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Large-Nc constraints for elastic dark-matter–light-nucleus scattering in pionless effective field theory
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Recent proposals for the use of light nuclei as dark-matter direct detection targets necessitate a strong
theoretical understanding of the nuclear physics involved. We perform relevant calculations for dark-matter–
light-nucleus scattering in a combined pionless effective field theory and large-Nc expansion, where Nc is the
number of quark colors. We include a general set of one-nucleon currents that have been used in other effective
theories, as well as novel two-nucleon contact currents. First, we obtain constraints for the relative sizes of the
dark-matter couplings to the one- and two-nucleon currents through the large-Nc expansion. Then, we use these
constraints to make predictions for the relative sizes of spin-dependent and spin-independent cross sections for
dark-matter scattering off of a nucleon, a deuteron, a triton, and helium-3.
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I. INTRODUCTION

Although evidence for the existence of dark matter is
abundant (see, e.g., Refs. [1–4] for review), the detection of
dark matter is still a high priority in experimental searches
for beyond the standard model (BSM) physics. There are
several complementary searches for dark matter interacting
with nuclei including underground direct detection experi-
ments [5–11], cosmology [12–14], and spherical proportional
counters [15–20]. Large direct detection experiments attempt
to measure nuclear recoil due to dark-matter scattering off of
a range of targets from fluorine to xenon; spherical detectors
make use of light nuclei such as helium, while cosmological
probes can directly constrain the dark-matter–proton interac-
tion. These avenues can be used to detect weakly interacting
massive particles (WIMPs), which are dark-matter candidates
with mass mχ � O(1) GeV [1–4] while cosmological and
spherical detection searches are also sensitive to low mass
dark matter. The potential to use light nuclei as detection tar-
gets can also be realized through doping xenon with hydrogen,
deuterium, or helium as suggested in Ref. [21].

Given the recent development of detectors that use light
nuclei as targets and the maturing constraints from cosmol-
ogy, it is important to obtain a clear theoretical picture of
few-nucleon physics in the presence of external WIMP fields.
Effective field theory (EFT) provides a model-independent
framework to achieve this understanding. Several studies in
this vein have been conducted in chiral EFT (ChEFT) [22–32],
a nonrelativistic EFT for the nucleus as a whole [33], and a
nonrelativistic EFT for single nucleons [34–38]. For elastic

*richardt@uni-mainz.de
†xincheng.lin@duke.edu
‡stn7@phy.duke.edu

dark-matter–light-nucleus scattering, the momentum transfer
has an upper bound of a few MeV [27], which is much less
than the pion mass. Therefore, pionless EFT (EFTπ/), an EFT
in which pions are integrated out, is well suited for these sys-
tems (see Refs. [39–43] for reviews). In this work, we consider
the nucleon, the deuteron, the triton (3H), and helium-3 (3He)
as targets for dark-matter detection in EFTπ/.

The use of EFTπ/ departs from existing calculations in a few
points. First, the renormalization and power counting of EFTπ/

is well understood [44]. Second, calculations of the proper-
ties of the deuteron can be performed analytically (see, e.g.,
Refs. [45–48]). Calculations involving 3H or 3He, on the other
hand, are still performed numerically as in ChEFT. Third,
while two-nucleon currents that arise due to pion exchange
between the WIMP and the nucleons have been studied in
ChEFT [22,23,27], two-nucleon contact currents have been
neglected because they are thought to be higher order in the
power counting. These contact currents have also been ne-
glected in the nonrelativistic EFT of Refs. [34–38]. However,
when these currents connect two S-wave states, they receive
an infrared enhancement in EFTπ/ [41] and can yield signif-
icant contributions. The possibility that the contact currents
are enhanced in ChEFT as well was discussed in Ref. [28].
In particular, there are examples of electroweak contact cur-
rents that contribute at next-to-leading order (NLO) in EFTπ/

[45–47,49–51]. Therefore, it is necessary to include these
currents from the outset in a complete NLO calculation.

In EFTπ/, like all EFTs, the Lagrangian is organized
according to a power counting scheme. The Lagrangian pos-
sesses a finite number of operators at each order in the
power counting; however, every operator in the effective
Lagrangian is accompanied by an undetermined low-energy
coefficient (LEC). These LECs, which are typically assumed
to be of natural size once any relevant dimensional factors
have been removed, must be determined from data or from
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nonperturbative quantum chromodynamics (QCD) calcula-
tions such as lattice QCD. In the context of dark-matter
interactions with few-nucleon systems, the determination of
the LECs is not yet possible. Therefore, theoretical constraints
from other sources are vital to guide the interpretation of
available data and to prioritize lattice QCD calculations.

In this paper, we use the spin-flavor symmetry of baryons
[52–58] (see Ref. [59] for review) in the large-Nc limit of
QCD [60,61], where Nc is the number of quark colors, to
constrain the relative sizes of the LECs at each order in the
EFT power counting. These constraints impose an expansion
in powers of 1/Nc on top of the EFT expansion. Thus, the dual
expansion reduces the number of LECs required in an EFT
calculation to a given order in the combined power counting.
Specifically, we perform a large-Nc analysis for both single-
nucleon and two-nucleon currents relevant for WIMP-nucleus
scattering. While we consider EFTπ/ explicitly, the contact
currents in this work also appear in ChEFT so the large-
Nc constraints presented here are equally applicable. Similar
analyses have been performed for two-derivative two-nucleon
contact terms [62], parity violating two-nucleon contact terms
[63,64], time-reversal-invariance violation [65,66], the three-
nucleon potential [67], and two-nucleon currents in external
magnetic and axial fields as well as lepton number and isospin
violating currents [68,69].

The paper is organized as follows. In Sec. II, we discuss the
key features of EFTπ/ and the large-Nc expansion. In Sec. III,
we introduce the effective Lagrangian with a WIMP coupled
to one- and two-nucleon currents and discuss the large-Nc

scaling of the LECs. In Sec. IV, we calculate the parity (P)
and time-reversal-invariance (T ) conserving differential cross
sections for a WIMP scattering off of a nucleon, a deuteron,
3H, and 3He. Then we explore the impact of the large-Nc

constraints for the LECs on the relative sizes of the cross
sections and compare a selection of our results for a specific
model to those of Refs. [27,32]. Conclusions are provided
in Sec. V. Appendix A contains details related to the dark
matter-3H and 3He elastic scattering amplitudes; Appendix B
presents the matching of quark currents to one-nucleon cur-
rents; and Appendix C presents the matching of dibaryon
currents to two-nucleon currents.

II. COMBINED LARGE-Nc AND PIONLESS EFFECTIVE
FIELD THEORY EXPANSION

The EFTπ/ Lagrangian consists of a tower of contact op-
erators containing nucleon fields and external fields. Each
operator has an a priori undetermined LEC that encapsulates
physics above the breakdown scale �π/ ∼ mπ [46,70–73]. If
the characteristic momentum or momentum transfer of the
system is Q � mπ , then the LECs will scale with a com-
bination of powers of Q and �π/ such that observables are
expanded in powers of Q/�π/.

Because the scales of few-nucleon systems are fine tuned,
power counting is more subtle than naive dimensional analysis
[70–73]. In the two-nucleon system, we use dimensional regu-
larization with the power divergent subtraction (PDS) scheme
[71], which introduces an explicit dependence on the subtrac-
tion point μ taken to be on the order of Q in the LECs. This

scheme yields a consistent power counting that accounts for
the fine-tuning of the NN interaction. Furthermore, the LECs
of the NN system may be fixed to reproduce the effective
range expansion (ERE) about zero momentum [71] or about
the deuteron pole [46], or they may be fit to reproduce the
residue of the NN amplitude about the deuteron pole exactly
at NLO [74,75]. In the three-body system, amplitudes are
obtained through numerical solutions of integral equations,
which are regulated through a hard cutoff [76–81]. Through
these calculations, it was shown that a three-body contact
term is required at LO for renormalization in processes in the
doublet S-wave channel [78–80].

