–1(f). At T = 0, the
sizable effect of neutron pairing correlations is restricted by
the neighborhood of the Fermi surface. This is reflected in
the presented spectra, while the pure single-particle levels
computed without pairing at T = 0 are not very different from
those at T = 1 MeV. As a result of pairing correlations, the
neutron states above (below) the Fermi surface are displaced
towards higher (lower) energies. Since the chemical potential
of the neutron subsystem increases with the increase of the
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FIG. 1. Single-particle states in (a) 68Ni, (b) 70Ni, (c) 72Ni, (d) 74Ni, (e) 76Ni, and (f) 78Ni isotopes at zero and finite temperature calculated
within the RMF approximation.

neutron number, the intruder state 1g9/2, shifted upward in
68–72Ni isotopes, is shifted downward in 74,76Ni isotopes. As
mentioned above, superfluid pairing does not show up in the
closed-shell 78Ni and in the closed-shell proton subsystems
of 68–76Ni isotopes, although the proton states are implicitly

affected by the neutron superfluidity via the self-consistent
mean field.

In general, one observes that the neutron addition induces
displacements of the proton states altogether towards lower
energies. As a result, the two proton shell gaps, which are
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associated with the magic numbers 20 and 28, are slightly
diminished with the increase of the neutron number. In the
neutron subsystems of 68–76Ni isotopes, one observes an
abrupt change of the neutron mean-field energies at a temper-
ature between T = 0 and T = 1 MeV due to the superfluid
phase transition at the critical temperatures Tc, given in Ta-
ble I. In contrast, the doubly-magic 78Ni nucleus shows a
smooth development of the neutron mean-field energies due to
the absence of the superfluid phase transition. As the temper-
ature increases from T = 1 MeV to T = 4 MeV, the neutron
mean-field states in the major shell display a tendency to den-
sify. Analogously to the case of T = 0, at T > 0 the proton
mean-field states of isotopes with larger neutron numbers also
have lower energies. The overall trend of the proton mean-
field energies exhibits a gradual increment of 1–2 MeV in the
1 � T � 4 MeV temperature interval.

Figures 2(a)–2(f) display the dominant fragments of both
neutron and proton single-particle states for 68–78Ni iso-
topes computed within the RMF+PVC approach. As in
Refs. [57–59], we select the dominant fragment for each
mean-field state according to the spectroscopic factors of
the fragments. Generally, the dominant fragment is the one
with the largest spectroscopic factor. In the vicinity of the
Fermi energy there is typically one fragment with the spec-
troscopic factor of ≈0.7–0.9, while the other fragments are
characterized by considerably smaller spectroscopic factors
(below 0.1). This fragmentation pattern is preserved at all
temperatures. The neutron 1g9/2 state and the proton 1 f7/2

state of 68–78Ni isotopes are examples of this pattern and are
called good single-particle states. The dominant fragments
of these states have energies rather close to the energies of
the original mean-field states. The states far away from the
Fermi surface are either strongly or weakly fragmented. The
strongly fragmented states are characterized by the presence
of two (rarely more) competing fragments with comparable
spectroscopic factors. The first fragment is chosen to be the
fragment with the largest spectroscopic factor, while another
fragment has a spectroscopic factor not smaller than 40% of
the spectroscopic factor of the first fragment. Analogously to
the good single-particle states, these two dominant fragments
have energies close to their original mean-field energies. The
weakly fragmented states are characterized by one fragment
with a dominant spectroscopic factor, while other fragments
have spectroscopic factors smaller than 40% of the spectro-
scopic factor of the first fragment. In this case, the dominant
fragment is well defined as the one with the largest spectro-
scopic factor. The energy of the dominant fragment is again
close to the original mean-field energy. The degree of frag-
mentation of a state far away from the Fermi surface can vary
with temperature. One example is the neutron 2p3/2 state in
74Ni, as displayed in Fig. 2(d). While the neutron 2p3/2 state
is weakly fragmented at T = 0 and T = 3 MeV, it is strongly
fragmented at T = 1 MeV, T = 2 MeV, and T = 4 MeV with
0.30/0.27, 0.17/0.33, and 0.30/0.16 shares of spectroscopic
factors, respectively. The degree of fragmentation of the same
state can also vary along the isotopic chain. At T = 1, the neu-
tron 2p3/2 state is a good single-particle state in 68,70,72Ni [see
Figs. 2(a)–2(c)], whereas it is a strongly fragmented state in
74,76Ni [see Figs. 2(d) and 2(e)]. At the same temperature, the

neutron 2p3/2 state is a weakly fragmented state in the doubly-
magic 78Ni nucleus [Fig. 2(f)]. In contrast to the neutron 2p3/2

state, which can be strongly fragmented at some temperatures,
the proton 2p1/2, 1 f5/2, and 2p3/2 states of 68–78Ni isotopes are
either good single-particle states or weakly fragmented states,
as shown in the right panels of Figs. 2(a)–2(f).