The large-Nc expansion can be combined with the EFTπ/

expansion in order to further constrain the LECs at each
order in the combined power counting. Deriving large-Nc con-
straints for nucleon matrix elements of QCD operators relies
on the SU(4) spin-flavor symmetry of the baryon sector of
large-Nc QCD [52–55,58]. For single-baryon matrix elements,
an m-quark operator can be expanded as [54]

〈B′|O(m)
QCD|B〉=〈B′|Nm

c

∑
n,s,t

c(n)

(
Si

Nc

)s( Ia

Nc

)t(Gia

Nc

)n−s−t

|B〉,
(1)

where the one-body operators are

Si = q† σ i

2
q, Ia = q† τ a

2
q, Gia = q† σ i

2

τ a

2
q. (2)

Since quarks in a nucleon are antisymmetrized in their color
indices, q is a colorless, bosonic quark field. The large-Nc

scaling for a general n-body operator with spin S and isospin
I is [82,83]

〈B′|O(n)
IS

Nn
c

|B〉 � N−|I−S|
c . (3)

Therefore, the one-body operators scale as

〈B′| 1

Nc
|B〉 ∼ 〈B′|Gia

Nc
|B〉 � 1,

〈B′| Si

Nc
|B〉 ∼ 〈B′| Ia

Nc
|B〉 � 1

Nc
. (4)

In the large-Nc limit, the two-nucleon interaction is O(Nc)
and is described by a Hartree Hamiltonian [84], which has the
expansion [54,82,83]

H = Nc

∑
n,s,t

vstn

(
Si

Nc

)s( Ia

Nc

)t(Gia

Nc

)n−s−t

, (5)

where the coefficients vstn are generally momentum depen-
dent and are at most O(N0

c ) [83]. The two-nucleon matrix
element of the Hartree Hamiltonian yields the two-nucleon
potential [83]

V (p+, p−) = 〈Nα (p′
1)Nβ (p′

2)|H |Nγ (p1)Nδ (p2)〉, (6)

where the Greek subscripts denote combined spin and isospin
indices and

p± = p′ ± p, (7)

044003-2



LARGE-Nc CONSTRAINTS FOR ELASTIC DARK- … PHYSICAL REVIEW C 106, 044003 (2022)

with p′ = p′
1 − p′

2 and p = p1 − p2. Also, two-nucleon ma-
trix elements factorize in the large-Nc limit [82],

〈Nγ Nδ|O1O2|NαNβ〉
Nc→∞−−−→ 〈Nγ |O1|Nα〉〈Nδ|O2|Nβ〉 + crossed, (8)

such that the scaling of an interaction is determined from the
single-nucleon matrix elements of the bilinears according to
Eq. (3) and an overall factor of Nc is removed to account for
the scaling of the Hamiltonian.

Additional 1/Nc suppressions enter through the momentum
dependence of the coefficients in Eq. (5) [83]. In the meson
exchange picture of nuclear forces, p+ occurs only in rela-
tivistic corrections in t-channel diagrams and leads to inverse
factors of the nucleon mass mN ; therefore, these contributions
are suppressed since mN ∼ O(Nc). In the u channel, the roles
of p+ and p− are reversed and one finds identical scalings.
Therefore, it is sufficient to consider only t-channel diagrams
and momenta are counted as

p− ∼ 1, p+ ∼ N−1
c . (9)

In summary, in order to determine the large-Nc scaling of
various interactions, one examines the spin-isospin structure
of the operators of interest and accounts for any possible
suppressions due to momenta. Then, an overall factor of Nc is
removed to account for the scaling of the Hartree Hamiltonian.
The scalings of matrix elements in the large-Nc expansion
are then mapped onto the LECs in EFTπ/ with the same spin-
isospin structure.

In Ref. [68], this method was extended to include two
nucleons in external magnetic and general axial fields. This
requires studying matrix elements of the form

〈NαNβA|H |NδNγ 〉, (10)

where A is the external field and possibly carries spin and
isospin indices. By assuming that the nucleonic part of the
interaction takes on a Hartree form and that two-nucleon
matrix elements still factorize, the large-Nc scalings of the
LECs that couple the two-nucleon system to external fields
are determined exactly as they are for NN interactions. Here,
we treat the WIMP as an external field, and the large-Nc

constraints with an incoming and outgoing external field are
obtained in the same fashion.

III. LARGE-Nc ANALYSIS OF THE
EFFECTIVE LAGRANGIAN

In this section, we derive large-Nc constraints for the most
general set of one- and two-nucleon currents in EFTπ/. The
one-nucleon operators have been derived in Refs. [34,38],
and the large-Nc constraints follow from the techniques of
Refs. [52,54]. The large-Nc constraints for two-nucleon axial
currents have been derived in Ref. [68], which we reproduce
here for convenience.

In principle, the currents in this work follow from a WIMP
coupled to quarks and gluons inside the nucleons. These
interactions can be organized by mass dimension in stan-
dard model EFT (SMEFT) extended to include dark matter
particles. A complete set of operators up to and includ-

ing dimension seven have been presented in Refs. [85,86].
Furthermore, these operators have been matched to the low-
energy EFT (LEFT) basis and run to hadronic scales where
nonperturbative matching must be performed [30,38,86–89].
Up to recoil corrections, the nucleon matrix elements of
these operators can be parameterized through form factors
that define the matching relations to couplings of the EFTπ/

one-nucleon currents. We provide the details of this matching
step in Appendix B.

Large-Nc constraints for higher-dimension operators in-
volving more than one quark bilinear can be derived, which
would lead to bigger Nc scalings than what we present in this
work; however, these operators will be suppressed by powers
of the SMEFT or LEFT breakdown scale. Furthermore, if one
only considers the ratios of LECs in EFTπ/, then the inclusion
of higher-dimension operators at the level of SMEFT or LEFT
should not alter the relative scalings of the few-nucleon LECs.
This can be seen from the fact that an operator with multiple
quark bilinears and the same symmetry properties of a single
quark bilinear on the left-hand side of Eq. (1) only modifies
the overall factor of Nm

c on the right-hand side, i.e., the form of
the expansion is the same up to subleading corrections. There-
fore, we implicitly present the overall large-Nc scalings for
the matrix elements of single quark bilinears but note that the
relative sizes of the LECs are independent of the interactions
at the quark level. The sizes of the WIMP-quark couplings
will of course affect the overall sizes of the observables, but
the combined EFTπ/ and large-Nc expansion provides model-
independent constraints with respect to the nuclear physics
involved in the scattering process.

The matrix elements of the quark currents between two-
nucleon states also admit representations in terms of form
factors that can be calculated in EFTπ/. However, this also
requires the inclusion of short-range operators with undeter-
mined LECs at NLO. This is where the greatest strength of
large-Nc constraints is found in the absence of data and lattice
calculations.

A. One-nucleon operators

The one-nucleon operators have been derived in
Refs. [34,38]. Here, we summarize the large-Nc scalings
of the corresponding LECs. At leading order (LO) in EFTπ/,
there are only single-nucleon zero-derivative currents, which
preserve both parity (P) and time-reversal invariance (T ).
If the WIMP is a spin-1/2 particle, then the Lagrangian at
LO is

L(PT )
χN = C(PT )

1,χN (N†N )(χ†χ ) + C(PT )
2,χN (N†σ iτ 3N )(χ†σ iχ )

+C(PT )
3,χN (N†σ iN )(χ†σ iχ ) + C(PT )

4,χN (N†τ 3N )(χ†χ ),

(11)

where σi (τa) denotes the three SU(2) Pauli matrices in spin
(isospin) space. Repeated indices are implicitly summed over.
The superscripts of the LECs indicate the properties of the
corresponding operator under parity and time reversal. If the
WIMP is a scalar particle, then there are additional operators
but their contributions to elastic scattering will be suppressed
by powers of the WIMP mass. Therefore, Eq. (11) holds for
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scalar WIMPs only with the WIMP spin omitted. Applying
the large-Nc counting rules of Eq. (4) shows that the LECs
scale as

C(PT )
1,χN , C(PT )

2,χN ∼ O(Nc), (12)

C(PT )
3,χN , C(PT )

4,χN ∼ O(1). (13)

Thus, the leading contributions in the combined expansion are
the SI isoscalar and the SD isovector couplings. These LECs
may be recast in terms of neutron and proton couplings to the
dark matter as

C(PT )
SI,p = C(PT )

1,χN + C(PT )
4,χN , (14)

C(PT )
SI,n = C(PT )

1,χN − C(PT )
4,χN , (15)

C(PT )
SD,p = C(PT )

3,χN + C(PT )
2,χN , (16)

C(PT )
SD,n = C(PT )

3,χN − C(PT )
2,χN . (17)

Therefore, the SI proton and neutron couplings are the same
up to 1/Nc corrections while the SD couplings are of the same
size but opposite sign up to 1/Nc corrections. The ratios of the
neutron to proton couplings to O(1/N2

c ) are

C(PT )
SI,n

C(PT )
SI,p

≈ 1 − 2
C(PT )

4,χN

C(PT )
1,χN

+ O(1/N2
c ), (18)

C(PT )
SD,n

C(PT )
SD,p

≈ −1 + 2
C(PT )

3,χN

C(PT )
2,χN

+ O(1/N2
c ). (19)

Assuming that the LECs in the C(PT )
i,χN basis are natural apart

from their Nc scalings, the ratios at the physical value Nc = 3
are roughly ∣∣∣∣∣C

(PT )
SI,n

C(PT )
SI,p

∣∣∣∣∣ ≈
∣∣∣∣1 ± 2

3

∣∣∣∣, (20)

∣∣∣∣∣C
(PT )
SD,n

C(PT )
SD,p

∣∣∣∣∣ ≈
∣∣∣∣−1 ± 2

3

∣∣∣∣, (21)

where the plus and minus signs appear because the large-Nc

analysis only fixes the relative sizes of the LECs up to an
overall sign. Equations (20) and (21) imply that, in the context
of isospin violating couplings, the magnitude of the ratio
of the neutron to proton couplings can be between 1/3 and
5/3. This range fits into the xenonphobic scenarios in which
potential signals using xenon-based targets will be suppressed
[90–93].