For the states remote from the Fermi surface, one often
encounters two or more fragments, which exhibit compa-
rable spectroscopic factors. An example of such states is
the neutron 1 f7/2 state of 68–78Ni isotopes. The temperature
evolution of this state in 72Ni is illustrated in Fig. 3. In gen-
eral, we observe a consistent fragmentation pattern, which is
preserved throughout all temperatures. For each temperature,
there exists a cluster of fragments with energies lower than the
mean-field energy (low-energy cluster), and another cluster
with energies larger than the mean-field energy (high-energy
cluster). Each cluster has one or two major fragments with
relatively large spectroscopic factors. In this case, the major
fragments play the role of the dominant fragments. At T = 0,
the dominant fragments consist of three major fragments.
The low-energy fragment has the spectroscopic factor 0.20,
while each of the other two fragments has the spectroscopic
factor 0.13. The phase transition, which occurs around T = 1
MeV, together with the beginning of the thermal unblocking,
modifies the strength distribution from a predominantly three-
peak structure to a predominantly two-peak structure. As the
temperature increases from T = 2 MeV to T = 4 MeV, the
low-energy major fragment dominates, and the high-energy
cluster exhibits a strong fragmentation. For comparison, the
temperature evolution of the proton 2s1/2 state is illustrated
in Fig. 4. Analogously to the neutron 1 f7/2 state, the proton
2s1/2 state also exhibits a two-cluster structure, where the clus-
ters are located on opposite sides of the original mean-field
state. At T = 0, the dominant fragments are the two major
fragments with 0.25/0.48 share of the spectroscopic factors.
As the temperature increases, the low-energy cluster becomes
strongly fragmented, while the high-energy major fragment
in the vicinity of the Fermi energy behaves as a good single-
particle state. A similar fragmentation pattern holds for the
proton 2s1/2 state in other Ni isotopes. Another example from
the neutron subsystem is represented by the neutron 1g7/2

state, which is a particle state, i.e., located above the Fermi
energy. In 68–72Ni isotopes, this state exhibits a fragmentation
pattern similar to that of the neutron 1 f7/2 state in all tempera-
ture regimes, as shown in Figs. 2(a)–2(c). However, in 74–78Ni
isotopes, the state 1g7/2 suddenly becomes a good single-
particle state at T = 1 MeV, though it is gradually becoming
more fragmented at higher temperatures [see Figs. 2(d)–2(f)].

Thereby, while the evolution of the good single-particle
states in all Ni isotopes is quite similar to the evolution
of the corresponding mean-field states, the evolution of the
states remote from the Fermi surface exhibits various sce-
narios in both neutron and proton subsystems. The evolution
of single-particle states in the proton subsystem remains al-
most unchanged across the Ni isotopic chain. In contrast, a
significant modification of the fragmentation pattern occurs
in the neutron subsystem. Therefore, we confine our further
discussion to only the neutron single-particle states. To ac-
quire detailed understanding of the fragmentation mechanism
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FIG. 2. The dominant fragments of the single-particle states in (a) 68Ni, (b) 70Ni, (c) 72Ni, (d) 74Ni, (e) 76Ni, and (f) 78Ni isotopes at zero
and finite temperature calculated in the RMF+PVC approximation. For the strongly fragmented states, two dominant fragments are shown,
and their spectroscopic factors are specified.

caused by the PVC, we examine some simplistic (toy) models
of varying complexity in the Appendix. This study allows
us to determine the essential factors that are responsible for
the fragmentation patterns of the single-particle states at finite
temperature.

Summarizing our qualitative study within the simplistic
models, we particularly conclude that

(1) The number Nλ of fragments generated by the PVC for
each phonon mode coupled to a single-particle state k
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FIG. 3. Temperature evolution of the neutron 1 f7/2 state of the
72Ni isotope. The pure mean-field state is represented by the dotted
line, while the blue bars indicate the spectroscopic factors of the frag-
mented states. The dashed line corresponds to the chemical potential.

satisfies the following equation:

Nλ = 2Nk3 + 1, (22)

where Nk3 denotes the number of intermediate states k3

in the mass operator 
e (12).
(2) The energy differences between a specific state k

and its neighboring states determine the degree of
fragmentation of the state k. The state k is strongly
fragmented if the energy differences are small.

(3) The low-frequency phonons play the most important
role in the fragmentation of the single-particle states.

B. The influence of phonons

Our qualitative study within the toy models presented in
the Appendix is very instructive for understanding the gen-
eral trends of the PVC mechanism; however, the toy models
cannot explain the whole variety of fragmentation patterns.
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FIG. 4. Same as Fig. 3, but for the proton 2s1/2 state of the 72Ni
isotope.

The deficiency of the simplistic toy models is that they do
not take into account the spins and parities of the mean-field
states and of the various phonon modes. For example, the
parity of the mean-field hole states 2p1/2, 2p3/2, 1 f5/2, and
1 f7/2 is negative. Consequently, the transitions between these
mean-field hole states occur due to coupling to the positive-
parity phonons, e.g., 2+ and 4+ phonons. Some mean-field
particle states, such as 2d5/2, 3s1/2, 2d3/2, and 1g7/2, have
a positive parity, whereas the states 3p3/2 and 3p1/2 lying
in the continuum have a negative parity. In addition to the
positive-parity phonons being responsible for the coupling
between the selected particle states, the transitions between
the bound and the continuum particle states originate from the
coupling to the negative-parity phonons, such as the 3− and 5−
phonons. Analogously to the bound state 1g7/2, the continuum
states 3p3/2 and 3p1/2 are either weakly or strongly frag-
mented in 68–72Ni isotopes at T > 0, and suddenly become
good single-particle states in 74–78Ni isotopes at T = 1 MeV.
For a quantitative comparison, Table II shows the temperature
evolution of the dominant fragments of the above mentioned
continuum states in 70,74Ni isotopes.