In the single-nucleon sector, there are one-derivative oper-
ators that violate parity and respect time-reversal invariance
(/PT ) as well as operators that violate both parity and time-
reversal invariance (/P /T ). However, the forms of the operators
are restricted by Galilean invariance (or invariance under
infinitesimal Lorentz transformations), so the operators will
contain inverse factors of mN and mχ , the nucleon mass and
WIMP mass, respectively. Therefore, the terms containing
factors of mN will receive an additional 1/Nc suppression
while the other terms are suppressed by powers of mχ . While
we do not include these operators in the calculations of the
cross sections in Sec. IV, we still determine the large-Nc

scalings of these currents for the sake of completeness. The
parity violating part of the Lagrangian is

L(/PT )
χN = C(/PT )

5,χNεi jk∇ j (N†σ kτ 3N )(χ†σ iχ ) + C(/PT )
6,χNεi jk∇ j (N†σ kN )(χ†σ iχ ) + iC(/PT )

7,χN

[
1

2mN
(N†

↔
∇

i

σ iτ 3N )(χ†χ )

− 1

2mχ

(N†σ iτ 3N )(χ†
↔
∇

i

χ )

]
+ iC(/PT )

8,χN

[
1

2mN
(N†

↔
∇

i

N )(χ†σ iχ ) − 1

2mχ

(N†N )(χ†
↔
∇

i

σ iχ )

]

+ iC(/PT )
9,χN

[
1

2mN
(N†

↔
∇

i

σ iN )(χ†χ ) − 1

2mχ

(N†σ iN )(χ†
↔
∇

i

χ )

]

+ iC(/PT )
10,χN

[
1

2mN
(N†

↔
∇

i

τ 3N )(χ†σ iχ ) − 1

2mχ

(N†τ 3N )(χ†
↔
∇

i

σ iχ )

]
, (22)

where N†
↔
∇

i

ON ≡ N†O∇i(N ) − (∇iN†)ON . The LECs scale
as

C(/PT )
5,χN ∼ O(Nc), (23)

C(/PT )
7,χN , C(/PT )

8,χN ∼ O(Nc), (24)

C(/PT )
6,χN ∼ O(1), (25)

C(/PT )
9,χN , C(/PT )

10,χN ∼ O(1). (26)

Although C(/PT )
7,χN and C(/PT )

8,χN are O(Nc), the terms in both op-
erators are suppressed either by the 1/Nc from the nucleon
mass or by a factor of 1/mχ . Therefore, both operators will
yield subleading contributions to observables such as the
cross section. On the other hand, C(/PT )

5,χN ∼ O(Nc) and is not
suppressed by any factors of mN or mχ . Moreover, the op-
erator corresponding to C(/PT )

5,χN is an isovector; therefore, if
the WIMP-nucleon interaction is indeed isoscalar, then we
would expect that the NLO corrections in the EFTπ/ power
counting will be highly suppressed. However, the fact that the
only O(Nc) contribution is an isovector suggests that isospin
violating dark matter should be carefully considered.
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The /P /T Lagrangian is

L(/P /T )
χN = C(/P /T )

11,χN∇i(N†σ iτ 3N )(χ†χ ) + C(/P /T )
12,χN∇i(N†N )(χ†σ iχ ) + C(/P /T )

13,χN∇i(N†τ 3N )(χ†σ iχ )

+C(/P /T )
14,χN∇i(N†σ iN )(χ†χ ) + iεi jkC(/P /T )

15,χN

[
1

2mN
(N†

↔
∇

j

σ kτ 3N )(χ†σ iχ ) − 1

2mχ

(N†σ kτ 3N )(χ†
↔
∇

j

σ iχ )

]

+ iεi jkC(/P /T )
16,χN

[
1

2mN
(N†

↔
∇

j

σ kN )(χ†σ iχ ) − 1

2mχ

(N†σ kN )(χ†
↔
∇

j

σ iχ )

]
, (27)

where the LECs scale as

C(/P /T )
11,χN , C(/P /T )

12,χN ∼ O(Nc), (28)

C(/P /T )
15,χN ∼ O(Nc) (29)

C(/P /T )
13,χN , C(/P /T )

14,χN ∼ O(1), (30)

C(/P /T )
16,χN ∼ O(1). (31)

In this case, the operator proportional to C(/P /T )
15,χN is similar to

those proportional to C(/P /T )
7,χN and C(/P /T )

8,χN ; therefore, analogous
conclusions regarding the size of its contribution to observ-
ables hold. Thus, there are only two /P /T couplings at O(Nc);
one is an isoscalar while the other is an isovector. Isospin
violating contributions can again have a significant impact
on observables and should be taken into consideration in the
calculations of nuclear matrix elements.

B. Two-nucleon operators

There are also two-nucleon currents that couple to dark
matter. In this work, we only consider the zero-derivative
operators. Therefore, these operators can be divided into SI or
SD isoscalar, isovector, and isotensor structures. The currents
that connect two S-wave states are expected to be enhanced
[41,45,71] and should contribute at NLO in EFTπ/.

It has been shown that Fierz transformations can obscure
the large-Nc scaling of the corresponding LECs, so this pro-
cedure requires caution [63]. Specifically, if one looks only at
a minimal basis of operators without considering the elimina-
tions via Fierz transformations that produced said basis, one
might conclude that a given LEC is subleading in the large-Nc

expansion when the corresponding operator may have actually
arisen from the elimination of a more dominant operator. To
be concise, Fierz transformations can hide dominant large-Nc

scalings if the scalings are not properly tracked from the over-
complete set of operators. Therefore, we use the following
prescription in the passage from an overcomplete set of opera-
tors to a minimal basis. First, an overcomplete set of operators
is constructed, and the large-Nc scaling of the matrix elements
is determined through Eq. (4). Next, Fierz relations are used
to eliminate the redundant operators such that the leading in
large-Nc operators are not eliminated in favor of subleading
operators. This procedure has been carried out explicitly in
Refs. [68,69].

First, we consider the isoscalar contributions. The SI
component of the Lagrangian with an overcomplete set of
two-nucleon operators with no derivatives is

L(SI, s)
χNN = (χ†χ )

[
C̃(SI, s)

1,χNN (N†N )2 + C̃(SI, s)
2,χNN (N†σ iN )2

+ C̃(SI, s)
3,χNN (N†τ aN )2 + C̃(SI, s)

4,χNN (N†σ iτ aN )2
]
, (32)

where the superscript s denote that these are isoscalar opera-
tors. Prior to eliminating the redundant terms, the scalings of
the LECs are

C̃(SI, s)
1,χNN , C̃(SI, s)

4,χNN ∼ O(Nc), (33)

C̃(SI, s)
2,χNN , C̃(SI, s)

3,χNN ∼ O(1/Nc). (34)

Fierz transformations relate these operators such that the min-
imal form of the Lagrangian is

L(SI, s) = (χ†χ )
[
C(SI, s)

1,χNN (N†N )2 + C(SI, s)
2,χNN (N†σ iN )2

]
, (35)

where the LECs are related to the overcomplete set by

C(SI, s)
1,χNN = C̃(SI, s)

1,χNN − 2C̃(SI, s)
3,χNN − 3C̃(SI, s)

4,χNN (36)

C(SI,s)
2,χNN = C̃(SI, s)

2,χNN − C̃(SI, s)
3,χNN , (37)

and the LECs scale as

C(SI, s)
1,χNN ∼ O(Nc), (38)

C(SI, s)
2,χNN ∼ O(1/Nc). (39)

This demonstrates that C̃(SI,s)
3,χN constitutes a subleading cor-

rection to C(SI,s)
1,χN . The elimination of redundancies for the

remaining operators is carried out in a similar manner, which
we will omit in the remainder of this section.

The SD component of the Lagrangian is

L(SD, s)
χNN = (χ†σ iχ )

[
C̃(SD, s)

1,χNN (N†σ iN )(N†N )

+ C̃(SD, s)
2,χNN (N†σ iτ aN )(N†τ aN )

]
. (40)

However, these operators are not linearly independent and
they both lead to the same scaling in large Nc. Therefore, the
Lagrangian can be written as

L(SD, s)
χNN = C(SD, s)

1,χNN (χ†σ iχ )(N†σ iN )(N†N ), (41)

where

C(SD, s)
1,χNN ∼ O(1). (42)
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Now, we turn to the isovector operators. The SI part of the Lagrangian is

L(SI, v)
χNN = (χ†χ )

[
C̃(SI, v)

1,χNN (N†τ 3N )(N†N ) + C̃(SI, v)
2,χNN (N†σ iτ 3N )(N†σ iN )

]
, (43)

where the superscript v indicates isovector contributions and

C̃(SI, v)
1,χNN , C̃(SI, v)

2,χNN ∼ O(1). (44)

Again, the operators are not independent and they both lead to the same large-Nc scaling. We choose to retain the first operator
such that the Lagrangian is

L(SI, v)
χNN = C(SI, v)

1,χNN (χ†χ )(N†τ 3N )(N†N ). (45)

The SD isovector terms are

L(SD, v)
χNN = (χ†σ iχ )

[
C̃(SD, v)

1,χNN (N†σ iτ 3N )(N†N ) + C̃(SD, v)
2,χNN (N†σ iN )(N†τ 3N ) + C̃(SD, v)

3,χNN εi jkε3ab(N†σ jτ aN )(N†σ kτ bN )

+ C̃(SD, v)
4,χNN εi jk (N†σ jτ 3N )(N†σ kN ) + C̃(SD, v)

5,χNN ε3ab(N†σ iτ aN )(N†τ bN )
]
. (46)

The first three terms conserve both parity and time-reversal invariance, but the last two terms conserve parity and violate time-
reversal invariance. There are only two independent operators; in particular, there is one T conserving operator and one /T
operator. We choose to retain

L(SD, v)
χNN = (χ†σ iχ )

[
C(SD, v)

1,χNN εi jkε3ab(N†σ jτ aN )(N†σ kτ bN ) + C(SD, v)
2,χNN εi jk (N†σ jτ 3N )(N†σ kN )

]
, (47)

where

C(SD, v)
1,χNN ∼ O(Nc), (48)

C(SD, v)
2,χNN ∼ O(1). (49)

Thus, the SD isoscalar and SI isovector PT couplings are 1/Nc suppressed relative to the SD isovector coupling. The P /T term is
also 1/Nc suppressed relative to the symmetry conserving term.