It was found in previous studies, for instance in [81,89],
that the low-energy collective quadrupole 2+ and octupole 3−
phonons couple most strongly to the single-particle degrees
of freedom. This is consistent with our qualitative study dis-
cussed in the Appendix, which emphasizes the importance
of the low-energy phonons for the fragmentation of single-
particle states. Recall that the phonon vertices gm

k1k2
are the

quantitative measure of the coupling strength for the given
phonon mode m, and they are related to the phonon transition
densities ρm

k1k2
by Eq. (10). For each phonon mode m, at T = 0

the corresponding reduced transition probability Bm(ω) reads

Bm(ω) =
∣∣∣∣∣∑

k1k2

V 0
k1k2

ρm
k1k2

(ω)

∣∣∣∣∣
2

, (23)

where V 0 is the external field, which induces an excitation
from the ground to the excited state m. At the pole of the cor-
responding response function ω = ωm the reduced transition
probability Bm(ωm) is related to the strength function S(ωm)
via [90]

S(ωm) = lim
�→+0

Bm(ωm)

π · �
, (24)

where � is the smearing parameter. From Eqs. (10), (23), and
(24), one deduces that the larger the strength function S(ωm)
is at the pole, the larger are the matrix elements of the phonon
vertices gm and the stronger is the PVC. A similar correlation
holds for the case of finite temperature [5,86]. Therefore, it
is instructive to investigate the temperature dependence of
the 2+ and 3− phonon low-energy strength functions. Fig-
ures 5(a)–5(f) display this dependence for the quadrupole
strength distributions in 68–78Ni. At T = 1 MeV, one ob-
serves an attenuation of the low-energy 2+ phonon strength
in 70Ni before seeing it intensifying in 72–78Ni. In contrast, a
gradual enhancement of the low-energy quadrupole phonon
strengths has also been observed across the Ni isotopes at
T > 1 MeV. These observations correlate with the behavior
of the neutron hole 2p1/2, 1 f5/2, and 2p3/2 states, which
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TABLE II. The temperature evolution of the dominant fragments of the continuum 3p1/2 and 3p3/2 states in 70,74Ni isotopes. Here εdom
k and

Sdom
k represent the energy and the corresponding spectroscopic factor for each dominant fragment.

T = 0 T = 1 MeV T = 2 MeV T = 3 MeV T = 4 MeV

εdom
k Sdom

k εdom
k Sdom

k εdom
k Sdom

k εdom
k Sdom

k εdom
k Sdom

k

Orbital (MeV) (MeV) (MeV) (MeV) (MeV)

70Ni
3p1/2 3.226 0.918 2.889 0.303 2.836 0.317 2.681 0.342 2.583 0.643

3.204 0.673 3.162 0.514 3.055 0.505 3.021 0.285
3p3/2 3.119 0.954 2.766 0.534 2.795 0.565 2.677 0.587 2.491 0.866

3.054 0.333 3.110 0.286
74Ni
3p1/2 3.082 0.348 2.992 0.885 2.948 0.245 2.750 0.386 2.213 0.379

3.106 0.602 3.053 0.536 2.938 0.186 2.689 0.569
3p3/2 2.979 0.950 2.884 0.967 2.624 0.292 2.538 0.348 2.209 0.622

2.825 0.662 2.707 0.175 2.508 0.279

are strongly fragmented in 74,76Ni isotopes, whereas they are
good single-particle states in 68–72Ni isotopes, as follows from
Figs. 2(a)–2(e). The temperature dependence of the octupole
strength distributions across the Ni isotopes is again different,
as shown in Figs. 6(a)–6(f). At T = 1 MeV, one observes a
slow but steady attenuation of the low-lying phonon strengths
throughout the Ni isotopes. At other temperatures, one ob-
serves rather a steady increase of the low-lying 3− phonon
strength. The attenuation of the low-lying phonon strengths
at T = 1 MeV is responsible, for instance, for the change

of the fragmentation pattern of the particle bound state 1g7/2

and of the continuum states 3p1/2 and 3p3/2, which transition
from being fragmented states in 68–72Ni to becoming good
single-particle states in 74–78Ni.

C. Temperature dependence of the nucleon effective
mass and symmetry energy

The nucleon effective mass is a very important character-
istic of nuclear matter and finite nuclei. On the microscopic

(a) (b) (c)

(d) (e) (f )

FIG. 5. Temperature dependence of the quadrupole (2+) phonon strength distributions in (a) 68Ni, (b) 70Ni, (c) 72Ni, (d) 74Ni, (e) 76Ni, and
(f) 78Ni.
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(a) (b) (c)

(d) (e) (f )

FIG. 6. Temperature dependence of the octupole (3−) phonon strength distributions in (a) 68Ni, (b) 70Ni, (c) 72Ni, (d) 74Ni, (e) 76Ni, and
(f) 78Ni.

level, it accounts for all effects of the strongly interacting
medium on a single nucleon via the self-energy, the dynamical
(energy-dependent) part of which is modeled by Eq. (9). The
static part of the self-energy is conventionally included in
the mean-field propagator (1), and it is associated with the
k mass [71,91,92]. The resulting effective mass peaks at the
Fermi surface, due to the pole structure of the dynamical
self-energy [71,91]. This functional dependence survives at
finite temperature, although its sharpness decreases with the
temperature growth [15,57]. Furthermore, the temperature de-
pendence of the nuclear symmetry energy, a key ingredient of
the nuclear equation of state (EOS), can be established via the
temperature-dependent nucleon effective mass [14–16].

The temperature-dependent nucleon effective mass m∗ is
defined as [14,16]

m∗(T )

M
= m̃

M

mω(T )

M
, (25)

where M, m̃, and mω(T ) are the bare nucleon mass, k mass,
and ω mass, respectively. The k mass only weakly depends
on temperature, so that its value is mostly defined by the
parametrization being used. For the NL3 parametrization, the
value of k mass is 0.60M [82]. To determine the value of
mω(T ) for each temperature T , we first define the quantity
m(k)(E , T ) for each single-particle state k = {(k), mk} as

m(k)(E , T )

M
= 1 − ∂

∂ε
Re 
e

(k)(ε), (26)

where the energy argument ε is a complex variable, i.e.,
ε = E + i�, the indices in the brackets stand for the reduced
matrix elements, and mk denotes the magnetic quantum num-
bers. As in the effective mass calculations, we should target
the vicinity of the Fermi surface, in the calculations dis-
cussed below the real part E has the range |E − μ| � 5 MeV.
The imaginary part � can be chosen as the averaged distance
between the energy fragments with spectroscopic factors
larger than 0.5 within the given interval of E values. The
temperature-dependent ω mass mω(T ) is then associated with
the maximal value of the average m(k)(E , T )/M over the
single-particle states k, viz.,

mω(T )

M
= max

E

[∑
(k) (2 j(k) + 1)m(k)(E , T )/M∑

(k) (2 j(k) + 1)

]
. (27)

Following Ref. [14], the temperature dependence of the ω

mass can be parametrized as follows:

mω(T )

M
= 1 +

[
mω(T = 0)

M
− 1

]
e−T/T0 , (28)

where mω(T = 0)/M and T0 are fitting parameters.
Furthermore, the impact of the temperature dependence of

the ω mass on the symmetry energy can be determined. In the
nuclear EOS, the symmetry energy term reads

ES = S(T = 0)

(
1 − 2

Z

A

)2

, (29)
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TABLE III. Best values of parameters mω(T = 0)/M and T0 for
the exponential fit (28).

68Ni 70Ni 72Ni 74Ni 76Ni 78Ni

mω(T = 0)/M 1.33 1.34 1.39 1.54 1.34 1.14
T0 (MeV) 1.59 1.99 1.61 0.96 1.26 4.80

where S(T = 0) is the symmetry coefficient of the nuclear
matter at zero temperature. For the NL3 parametrization,
S(T = 0) = 37.4 MeV. It should be noted that this value
implicitly contains the contribution from the particle-vibration
coupling and pairing effects at zero temperature, because the
parameters of the NL3 meson-nucleon Lagrangian were ob-
tained by fitting nuclear masses and radii on the mean-field
level [82]. One can, thus, estimate the contribution of the PVC
and pairing correlations at finite temperature using the Fermi
gas model. According to this model, the contribution from the
PVC and pairing effects (qPVC) at temperature T contains
two parts, i.e., the kinetic part which scales as 1/m∗(T ) and
the temperature-independent potential V :

EqPVC (T ) = h̄2c2k2
F

6M

[
M

m∗(T )

]
+ V. (30)

Therefore, the symmetry coefficient S(T ) at finite temperature
reads

S(T ) = S(T = 0) + h̄2c2k2
F

6M

[
M

m∗(T )
− M

m∗(T = 0)

]
,

(31)

where the subtraction of the PVC and pairing contributions
at T = 0 aims to overcome double counting. To complete
the calculation scheme, we use the expression for the Fermi
momentum kF via the nuclear matter density ρ0:

kF =
(

3

2
π2ρ0

)1/3

. (32)

For the NL3 parametrization, ρ0 = 0.148 fm−3 and, thus,
kF = 1.30 fm−1. For each temperature T , the effective mass
m∗(T ) was calculated using Eq. (25), where the value of
mω(T )/M was obtained from Eq. (28). By performing the
fitting of our microscopically computed ω mass, we found the
best values of these parameters for 68–76Ni isotopes. They are
summarized in Table III for the 0 � T � 2 MeV temperature
interval, which is the most relevant range of temperatures
in astrophysical modeling, such as CCSN simulations [15].
Although these parameters are apparently model dependent,
they are in a reasonable agreement with those obtained in the
semiphenomenological calculations of Ref. [14].

The best values of mω(T = 0) and T0 were obtained as the
averaged values of these two parameters over the five Ni iso-
topes under study: mω(T = 0)/M = 1.39 and T0 = 1.48 MeV.
The resulting values of the effective mass m∗(T ) and the sym-
metry coefficient S(T ) for the 0 � T � 2 MeV temperature
interval are summarized in Table IV. They illustrate a remark-
able increase of the symmetry coefficient with temperature
T , while the effective mass decreases considerably. Figure 7

TABLE IV. The temperature evolution of the effective mass
m∗(T )/M and symmetry coefficient S(T ).

T = 0 T = 1 MeV T = 1.5 MeV T = 2.0 MeV

m∗/M 0.83 0.72 0.68 0.66
S (MeV) 37.4 39.6 40.4 41.1

displays the evolution of the symmetry coefficient S(T ) with
temperature in Ni isotopes associated with the asymmetry
parameter δ2, where δ = (N − Z )/A, for 0 � T � 2 MeV.
One can see in Fig. 7 that, in particular, at all temperatures
(i) the symmetry coefficient peaks at 74Ni, and (ii) the doubly
magic nucleus 78Ni has the lowest symmetry coefficient. This
trend can be explained by Eq. (31), which indicates that the
larger effective mass m∗(T = 0) at zero temperature leads to
a larger symmetry coefficient S(T ). Meanwhile, since the k
mass is constant, the trend of the effective mass m∗(T = 0)
throughout the Ni isotopic chain is solely governed by the ω

mass.
The temperature and energy dependencies of the ω mass

were analyzed in detail in Ref. [57] for the cases of 56,68Ni,
and we refer the interested reader to this recent work for a
more complete picture of these dependencies. In the present
study we focused on the peak value of the ω mass, which is
largely determined by m̄(k)(Em, T ), where Em is the energy
of the peak. It is typically very close to the Fermi energy.
As follows from Eq. (26), the mass m̄(k)(Em, T ) is inversely
proportional to the spectroscopic factor of the state k as a
function of energy and, furthermore, in the presence of pair-
ing correlations, to the occupation numbers (v2