Lastly, we examine the isotensor operators. There are two possible SI operators,

L(SI, t )
χNN = (χ†χ )

{
C̃(SI, t )

1,χNN

[
(N†σ iτ 3N )(N†σ iτ 3N ) − 1

3 (N†σ iτ aN )(N†σ iτ aN )
]

+ C̃(SI, t )
2,χNN

[
(N†τ 3N )(N†τ 3N ) − 1

3 (N†τ aN )(N†τ aN )
]}

, (50)

where t denotes isotensor contributions. The second term in each set of square brackets is present in order to isolate the I = 2
representation. Fierz transformations give only one independent operator,

L(SI, t )
χNN = C(SI, t )

1,χNN (χ†χ )
[
(N†σ iτ 3N )(N†σ iτ 3N ) − 1

3 (N†σ iτ aN )(N†σ iτ aN )
]
, (51)

where

C(SI, t )
1,χNN ∼ O(Nc). (52)

We could in principle include a spin-dependent operator of the form

(χ†σ iχ )[(N†σ iτ 3N )(N†τ 3N ) − (N†σ iτ aN )(N†τ aN )]. (53)

However, Fierz transformations show that this operator vanishes.
In summary, we have seven independent operators in total and the complete Lagrangian is

Lχ,NN = C(SI, s)
1,χNN (χ†χ )(N†N )(N†N ) + C(SI, s)

2,χNN (χ†χ )(N†σ iN )(N†σ iN ) + C(SD, s)
1,χNN (χ†σ iχ )(N†σ iN )(N†N )

+C(SI, v)
1,χNN (χ†χ )(N†τ 3N )(N†N ) + εi jkε3abC(SD, v)

1,χNN (χ†σ iχ )(N†σ jτ aN )(N†σ kτ bN )

+ εi jkC(SD, v)
2,χNN (χ†σ iχ )(N†σ jτ 3N )(N†σ kN ) + C(SI, t )

1,χNN (χ†χ )
[
(N†σ iτ 3N )(N†σ iτ 3N ) − 1

3 (N†σ iτ aN )(N†σ iτ aN )
]
,

(54)

where

C(SI, s)
1,χNN ,C(SD, v)

1,χNN ,C(SI, t )
1,χNN ∼ O(Nc), (55)

C(SD, s)
1,χNN ,C(SI, v)

1,χNN ,C(SD, v)
2,χNN ∼ O(1), (56)

C(SI, s)
2,χNN ∼ O(1/Nc). (57)

Therefore, the isoscalar and isotensor SI LECs are of the same size, so we emphasize again that isospin violating WIMP-nucleus
interactions should be carefully considered even in the SI case. Additionally, the P /T coupling C(SD, v)

2,χNN is 1/Nc suppressed.
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It is often convenient to work with operators where the nucleonic portion is written in terms of partial waves. Because the
operators in Eq. (54) do not contain derivatives, we only retain the operators that connect two-nucleon S-wave states. Using Fierz
transformations to translate Eq. (54) into the partial wave basis results in

LχNN = 2
(
C(SI, s)

1,χNN + C(SI, s)
2,χNN

)
(χ†χ )[(NT PiN )†(NT PiN )] + 2

(
C(SI, s)

1,χNN − 3C(SI, s)
2,χNN

)
(χ†χ )[(NT P̄aN )†(NT P̄aN )]

+ 12C(SI, t )
1,χNN (χ†χ )

[
(NT P̄3N )†(NT P̄3N ) − 1

3 (NT P̄aN )†(NT P̄aN )
]

+ 8C(SD, v)
1,χNN (χ†σ iχ )[(NT P̄3N )†(NT PiN ) + H.c.] − 2iεi jkC(SD, s)

1,χNN (χ†σ iχ )(NT P jN )†(NT PkN )

− 2iε3abC(SI, v)
1,χNN (χ†χ )(NT P̄aN )†(NT P̄bN ) + 4C(SD,v)

2,χNN (χ†σ iχ )[i(NT PiN )†(NT P̄3N ) + H.c.], (58)

where Pi = σ2σiτ2/
√

8 and P̄a = σ2τ2τa/
√

8 are the projection operators onto the spin triplet-isospin singlet and spin singlet-
isospin triplet states, respectively.

IV. DARK-MATTER–NUCLEUS ELASTIC SCATTERING

Before presenting the results for specific targets, we briefly
review the calculation of the WIMP-nucleus cross section.
The differential scattering cross section for dark-matter scat-
tering off of a nucleus initially at rest is related to the
scattering amplitude M through [94]

dσ

dER
= 1

32πm2
χmT v2

χ

|M|2, (59)

where ER is the recoil energy, mT is the mass of the target
nucleus, and vχ is the dark-matter velocity in the laboratory
frame. Since we take the nucleus to be at rest initially, the
recoil energy can be expressed as ER = q2/2mT , where q is
the momentum transfer. In order to draw a comparison with
Refs. [27,32], we define response functions F (ν)

i (q2) through

|MA(q2)|2 = (2mT )2(2mχ )2σ SI
0,N

πA2

m2
χN

∣∣∣∣∣
∑
i,ν

αiF
(ν)

i (q2)

∣∣∣∣∣
2

,

(60)

where ν is the order in the EFT expansion, α is a generic
coupling of type i (e.g., SI or SD, isoscalar or isovector) that
can be related to couplings at the quark level, mχN is the
WIMP-nucleon reduced mass, and σ SI

0,N is the single-nucleon
isoscalar cross section at zero momentum transfer. When we
consider the response functions below, we will express σ SI

0,N in
terms of the pion-nucleon σ term (see Appendix B).

In the following sections, we calculate the unpolarized
cross sections; thus, the amplitude in Eqs. (59) and (60) should
also include the average over incoming spins and the sum over
outgoing spins. Then, we will provide the relative scalings of
various cross sections at zero momentum transfer with respect
to Nc. For this, it is sufficient to work to LO in the com-
bined large-Nc and EFTπ/ expansion as subleading corrections
should not drastically alter the relative sizes. However, when
we study the response functions of the deuteron, 3H, and 3He
that arise from the quark scalar current we will consider the
NLO corrections in the EFTπ/ power counting and use the
two-body large-Nc constraints to set the sizes of the LECs.

A. Dark-matter–nucleon elastic scattering

At LO in the EFTπ/ expansion, the WIMP-nucleon elas-
tic scattering amplitude only receives contributions from

Eq. (11). Consider a nucleon initially at rest with spin ν and
isospin b, an outgoing nucleon with spin μ and isospin a,
and an incoming (outgoing) dark-matter particle with spin r
(s) and momentum k (k′). The momentum of the outgoing
nucleon will be q = k − k′. The unpolarized scattering am-
plitude can be expressed as

1

4

∑
spins

|M|2

= 16m2
N m2

χ

[(
C(PT )

1,χN ± C(PT )
4,χN

)2 + 3
(
C(PT )

2,χN ± C(PT )
3,χN

)2]
,

(61)

where the upper signs correspond to proton–dark-matter scat-
tering and lower signs correspond to neutron–dark-matter
scattering. Additionally, the first term arises from the SI inter-
actions while the second term arises from the SD interactions.
We find (

C(PT )
1,χN ± C(PT )

4,χN

)2 = π

m2
χN

σ SI
0, p/nF 2

SI, p/n(q2), (62)

(
C(PT )

2,χN ± C(PT )
3,χN

)2 = π

3m2
χN

σ SD
0, p/nF 2

SD, p/n(q2). (63)

By definition, the form factors approach 1 as q2 → 0. Addi-
tionally, the operators in Eqs. (22) and (27) introduce explicit
momentum dependence and their contributions will vanish in
this limit. Therefore, at q2 = 0 we have(

C(PT )
1,χN ± C(PT )

4,χN

)2 = π

m2
χN

σ SI
0, p/n, (64)

(
C(PT )

2,χN ± C(PT )
3,χN

)2 = π

3m2
χN

σ SD
0, p/n, (65)

which is exact. Thus, at LO-in-Nc the ratio of the cross sec-
tions is

σ SI
0,N

σ SD
0,N

=
C(PT )2

1,χN

(
1 ± C(PT )

4,χN

C(PT )
1,χN

)2

3C(PT )2
2,χN

(
1 ± C(PT )

3,χN

C(PT )
2,χN

)2
≈ C(PT )2

1,χN

3C(PT )2
2,χN

∼ 1

3
, (66)

for all proton and neutron combinations if both C(PT )
1,χN and

C(PT )
2,χN are considered to be of natural size apart from their

Nc scalings. We expect this ratio to receive roughly 30%
corrections at NLO in the large-Nc expansion as well as EFTπ/

corrections.
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Σ = + + · · ·

FIG. 1. Irreducible two-point function. The crossed circles rep-
resent the interpolating deuteron field, the solid lines represent
nucleons, and the black square represents the two-derivative two-
nucleon vertex. The ellipsis denotes higher-order terms.