(k) in the BCS
approximation) of the single-quasiparticle states around the
Fermi level. This explains why the symmetry energy coef-
ficient is maximal in 74Ni, if we compare the spectroscopic
factors of the dominant fragments around the Fermi surface
and the corresponding BCS occupation probabilities. Table V
summarizes the spectroscopic factors of the dominant frag-
ments around the Fermi surface for the considered nickel

FIG. 7. The dependence of the symmetry coefficient S(T ) on
the asymmetry parameter δ2 for T = 1 MeV, T = 1.5 MeV, and
T = 2 MeV (lower, middle and upper symbols, respectively).

044304-11



HERLIK WIBOWO AND ELENA LITVINOVA PHYSICAL REVIEW C 106, 044304 (2022)

TABLE V. The dominant spectroscopic factors for the good
single-quasiparticle states around the Fermi surface (strongly frag-
mented states not shown).

Nucleus 2d5/2 2d3/2 3s1/2 1g9/2 2p1/2 2p3/2 1 f5/2

68Ni 0.812 0.839 0.765 0.790
70Ni 0.540 0.808 0.824 0.676 0.756
72Ni 0.730 0.733 0.522 0.617
74Ni 0.653 0.752 0.708 0.537 0.580
76Ni 0.597 0.755 0.655 0.752 0.608 0.605
78Ni 0.884 0.892 0.800 0.852 0.709 0.708

isotopes. One can see immediately that the mid-subshell
isotopes 72–76Ni exhibit the lower spectroscopic factors, or
stronger fragmentation, as compared to those forming the
closed subshell (68Ni) and closed shell (78Ni). Moreover,
74Ni has the lowest value of the BCS occupation probability
v2

(k) = 0.53 for the 1g9/2 state, which makes the dominant
contribution at the Fermi surface, that further enhances the
neutron effective mass in 74Ni at T = 0, where the superfluid
pairing vanishes. This explains the maximum of the symmetry
energy coefficient in 74Ni.

V. SUMMARY AND OUTLOOK

In this work, we investigated fragmentation patterns of the
single-particle states in neutron-rich nuclei at finite temper-
ature. The Dyson equation for the fermionic propagator with
an energy-dependent mass operator, or dynamical self-energy,
including the PVC mechanism was solved numerically in the
basis of the thermal relativistic mean field for the even-even
neutron-rich nickel isotopes with atomic masses A = 68–78.
As in the zero-temperature case, the dynamical self-energy
at finite temperature is responsible for the fragmentation of
the mean-field single-particle states, while finite temperature
represents another dimension in the model parameter space
to reveal the microscopic aspects of the particle-vibration
coupling. Complete fragmented single-particle spectra in the
20 MeV window around the Fermi energies of the considered
nuclei were extracted, and their temperature evolution was
analyzed.

Furthermore, the temperature-dependent nucleon effective
mass m∗(T ) was extracted from the calculated spectra of
nickel isotopes. Being itself a very important quantity defining
the nuclear EOS with significant consequences for the CCSN
[76], the nucleon effective mass is related to the symmetry
energy, whose temperature dependence can be deduced from
m∗(T ). We found that the symmetry energy coefficient S(T )
grows with temperature, in agreement with earlier studies
[14,77]; however, the concrete values of this coefficient found
in this work follow from more advanced microscopic calcu-
lations. In particular, an isotopic dependence of S(T ) was
accurately determined for the neutron-rich nickel isotopes,
which represent a high-sensitivity region of the nuclear land-
scape for the r process and CCSN. An enhancement of the
symmetry energy coefficient was found in the mid-subshell
isotopes that is linked to the enhancement of the superfluid

pairing correlations below the critical temperature as well as
the PVC effects in those nuclear systems.

To investigate the essential factors determining the frag-
mentation patterns of single-particle states, we examined toy
systems consisting of one, two, and three single-particle states
and one phonon. We found that the fragmentation is sensitive
to such quantities as the phonon frequency, the PVC coupling
strength, and the distance between the single-particle states.
The sensitivity of the single-particle spectroscopic factors and
fragment energies to these characteristics is quantified by
varying them independently at various values of temperature.
These studies explain the fragmentation patterns obtained in
realistic calculations; in particular, we established how the
temperature evolution of the phonon modes translates to the
evolution of the fragmentation patterns via the PVC mecha-
nism.