Alternatively, the ratio of the SI proton cross section to the
SI neutron cross section is

σ SI
0,p

σ SI
0,n

=
(
1 + C(PT )

4,χN

C(PT )
1,χN

)2

(
1 − C(PT )

4,χN

C(PT )
1,χN

)2
≈ 1 + 4

C(PT )
4,χN

C(PT )
1,χN

+ O
(
1/N2

c

)
. (67)

Therefore, at LO in the large-Nc expansion the SI cross sec-
tions for the proton and neutron are roughly the same size.
Recall C(PT )

4,χN/C(PT )
1,χN ∼ O(1/Nc), but this ratio on the right-

hand side is multiplied by an additional factor of 4. Thus,
at the physical value Nc = 3, the second term can lead to
significant cancellations or enhancements depending on the
relative signs of the LECs. Similarly, the ratio of the SD cross
sections is

σ SD
0,p

σ SD
0,n

=
(
1 + C(PT )

3,χN

C(PT )
2,χN

)2

(
1 − C(PT )

3,χN

C(PT )
2,χN

)2
≈ 1 + 4

C(PT )
3,χN

C(PT )
2,χN

+ O
(
1/N2

c

)
, (68)

from which the same conclusions regarding the SI cross sec-
tions may be drawn.

B. WIMP-deuteron elastic scattering

Now, we consider parity and time-reversal invariant
WIMP-deuteron elastic scattering without considering a spe-
cific model. First, we review the technology developed in
Ref. [45] for calculating amplitudes involving the deuteron.
Additionally, we will need the NN EFTπ/ Lagrangian at NLO,
[46]

LNN = N†

(
i∂0 + ∇2

2mN

)
N − C(3S1 )

0 (NT PiN )†(NT PiN )

− C(1S0 )
0 (NT P̄aN )†(NT P̄aN )

+ C(3S1 )
2

8

[
(NT PiN )†(NT Pi

↔
∇

2

N ) + H.c
]

+ C(1S0 )
2

8

[
(NT P̄aN )†(NT P̄a

↔
∇

2

N ) + H.c
]
. (69)

Γ = +

+ + · · ·

FIG. 2. Irreducible four-point function for elastic WIMP-
deuteron scattering. The wavy lines represent the WIMP. The
small black dot represents the zero-derivative WIMP-one-nucleon
coupling, and the large black circle represents the zero-derivative
WIMP-two-nucleon coupling. The ellipsis denotes higher-order
terms.

Using PDS [71] and the Z parametrization [74], the cou-
plings C(s)

2n , where 2n is the number of derivatives in the
operator and s is the partial wave channel, can be used to
reproduce the location of the deuteron pole and its residue.
Elements of the S-matrix and thus the scattering amplitude
are related to correlation functions through the LSZ formula

〈p′, m; k′, r|S|p, n; k, s〉 = i

[
�(q2, Ē , Ē ′)
d�(Ē )/dE

]
Ē ,Ē ′→−B

, (70)

where � is the irreducible two-point function in Fig. 1, � is
the irreducible four-point correlation function in Fig. 2, p (p′)
is the momentum of the incoming (outgoing) deuteron, m (n)
is the polarization of the incoming (outgoing) deuteron, k (k′)
is the momentum of the incoming (outgoing) WIMP, q is the
momentum transfer, and s (r) is the incoming (outgoing) spin
index for a spin-1/2 WIMP. The two-nucleon center-of-mass
energy Ē is given by

Ē = E − p2

4mN
, (71)

where the energy of each nucleon is E/2. An analogous rela-
tionship holds for the energy of the outgoing deuteron E ′.

The functions � and � are expanded in powers of Q,

�(Ē ) =
∑
n=1

�(n)(Ē ), (72)

�(q2, Ē , Ē ′) =
∑

n=−1

�(n)(q
2, Ē , Ē ′), (73)

where n denotes each term’s order in the Q/�π/ expansion. In
PDS, the functions for �1 and �2 are [45]

�(1)(Ē ) = − imN

4π
(μ −

√
−mN Ē − iε), (74)

�(2)(Ē ) = −iC(3S1 )
2 mN Ē�2

(1)(Ē ), (75)

where μ is the renormalization scale. To NLO, Eq. (70) is

〈p′, m; k′, r|S|p, n; k, s〉 = i

[
�(−1)

d�(1)/dĒ
+ �(0)(d�(1)/dĒ ) − �(−1)(d�(2)/dĒ )

(d�(1)/dĒ )2 + · · ·
]
. (76)
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Now, we must calculate the contributions from the irreducible four-point diagrams. The LO contributions consist of insertions
of the isoscalar operators in Eq. (11) yielding

�(−1)(q
2, E , E ′) = m2

N

πq

[
iδrsδmnC(PT )

1,χN + σ i
rsε

imnC(PT )
3,χN

]
tan−1

(
q

4γt

)
, (77)

where γt is the deuteron binding momentum.
At NLO, there are contributions from the two-derivative two-nucleon operator proportional to C(3S1 )

2 in Eq. (69) with an
insertion of the single-nucleon currents in Eq. (11) giving

�(0),1b = − 2m3
N

(4π )2
C(3S1 )

2

(
iC(PT )

1,χNδmnδrs + C(PT )
3,χNεimnσ i

rs

)
(μ − γt )

[
μ − γt − 4γ 2

t

q
tan−1

(
q

4γt

)]
. (78)

Finally, there are two contributions at NLO from the WIMP–two-nucleon contact terms in Eq. (58) that connect two 3S1 NN
states leading to

�(0),2b = −
(

mN

4π

)2

(μ − γt )
2
[−2i

(
C(SI, s)

1,χNN + C(SI, s)
2,χNN

)
δmnδrs − 2εimnC(SD, s)

1,χNNσ i
rs

]
. (79)

Thus, the amplitude up to and including NLO is given by

iM = 4md mχ

{
−8γt

q
tan−1

(
q

4γt

)[
iδrsδmnC(PT )

1,χN + σ i
rsε

imnC(PT )
3,χN

]

+ mNγt

π
C(3S1 )

2

[
iδrsδmnC(PT )

1,χN + σ i
rsε

imnC(PT )
3,χN

]
(μ − γt )

2

[
1 − 4γt

q
tan−1

(
q

4γt

)]

− γt

π
(μ − γt )

2
[
i
(
C(SI, s)

1,χNN + C(SI, s)
2,χNN

)
δmnδrs + εimnC(SD, s)

1,χNNσ i
rs

]}
. (80)

The μ dependence of the WIMP–two-nucleon couplings is determined by requiring the amplitude to be independent of μ.
Because the first two terms in the amplitude are already μ independent, the third term should separately be μ independent.
Therefore, the LECs depend on the PDS subtraction point according to

C(SI, s)
1,χNN + C(SI, s)

2,χNN , C(SD, s)
1,χNN ∝ (μ − γt )

−2, (81)

so the familiar infrared enhancement occurs when μ ∼ Q. It has been discussed that large-Nc constraints for two-nucleon contact
terms conflict with the renormalization group for certain values of μ < mπ [62,82,95–98]. However, Ref. [99] suggests that it is
possible to take μ > mπ and still obtain a consistent power counting.

While renormalization group invariance fixes the μ dependence of the LECs, other dimensional factors are required to produce
the correct mass dimension of the LECs. In the case that the interactions are mediated by some heavy exchange particle, it is
expected that two of these factors will come from the mass of the mediator. In the absence of other scales, factors of mπ are
included to obtain the correct mass dimension, in specific cases such as the two-nucleon axial coupling the additional factors
might also include the nucleon mass. Moreover, factors of 4π generically arise from loop diagrams that also enhance the LECs.
All together, we expect the power counting of the two-body LECs to be

Ci, χNN ∼ 4π

�2Q2M
, (82)

where � is on the order of the WIMP-quark mediator mass, and M is on the order of either the pion or nucleon mass.
Next, we obtain the SI and SD cross sections. Averaging over initial spins and summing over final spins in the squared

amplitude yields

1

6

∑
spins

|M|2 = 16m2
d m2

χ

{[
2C(PT )

1,χN

(
4γt

q
tan−1

(
q

4γt

)
+ mNγt

2π
C(3S1 )

2 (μ − γt )
2

− 2mNγ 2
t

πq
C(3S1 )

2 (μ − γt )
2 tan−1

(
q

4γt

))
− γt

π
(μ − γt )

2
(
C(SI, s)

1,χNN + C(SI, s)
2,χNN

)]2

+ 2

[
2C(PT )

3,χN

(
4γt

q
tan−1

(
q

4γt

)
+ mNγt

2π
C(3S1 )

2 (μ − γt )
2 − 2mNγ 2

t

πq
C(3S1 )

2 (μ − γt )
2 tan−1

(
q

4γt

))

− γt

π
(μ − γt )

2C(SD, s)
1,χNN

]2}
. (83)
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Therefore, the cross sections in the limit q2 → 0 are

σ SI
0,d = m2

χd

π

[
2C(PT )

1,χN − γt

π
(μ − γt )

2
(
C(SI, s)

1,χNN + C(SI, s)
2,χNN

)]2
, (84)

σ SD
0,d = 2m2

χd

π

[
2C(PT )

3,χN − γt

π
(μ − γt )

2C(SD, s)
1,χNN

]2
. (85)

The form factors are given by

FSI(q
2) = 4γt

q
tan−1

(
q

4γt

)
− mNγt

2π
C(3S1 )

2 (μ − γt )
2

[
1 − 4γt

q
tan−1

(
q

4γt

)]
+ γt

π
(μ − γt )

2

(
C(SI,s)

1,χNN + C(SI,s)
2,χNN

)
C(PT )

1,χN

(86)

FSD(q2) = 4γt

q
tan−1

(
q

4γt

)
− mNγt

2π
C(3S1 )

2 (μ − γt )
2

[
1 − 4γt

q
tan−1

(
q

4γt

)]
+ γt

π
(μ − γt )

2
C(SD, s)

1,χNN

C(PT )
3,χN

. (87)

In Eq. (84) both terms are O(Nc), but the second term is
higher order in EFTπ/. In Eq. (85) both terms are O(1), and
the second term is again higher order in EFTπ/. Therefore, the
ratio of the cross sections is on the order of

σ SD
0,d

σ SI
0,d

∼ 2

N2
c

, (88)

and this is expected to receive O(1/N2
c ) corrections as well as

EFTπ/ corrections. Additionally, the ratio of the SI deuteron-
WIMP cross section to the corresponding nucleon-WIMP
cross section at LO in the combined EFT and large-Nc ex-
pansion is

σ SI
0,d

σ SI
0,N

= 4m2
χd

m2
χN

= 4m2
d

m2
N

(
mN + mχ

md + mχ

)2

. (89)

Thus, the deuteron-WIMP SI cross section is fixed with re-
spect to Nc, but it is roughly an order of magnitude greater
than the nucleon-WIMP SI cross section due to the size of the
deuteron mass compared to the nucleon mass. The ratio of the
SD cross sections is

σ SD
0,d

σ SD
0,N

= 8m2
χd

3m2
χN

1(
1 ± C(PT )

2,χN

C(PT )
3,χN

)2
. (90)

Therefore, the SD cross section for the deuteron is O(1/N2
c )

suppressed relative to the corresponding nucleon cross sec-
tion. However, the combined size of the other factors may
obscure this relationship, so this constraint should not be over-
interpreted. Furthermore, these results can change depending
on the choice of the underlying model at the quark level. For
instance, if the dark matter only interacts with the quark axial
current, then this will generate SD and not SI scattering, which
clearly contradicts Eq. (88). However, these results may be
seen as statements regarding hierarchies or trends in a general
scenario.

Until now, we have not focused on a specific underlying
interaction at the quark level. In order to compare to similar
analyses from ChEFT [27,32], we will choose the scalar quark
current as a benchmark. There are no isovector contributions
in elastic scattering off of the deuteron; however, we will

include the isovector contributions to the SI response function
when we consider 3H and 3He.

For this model, the coupling C(PT )
1,χN can be matched to the

pion-nucleon σ term, σπN . We use the recent lattice result
σπN = 59.6(7.4) MeV [100], which is similar to the value
used in Refs. [27,32]. In our approach, the affect of this choice
will be to alter the relative value of the two-body couplings.
On the other hand, the isovector coupling C(PT )

4,χN can be fixed to
the neutron-proton strong mass splitting δmN = 2.32 ± 0.17
MeV [101]. The details of this matching can be found in
Appendix B.

First, we fix the dimensionless RG invariant combination

x = 2
(
C(SI,s)

1,χNN + C(SI,s)
2,χNN

)
mNC(3S1 )

2 C(PT )
1,χN

(91)

to the q2 → 0 limit of the corresponding response function
in Ref. [32] using the Z parametrization [74]. This leads to
x ≈ 0.02 shown in Fig. 3, and the resulting response function

FIG. 3. The SI isoscalar response function for the deuteron using
the scalar-isoscalar interaction in Refs. [27,32]. The crosses are taken
from Ref. [32], the solid line is the EFTπ/ result with x fixed to the
q2 → 0 limit of ChEFT data.
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FIG. 4. Diagrams that contribute to the WIMP-3H and 3He
elastic scatterings via the dark-matter-one-nucleon interaction. The
double line denotes the dressed propagator of either spin-triplet or
spin-singlet dibaryon fields. The gray ovals represent the 3H / 3He
vertex function.

is in agreement with Ref. [32] within the EFTπ/ errors for all
values of q considered. With the value of x fixed, the large-Nc

constraints may be used to estimate the remaining LEC com-
binations that receive contributions from the scalar current.
We will include these estimates in the response functions of
Sec. IV C.

C. Dark matter-3H and 3He elastic scattering

Finally, we consider elastic WIMP-3H and WIMP-3He
scattering. The diagrams are shown in Fig. 4. In order to
perform these calculations, we use the Lagrangian

L = Lstrong + LχN + Lχts, (92)

where

Lstrong = N†

(
i∂0 + ∇2

2mN

)
N + t†

i

[
�t − c0t

(
i∂0 + ∇2

4mN
+ γ 2

t

mN

)]
ti + yt [t

†
i NT PiN + H.c]

+ s†
a

[
�s − c0s

(
i∂0 + ∇2

4mN
+ γ 2

s

mN

)]
sa + ys[s

†
aNT PaN + H.c]

+ ψ†�ψ + [ωtψ
†σiNti − ωsψ

†τaNsa + H.c.], (93)

where ti is the deuteron field, sa is the 1S0 virtual state dibaryon field, and ψ is an auxiliary spin and isospin doublet field for
the three-body bound states. In the Z parametrization, the dibaryon-NN coupling constants are set to y2

s = y2
t = 4π

mN
and the

remaining LECs are [75]

�t + μ = γt ∼ Q c(n)
0t = (−1)n(Zt − 1)n+1 mN

γt
∼ Qn, (94)

�s + μ = γs ∼ Q c(n)
0s = (−1)n(Zs − 1)n+1 mN

γs
∼ Qn, (95)

where γt = 45.7025 MeV is the binding momentum of deuteron, γs = −7.8902 MeV is the binding momentum of the virtual
state in the 1S0 channel, Zt = 1.6908 and Zs = 0.9015 are the residues about the deuteron and 1S0 poles, respectively, and c0t/s =∑

n c(n)
0t/s. The three-body LECs ωs and ωt are fixed in order to reproduce the triton binding energy B3H = −8.48 MeV [75]. The

term LχN consists of the one-nucleon currents, and LχNN consists of the two-body currents, which takes the form

Lχts = lχ

1 χ†χt†
i ti + ilχ

2 εi jk (χ†σ iχ )t†
j tk + lχ

3 (χ†σ iχ )(s†
3ti + H.c.) + lχ

4 (χ†χ )s†
asa

+ lχ

5 iε3ab(χ†χ )s†
asb + lχ

6 Iab(χ†χ )s†
asb + lχ

7 (χ†σ iχ )(is†
3ti + H.c.), (96)

in the dibaryon formalism. The relevant Feynman diagram corresponding to an insertions of the two-body currents in Eq. (96) is
shown in Fig. 5. An example of matching the LECs in this formalism to those in Eq. (58), which is required to apply the large-Nc

scaling rules is presented in Appendix C.
The three-body vertex function, which is equivalent to the wave function, is expressed as a system of coupled inhomogeneous

integral equations in cluster configuration space as [75]

G0(k, p) = B0 + 1

2π2

∫ �

0
dqq2 K(k, p, q)G0(k, q), (97)

where

G0(k, p) =
[Gt (k, p)

Gs(k, p)

]
, B0 =

[
1

−1

]
, (98)

The function Gt (k, p) is the vertex function describing the coupling between triton, nucleon, and deuteron while Gs(k, p) is the
vertex function describing the coupling between triton, nucleon, and spin-singlet dibaryon. The kernel is

K(k, p, q) = 2π

pq
Q0

(
p2 + q2 − mN E − iε

pq

)⎡
⎣−Dt (E − q2

2mN
, q) 3Dt (E − q2

2mN
, q)

3Ds(E − q2

2mN
, q) −Ds(E − q2

2mN
, q)

⎤
⎦, (99)
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FIG. 5. Diagram that contributes at NLO with dark-matter–two-
nucleon interaction given by Eq. (96).

where Dt and Ds are the dressed deuteron and spin-singlet
dibaryon propagators, respectively, given by

iDt/s(p0, p) = i

γt/s −
√

p2

4 − mN p0 − iε
, (100)

and the Legendre function of the second kind is

Q0(a) = 1

2
ln

(
a + 1

a − 1

)
. (101)

Finally, the renormalized LO vertex function is obtained by

�0(p, E ) = G0(p, E )
√

ZLO
ψ , (102)

where ZLO
ψ is the residue of the dressed triton propagator

about the triton pole. The couplings ωt and ωs have been
absorbed into ZLO

ψ , so they do not appear explicitly in Eq. (97).
The calculation of ZLO

ψ is shown in Ref. [102]. With these
ingredients, the diagrams in Fig. 4 can be calculated using the
tools established in Refs. [102,103]. Greater detail concerning
the calculations can be found in Appendix A.