The systematic studies presented in this work further ad-
vance the understanding of the behavior of atomic nuclei
at extremal conditions. Here we investigated the extremes
of isospin and temperature, which are of prime importance
for astrophysical modeling of cataclysmic events, such as
neutron star mergers and supernova explosions. The nuclear
single-particle properties in the astrophysical environments
underly the behavior of the reaction rates, such as neutron
capture, beta decay, and electron capture, which are pivotal for
modeling r-process nucleosynthesis and the core collapse of
the supernovae. These rates require calculations of fermionic
two-body propagators in correlated media in a similar manner
[6,13], while the results obtained in this work can be directly
used for studying the evolution of nuclear level densities with
temperature, which are another important part of the nuclear
physics input for the astrophysical modeling. Such studies will
be addressed by future efforts.
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APPENDIX : TOY MODELS

1. One-level model

Let us first consider a system which consists of one state k1

and one phonon with frequency ω1. Under these conditions,
Eq. (12) for the diagonal mass operator 
e

k1
(ε) takes the form


e
k1

(ε) = g1∗
k1k1

g1
k1k1

{
N (ω1, T ) + 1 − n(εk1 − μ, T )

ε − εk1 + μ − ω1

+ n(εk1 − μ, T ) + N (ω1, T )

ε − εk1 + μ + ω1

}
. (A1)

The diagonalization of the matrix⎛⎜⎝εk1 − μ ξ
1(+1)
k1k1

ξ
1(−1)
k1k1

ξ
1(+1)∗
k1k1

εk1 − μ − ω1 0

ξ
1(−1)∗
k1k1

0 εk1 − μ + ω1

⎞⎟⎠, (A2)

where

ξ
1(±1)
k1k1

= g1(±1)
k1k1

√
N (ω1, T ) + n( ± (εk1 − μ), T ), (A3)
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FIG. 8. (a)–(d) The evolution of spectroscopic factors S(λ)
k1

for the
state 1 f7/2 with the phonon frequency ω1 at T = 1 MeV. The left,
middle, and right bars correspond to ε

(1)
k1

, ε
(2)
k1

, and ε
(3)
k1

, respectively.
(e)–(g) Contributions (in %) from the forward and backward going
terms of the spectroscopic factors S(1,2,3)

k1
for the fragment energies

ε
(1)
k1

(e), ε
(2)
k1

(f), and ε
(3)
k1

(g).

results in three different energies ε
(λ)
k1

(λ = 1, 2, 3). For each

λ, the corresponding spectroscopic factor S(λ)
k1

reads

S(λ)
k1

=
{

1 + g1∗
k1k1

g1
k1k1

[
N (ω1, T ) + 1 − n(εk1 − μ, T )

[ε − εk1 + μ − ω1]2

+ n(εk1 − μ, T ) + N (ω1, T )

[ε − εk1 + μ + ω1]2

]}−1

ε=ε
(λ)
k1

. (A4)

In contrast to the case of zero temperature, both forward
going and backward going terms (the first and second terms
in the square brackets) take nonvanishing values for the same
mean-field reference state k1, regardless of its location. This
occurs because of the smooth Fermi and Bose distribution
functions in the numerators, and makes the fragmentation
pattern different from the one at zero temperature.

To illustrate this model, we computed the spectroscopic
factors S(λ)

k1
for the specific neutron state 1 f7/2 of 70Ni at

fixed temperature T = 1 MeV. From the thermal RMF cal-
culations, the RMF energy εk1 of the state 1 f7/2 and the
chemical potential μ at T = 1 MeV are obtained as −17.296
MeV and −6.114 MeV, respectively. The phonon vertex
g1

k1k1
is taken equal to 0.2 MeV, which is a typical value

for the major phonon vertices calculated within FT-RRPA.
Figures 8(a)–8(d) demonstrate the evolution of the spectro-
scopic factors S(λ)

k1
with the phonon frequency ω1. As one

can see, both first and third energy fragments are dominant at
ω1 � 0.3 MeV, while the second fragment becomes the dom-
inant state at ω1 > 0.3 MeV. The critical phonon frequency
ωcrit

1 ≈ 0.3 MeV refers to the phonon frequency where the
second fragment starts becoming dominant and the number
of competing fragments is maximal, i.e., equal to 3. A large
number of competing fragments can be associated with strong

FIG. 9. The evolution of the fragment energies ε
(λ)
k1

with the
phonon frequency ω1 at T = 1 MeV (a) and the evolution of the
critical phonon frequency ωcrit

1 with temperature T for g1
k1k1

= 0.2
(upper line) and g1

k1k1
= 2.0 (lower line) (b).

PVC. Moreover, as shown in Fig. 9(a), the energy differences
ε

(2)
k1

− ε
(1)
k1

and ε
(3)
k1

− ε
(2)
k1

between the fragmented states are
minimal at ω1 = ωcrit

1 . This implies a correlation between the
proximity of the fragments to each other and the degree of
fragmentation. Equation (A4) suggests that the evolution of
the spectroscopic factors S(λ)

k1
with the phonon frequency ω1 is

determined by the interplay between the forward going and
backward going terms. To better understand this interplay,
we track the evolution of the forward going and backward
going terms with the phonon frequency ω1 for each energy
fragment ε

(λ)
k1

, as displayed in Figs. 8(e)–8(g). As can be
seen in Fig. 8(f), there is an almost equal contribution of the
forward and backward going terms to the spectroscopic factor
S(2)

k1
for all the phonon frequencies ω1, while the backward

(forward) going term is always dominant in the first (third)
energy fragment, as shown in Fig. 8(e) [8(g)]. At ω1 < 0.3
MeV, the total contribution of the forward and the backward
going terms to the second energy fragment is larger than to
the other two fragments, leading to the larger spectroscopic
factors. Starting from ωcrit

1 ≈ 0.3 MeV, a rapid growth of the
backward (forward) going terms in the inverse spectroscopic
factor S(1)

k1
(S(3)

k1
) occurs, that is associated with a quick de-

crease of the spectroscopic factor S(2)
k1

of the second fragment.
Similar trends are observed for different temperatures T and
different values of the phonon vertex g1

k1k1
. For a fixed phonon

vertex g1
k1k1

= 0.2 MeV, one observes an increase of the criti-
cal phonon frequency ωcrit

1 by the amount of roughly 0.1 MeV
per 1 MeV temperature step. However, a somewhat faster
increase of ωcrit

1 is recorded when one increases the value of
g1

k1k1
by one order of magnitude, as seen in Fig. 9(b). Thus,

the first toy model demonstrates how the evolution of the
spectroscopic factors S(λ)

k1
with temperature T is governed by

the phonon frequency ω1 and the magnitude of the phonon
vertex g1

k1k1
.