In the limit of zero momentum transfer, the ratio of the SI
and SD cross sections at LO in the combined large-Nc and
EFTπ/ expansion is

σ SI
0,H

σ SD
0,H

∼ 9C(PT )2
1,χN

3C(PT )2
2,χN

∼ 3, (103)

which is fixed with respect to Nc. Similarly, the ratio of the SI
WIMP-3H / 3He cross section to the WIMP-deuteron SI cross
section is

σ SI
0,H

σ SI
0,d

= 9m2
χH

4m2
χd

= 9m2
H

4m2
d

(
md + mχ

mH + mχ

)2

, (104)

which is fixed with respect to Nc. Lastly, the ratio of the SD
cross sections is

σ SD
0,H

σ SD
0,d

= 3m2
χH

8m2
χd

C(PT )2
2,χN

C(PT )2
3,χN

. (105)

Therefore, the deuteron-WIMP SD cross section is relatively
1/N2

c suppressed. These relative scalings are similar to the
ratios of the deuteron and nucleon cross sections.

The response functions for 3H and 3He for a WIMP cou-
pled to the quark scalar isoscalar current are shown in Figs. 6
and 8, respectively, where we have used the value of x de-
termined from the deuteron response function in order to fix
lχ

1 and used the large-Nc estimate lχ

4 /lχ

1 = 1. The result of
Ref. [32] falls within the large-Nc error band, although this

FIG. 6. The response function of 3H for the quark scalar cur-
rent omitting isovector interactions. The crosses are NLO data from
Ref. [32]. The gray band indicates 30% error from the large-Nc

prediction for lχ

4 /lχ

1 .

should not be considered as a rigorous uncertainty estimate.
This demonstrates that the large-Nc estimates can provide reli-
able results for two-nucleon currents, at least for the two-body
contributions to the scalar current.

We have also included the corrections to the SI response
functions due to the isovector interaction proportional to lχ

5
in Figs. 7 and 9, where we have used the large-Nc estimate
|lχ

5 /lχ

1 | = 1/3. Overall, the inclusion of this operator leads to
a small but distinguishable shift in the response functions for
the two nuclei.

FIG. 7. The SI response function of 3H including isovector con-
tributions. The crosses are the same as Fig. 3. The solid and dashed
lines include the large-Nc estimate for lχ

5 with respect to lχ

1 and with
relative positive and negative signs, respectively.
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FIG. 8. The SI response function of 3He. The features of the plot
are the same as Fig. 6.

V. CONCLUSIONS

The detection of dark matter is a high priority in searches
for BSM physics. Direct detection searches have set strin-
gent limits on the WIMP-nucleon interactions using heavy
nuclear targets. [5–10]. However, new detectors [15–20] us-
ing light nuclei as targets and cosmological studies make
it possible to exploit few-body systems for dark-matter de-
tections for a wide range of dark-matter masses. Pionless
EFT is a model-independent framework to study WIMP-light
nucleus scattering. Compared to previous EFT calculations
[22–31,33–38], EFTπ/ has the advantage that its power count-
ing is well understood and it is renormalization group
invariant. However, all EFT calculations are limited by the
lack of a clear signal in experiments that can fix the values of
the LECs. Therefore, theoretical constraints from other means
are necessary in order to guide the interpretation of data.

FIG. 9. The SI response function for 3He including isovector
contributions. The features of the plot are the same as Fig. 7.

Here, we used the spin-flavor symmetry of the baryon
sector of large-Nc limit of QCD [52–58] to constrain the
relative sizes of the LECs for zero- and one-derivative one-
nucleon currents coupled to an external WIMP field. If we
include 1/Nc corrections from the SI isovector coupling, the
WIMP-neutron and WIMP-protons couplings can move into
the xenonphobic regime where potential signals in xenon-
based detectors will be highly suppressed. We also examined
the zero-derivative two-nucleon contact currents coupled to a
WIMP. There are three LECs that are O(Nc) while the remain-
ing LECs are at least relatively 1/Nc suppressed. In particular,
the SI isoscalar, SD isovector, and SI isotensor LECs are
O(Nc), so isospin violating WIMP–two-nucleon interactions
can produce significant corrections to the LO results for light
nuclei.

We estimated the impact of the large-Nc constraints by
calculating the elastic WIMP scattering cross sections off
the nucleon, deuteron, 3H, and 3He. For the nucleon and
the three-body bound states, we found that the SI and SD
cross sections are of the same order in Nc while the SD cross
section for the deuteron is 1/N2

c suppressed relative to the SI
cross section. Moreover, the SI cross sections for each target
are of the same size while the deuteron SD cross section is
1/N2

c suppressed relative to the WIMP-nucleon and WIMP-
3H / 3He cross sections. The relative differences in size of
the SI cross sections at LO-in-Nc is due to the differences in
the target masses. We expect that these results will receive
roughly 30% corrections at NLO in the large-Nc and EFTπ/

expansion.
We have also calculated the response functions for a model

in which the quark scalar current couples to the external
WIMP field. This is the same model explored in Refs. [27,32],
which we used as input data to fix a combination of LECs of
our one- and two-body currents relevant for WIMP-deuteron
scattering. The resulting response function for the deuteron
agrees with Refs. [27,32] within EFTπ/ errors for a consid-
erable range of momentum transfers, cf. Fig. 3. Using the
large-Nc scalings from Eq. (58) and Eqs. (C2)–(C8), we are
able to fix the relative sizes of the LECs that contribute to
the response functions for 3H and 3He. We find good agree-
ment for the response functions for these nuclei as well in
Figs. 6 and 8. Moreover, we are able to include the isovector
contributions to these response functions by making use of
the large-Nc constraints. We show the impact of these contri-
butions relative to the isoscalar result of Ref. [32] in Figs. 7
and 9.

In summary, the large-Nc constraints derived in this pa-
per impose an additional hierarchy on top of the EFTπ/

power counting for the LECs that couple WIMPs to few-
nucleon systems. Through the use of EFTπ/, we are able to
examine the impact of these constraints on the elastic scat-
tering cross sections for several light nuclei. We hope that
these results can be used to inform experimental searches
for dark matter that employ light nuclei as well as searches
based on cosmology. In addition, the large-Nc constraints
for contact currents are applicable in ChEFT. Therefore,
they may simplify the required input in many-body calcu-
lations that employ ChEFT interactions for direct detection
analyses.
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APPENDIX A: DETAILS OF THE WIMP-TRITON/HELIUM-3 AMPLITUDE

The contribution from each diagram in Fig. 4 can be written as

iAα = iC(PT )
1,χNδi,i′δa,a′δm,n(Iα, t−→t + Iα, s−→s) + iC(PT )

2,χN (σJ )i,i′ (τ3)a,a′ (σ J )m,n
(− 1

3 Iα, t−→t − 1
3 Iα, s−→s

)
+ iC(PT )

3,χN (σJ )i,i′δa,a′ (σ J )m,n
(− 1

3 Iα, t−→t + Iα, s−→s
) + iC(PT )

4,χNδi,i′ (τ3)a,a′δm,n
(
Iα, t−→t − 1

3 Iα, s−→s
)
, (A1)

iAβ = iC(PT )
1,χNδi,i′δa,a′δm,n

(− 1
2 Iβ, t−→t − 1

2 Iβ, s−→s + 3
2 Iβ, t−→s + 3

2 Iβ, s−→t
)

+ iC(PT )
2,χN (σJ )i,i′ (τ3)a,a′ (σ J )m,n

(
5
6 Iβ, t−→t + 5

6 Iβ, s−→s + 1
6 Iβ, t−→s + 1

6 Iβ, s−→t
)

+ iC(PT )
3,χN (σJ )i,i′δa,a′ (σ J )m,n

(− 5
6 Iβ, t−→t + 1

2 Iβ, s−→s + 1
2 Iβ, t−→s + 1

2 Iβ, s−→t
)

+ iC(PT )
4,χNδi,i′ (τ3)a,a′δm,n

(
1
2 Iβ, t−→t − 5

6 Iβ, s−→s + 1
2 Iβ, t−→s + 1

2 Iβ, s−→t
)
, (A2)

and

iAγ = iC(PT )
1,χNδi,i′δa,a′δm,n(2Iγ , t−→t + 2Iγ , s−→s) + iC(PT )