FIG. 10. The two states k1 and k2 with the energy difference δ in
the second toy model.

044304-13



HERLIK WIBOWO AND ELENA LITVINOVA PHYSICAL REVIEW C 106, 044304 (2022)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

FIG. 11. The evolution of the spectroscopic factors S(λ)
k1

(a)–(c) and S(λ)
k2

(d)–(f), and the fragment energies ε
(λ)
k1

(g) and ε
(λ)
k2

(h) with the
phonon frequency ω1 at T = 1 MeV and δ = 2.0 MeV.

2. Two-level model

In the second toy model, we add another state k2 to the
previous state k1 with the energy difference δ ≡ εk2 − εk1 > 0,
as shown in Fig. 10. For the case of a two-level system with
one phonon mode, the two diagonal mass operators 
e

k1
(ε)

and 
e
k2

(ε), respectively, take the forms


e
k1

(ε) = g1
k1k1

g1∗
k1k1

N (ω1, T ) + 1 − n(εk1 − μ, T )

ε − εk1 + μ − ω1

+ g1∗
k1k1

g1
k1k1

n(εk1 − μ, T ) + N (ω1, T )

ε − εk1 + μ + ω1

+ g1
k1k2

g1∗
k1k2

N (ω1, T ) + 1 − n(εk2 − μ, T )

ε − εk2 + μ − ω1

+ g1∗
k2k1

g1
k2k1

n(εk2 − μ, T ) + N (ω1, T )

ε − εk2 + μ + ω1
(A5)

and


e
k2

(ε) = g1
k2k1

g1∗
k2k1

N (ω1, T ) + 1 − n(εk1 − μ, T )

ε − εk1 + μ − ω1

+ g1∗
k1k2

g1
k1k2

n(εk1 − μ, T ) + N (ω1, T )

ε − εk1 + μ + ω1

+ g1
k2k2

g1∗
k2k2

N (ω1, T ) + 1 − n(εk2 − μ, T )

ε − εk2 + μ − ω1

+ g1∗
k2k2

g1
k2k2

n(εk2 − μ, T ) + N (ω1, T )

ε − εk2 + μ + ω1
. (A6)

The solutions ε
(λ)
k1

and ε
(λ)
k2

, where λ = 1, 2, . . . , 5, are ob-
tained by diagonalizing the following two matrices:⎛⎜⎜⎜⎜⎜⎜⎜⎝

εk1 − μ ξ
1(+1)
k1k1

· · · · · · ξ
1(−1)
k2k1

ξ
1(+1)∗
k1k1

εk1 − μ − ω1 0 · · · 0
... 0 . . . · · · 0
...

...
...

. . . 0

ξ
1(−1)∗
k2k1

0 0 0 εk2 − μ + ω1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(A7)

and⎛⎜⎜⎜⎜⎜⎜⎜⎝

εk2 − μ ξ
1(+1)
k1k2

· · · · · · ξ
1(−1)
k2k2

ξ
1(+1)∗
k1k2

εk1 − μ − ω1 0 · · · 0
... 0 . . . · · · 0
...

...
...

. . . 0

ξ
1(−1)∗
k2k2

0 0 0 εk2 − μ + ω1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

(A8)

According to Eq. (20), the corresponding spectroscopic fac-
tors S(λ)

k1
and S(λ)

k2
are determined via

S(λ)
ki

=
[

1 − d

dε

e

ki
(ε)

]−1

ε=ε
(λ)
ki

. (A9)
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

FIG. 12. The evolution of the spectroscopic factors S(λ)
k1

(a)–(c) and S(λ)
k2

(d)–(f) with the parameter δ at the fixed phonon frequency ω1 = 0.4

MeV, and of the fragment energies ε
(λ)
k1

with the phonon frequency ω1 for δ = 2.0 MeV (g), 4.0 MeV (h), and 6.0 MeV (i), at T = 2 MeV.

where i = 1, 2. As before, we suppose the state k1 to be the
state 1 f7/2 in the 70Ni nucleus and set all the phonon vertices
equal to 0.2 MeV. We first computed the spectroscopic factors
S(λ)

k1
and S(λ)

k2
for the fixed temperature T = 1 MeV, at which

the chemical potential μ = −6.114 MeV and the RMF energy
εk1 = −17.296 MeV. The energy of the second state k2 is also
fixed as εk2 = εk1 + δ, where δ = 2.0 MeV. Thus, a smaller
(larger) value of δ indicates a smaller (larger) energy distance
between the states k2 and k1. The left (middle) panels of
Fig. 11 display the evolution of the spectroscopic factors S(λ)

k1

(S(λ)
k2

) with the phonon frequency ω1 at T = 1 for the case
of δ = 2.0 MeV. From that, one obtains the critical phonon
frequency ωcrit

1 of 0.3 MeV. This is in accordance with the
observation that the fragment energies ε

(1,2,3)
k1

(ε(3,4,5)
k2

) are
closest to each other at ω1 = 0.3 MeV, as demonstrated in
Fig. 11(g) [11(h)]. A comparison between the left and middle
panels of Fig. 11 shows an apparent mirror symmetry between
the two spectroscopic strength distributions. This symmetry
occurs as a consequence of the single-valued phonon vertices,
leading to the symmetry between the mass operators 
e

k1
and


e
k2

with respect to the interchange k1 ↔ k2 [see Eqs. (A5)
and (A6)].

Next, we increased the temperature T to 2 MeV and let
the parameter δ take the values of 2.0, 4.0, and 6.0 MeV.
Figures 12(a)–12(f) display the spectroscopic factors S(λ)

k1
and

S(λ)
k2

at T = 2 MeV for various values of δ and fixed phonon

frequency ω1 = 0.4 MeV. One can notice that the mirror sym-
metry between the two spectroscopic strength distributions
persists for larger δ and higher temperature T . For several val-
ues of the parameter δ, the evolution of the fragment energies
ε

(λ)
k1

with the phonon frequency ω1 at T = 2 MeV is shown
in Figs. 12(g)–12(i). Furthermore, one can see that the critical
phonon frequency ωcrit

1 remains constant, i.e., 0.4 MeV, as one
varies the parameter δ. Analogously to the first toy model, the
critical phonon frequency ωcrit

1 increases roughly by 0.1 MeV
per 1 MeV temperature increase, regardless the value of δ.
From Fig. 12, one observes that the fragments with the ener-
gies ε

(1,2,3)
k1

become more and more separated from those with

ε
(4,5)
k1

as the value of the parameter δ increases. Meanwhile,

the sum of the spectroscopic factors S(1,2,3)
k1

exhausts the sum
rule (21), as follows from Fig. 12.

3. Three-level model

In the third toy model, we consider a system which consists
of three states k1, k2, and k3, as shown in Fig. 13, and one
phonon mode with the frequency ω1. The energies of both
states k1 and k3 are fixed, while the state k2 is separated by
the energy δ from the state k1. As before, we associate the
states k1 and k3 with the states 1 f7/2 and 2p1/2 in the nucleus
70Ni. At T = 1 MeV, the RMF energy of the state 2p1/2 is
−8.717 MeV. We again set all the phonon vertices equal
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FIG. 13. The three states k1, k2, and k3 in the third toy model.
The parameter δ refers to the energy difference between the states
k1 and k2.

to 0.2 and keep the energy difference between the states k1

and k3 as ≈8.0 MeV. In this setting, it is instructive to vary
the parameter δ and explore the sensitivity of the results to
the relative position of the state k2. Thus, by varying δ, one
can confront the cases of closed-shell and open-shell nuclear
systems. In this toy model we consider the values of δ equal
to 0.5, 4.0, and 8.0 MeV.

In the case of δ = 4.0 MeV, when the state k2 is located
approximately in the middle between the states k1 and k3, all
of the mean-field states exhibit a similar fragmentation pattern
in all temperature regimes and at various phonon frequencies.
For example, all of the three mean-field states are weakly
fragmented, as can be seen in Figs. 14(a)–14(c), and exhibit
a manifestly dominant fragment with the spectroscopic factor
around 0.6.

In contrast, for the case of δ = 0.5 MeV, when the states k1

and k2 get close to each other, they are strongly fragmented,
whereas the state k3 is weakly fragmented, as displayed in
Figs. 14(d)–14(f). This case illustrates the situation when the
states k1 and k2 belong to the same major shell and become
strongly mixed by the PVC. The third state k3 belongs to
the next major shell, thus becoming relatively isolated and,
therefore, less affected by the PVC.

For δ = 8.0 MeV the states k2 and k3 are strongly
fragmented, leaving the state k1 weakly fragmented, as
shown in Figs. 14(g) - 14(i). Here the states k2 and k3

would belong to the same major shell, while the state
k1 would be separated by an energy gap with the previ-
ous major shell. Thus, the situation mirrors the case of
δ = 0.5 MeV.

From the second and third toy models, one thus obtains
the most instructive information which helps us understand
why the fragmentation patterns are different for different
mean-field states and different PVC regimes. We conclude, in
particular, that the degree of fragmentation of each state is sen-
sitive to its relative distance from the neighboring mean-field
states, if they are connected by the PVC mechanism. Overall,
the neighboring states, which are closer to each other, are
more strongly fragmented. The low-frequency phonons with
larger coupling vertices contribute most significantly to the
fragmentation, as in the case of zero temperature. However,
the evolution of the phonon spectra with temperature affects
indirectly the fragmentation of the single-particle states. For

FIG. 14. The spectroscopic factors of the energy fragments ε
(λ)
k1

[(a), (d), (g)], ε
(λ)
k2

[(b), (e), (h)], and ε
(λ)
k3

[(c), (f), (i)], where λ = 1, . . . , 7,
for the constant phonon frequency ω1 = 0.5 MeV and various values of the parameter δ. The temperature is equal to 1 MeV.
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instance, more phonons with low frequencies appear at higher
temperatures due to thermal unblocking, as shown in Ref. [5],
and their coupling vertices, starting from small values, fur-
ther grow with the temperature increase. Finite temperature

thus introduces another dimension in the fragmentation pat-
tern, that may have an impact on the important nuclear
properties, such as symmetry energy, which is discussed
in Sec. IV C.
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