2,χN (σJ )i,i′ (τ3)a,a′ (σ J )m,n
(

2
3 Iγ , t−→s + 2

3 Iγ , s−→t
)

+ iC(PT )
3,χN (σK )i,i′δa,a′ (σ K )m,n

(
4
3 Iγ , t−→t

) + iC(PT )
4,χNδi,i′ (τ3)a,a′δm,n

(
4
3 Iγ , s−→s

)
, (A3)

where Iν, x→y is the integral from diagram ν and the first dibaryon is of type x while the second dibaryon is of type y. Then we
define Ii to be the sum of contributions proportional C(PT )

i,χN . For example, I1 is given as,

I1 = Iα, t→t + Iα, s→s − 1
2 Iβ, t−→t − 1

2 Iβ, s−→s + 3
2 Iβ, t−→s + 3

2 Iβ, s−→t + 2Iγ , t−→t + 2Iγ , s−→s. (A4)

We choose to perform the calculation of the nuclear form factor in the Breit frame. In momentum space, the integral for diagram
α in Fig. 4α takes the form

Iα = i
∫

d4l

(2π )4
G̃0

[(
E ,−q

2

)
, (l0, l)

]
�α

(
E , l0, l, q

)
G̃0

[(
E ,

q
2

)
, (l0, l)

]
, (A5)

where G̃0 is the LO vertex function calculated in an arbitrary frame, E = E3 + q2

24mN
, and �α (E , l0, l, q) is given by

�α = 1

E − l0 − (l+q/2)2

2mN
+ iε

1

γt/s −
√

l2

4 − mN l0 + iε

1

E − l0 − (l−q/2)2

2mN
+ iε

. (A6)

Here, l and q are the magnitude of the vectors l and q, respectively. We perform the l0 integral over the energy pole, which puts
the left-hand nucleon on shell. Next, integration over the azimuthal angle yields

Iα = M

2π2

∫ �

0
dll2

∫ 1

−1
d cos θ G̃0

[(
E ,−q

2

)
, (l0, l)

] 1

γt/s −
√

3
4 l2 − mN E + 1

8 q2 + 1
2 lq cos θ

1

lq cos θ
G̃0

[(
E ,

q
2

)
, (l0, l)

]
,

(A7)

where � is a cutoff used to regulate UV divergences. Finally, Galilean invariance is used to relate the vertex function in an
arbitrary frame to the vertex function in the center-of-mass frame, G0. If the nucleon pole is enclosed in the contour of integration
for the vertex function, then

G̃0

[(
E ,−q

2

)
, (l0, l)

]
= G0

(∣∣∣l + q
3

∣∣∣), (A8)

otherwise,

G̃
[(

E ,
q
2

)
, (l0, l)

]
= G0

(
E3 − q2

18mN
− 2

3mN
lq cos θ − l2

2mN
,

∣∣∣l − q
3

∣∣∣). (A9)
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The integral for diagram β has the form

Iβ =
∫

d4l

(2π )4

∫
d4k

(2π )4
G̃0

[(
E ,−q

2

)
, (l0, l)

]
�β (E , l0, k0, l, k, q) G̃0

[(
E ,

q
2

)
, (k0, k)

]
, (A10)

where

�β = DN

(
E − l0,−l − q

2

)
Dt/s(l0, l) DN

(
E − l0 + k0, l − q

2
+ k

)
× Dt/s(k0, k) DN

(
E − k0,−k + q

2

)
DN

(
−E + l0 + k0, l + q

2
+ k

)
. (A11)

Using contour integration over k0 and l0 and enclosing the poles at

l0 = E − (l + q/2)2

2mN
, k0 = E − (k − q/2)2

2mN
, (A12)

yields

Iβ =
∫

d3l
(2π )3

∫
d3k

(2π )3
G̃0

[(
E ,−q

2

)
, (l0, l)

]
Dt/s(l0, l) DN

(
E − l0 + k0, l − q

2
+ k

)

× Dt/s(k0, k) DN

(
−E + l0 + k0, l + q

2
+ k

)
G̃0

[(
E ,

q
2

)
, (k0, k)

]
. (A13)

The vertex functions are again related to the center-of-mass frame according to

G̃0

[(
E ,−q

2

)
, (l0, l)

]
= G0

(∣∣∣l + q
3

∣∣∣), (A14)

G̃0

[(
E ,

q
2

)
, (k0, k)

]
= G0

(∣∣∣k − q
3

∣∣∣), (A15)

Consider k = k⊥ + k‖ and l = l⊥ + l‖, where ⊥ and ‖, respectively, indicate vectors perpendicular and parallel to the vector q,

k · l = k‖ · l‖ + k⊥ · l⊥ = kl cos θ cos ψ + kl sin θ sin ψ cos φ, (A16)

where q · l = ql cos θ , q · k = qk cos ψ , and φ is the angle between k⊥ and l⊥. We will integrate Eq. (A13) over one azimuthal
angle to obtain

Iβ = 4m2
N

(2π )5

∫ �

0
l2dl

∫ �

0
k2dk

∫ 1

−1
du

∫ 1

−1
dv

∫ 2π

0
dφ G0

(∣∣∣l + q
3

∣∣∣)

× 1

γt/s −
√

3
4 l2 + 1

2 lqu + 1
8 q2 − mN E

1

γt/s −
√

3
4 k2 − 1

2 kqv + 1
8 q2 − mN E

× 1

2mN E − (
2k2 + 1

4 q2 − 3
2 lqu − 3

2 kqv + 2kluv + 2kl
√

1 − u2
√

1 − v2 cos φ
)

× 1

2mN E − (
2l2 + 2k2 + 3

4 q2 + 3
2 lqu − 1

2 kqv + 2kluv + 2kl
√

1 − u2
√

1 − v2 cos φ
)G0

(∣∣∣k − q
3

∣∣∣). (A17)

In the above equation, we have denoted u ≡ cos θ and v ≡ cos ψ for short.
Lastly, the integral for diagram γ is

Iγ = −
∫

d4l

(2π )4

∫
d4k

(2π )4
G̃0

[(
E ,−q

2

)
, (l0, l)

]
�γ (E , l0, k0, l, k, q)G̃0

[(
E ,

q
2

)
, (l0, q + l)

]
, (A18)

where

�γ = DN

(
E − l0,−q

2
− l

)
Dt/s(l0, l) DN (k0, k) DN (l0 − k, l − k)DN (l0 − k0, q + l − k)Dt/s(l0, q + l). (A19)

Following the same procedure, we enclose the poles at

l0 = E − (l + q/2)2

2mN
, k0 = k2

2mN
. (A20)
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The vertex functions are related to the center-of-mass frame,

G̃0

[(
E ,−q

2

)
, (l0, l)

]
= G0

(∣∣∣l + q
3

∣∣∣), (A21)

G̃0

[(
E ,

q
2

)
, (l0, l)

]
= G0

(∣∣∣l − q
3

∣∣∣). (A22)

The nucleon subloop integral becomes

Isub-loop =
∫

d3k
(2π )3

1

E − (l+q/2)2

2mN
− k2

2mN
− (l−k)2

2mN

1

E − k2

2mN
− (l+q/2)2

2mN
− (q+l−k)2

2mN

= − m2
N

2πq
tan−1

[
q

2(a + b)

]
, (A23)

where

a2 = 3l2

4
+ 1

2
l · q + q2

8
− mN E , (A24)

b2 = 3l2

4
+ l · q + 3q2

8
− mN E . (A25)

Finally, the integral in Eq. (A18) simplifies to

Iγ = m2
N

8π3q

∫ 1

−1
d (cos θ )

∫ �

0
dl l2 G0

(∣∣∣l + q
3

∣∣∣) G0

(∣∣∣l − q
3

∣∣∣) tan−1

[
q

2(a + b)

]
1

γt/s − √
a2 − iε

1

γt/s − √
b2 − iε

, (A26)

where θ is the angle between l and q.

APPENDIX B: MATCHING ONE-NUCLEON CURRENTS TO SINGLE-QUARK CURRENTS

Here, we collect expressions relevant for connecting the one-nucleon LECs to the low-energy dark-matter–quark couplings
in Ref. [30,38,85] (see also Ref. [104]). The interaction Lagrangian below the electroweak scale is

Lχq =
∑
f =u,d

(χ̄χ )
[
m f

(
f̄ C( f )

SS f
) + m f

(
f̄ C( f )

SP iγ 5 f
)] + (

χ̄ iγ 5χ
)[

m f
(

f̄ C( f )
PS f

) + m f
(

f̄ iγ 5C( f )
PP f

)]

+ (χ̄γ μχ )
[(

f̄ γμC( f )
VV f

) + (
f̄ γμγ 5C( f )

VA f
)] + (

χ̄γ μγ 5χ
)[(

f̄ γμC( f )
AV f

) + (
f̄ γμγ 5C( f )

AA f
)]

+ (χ̄σμνχ )
(

f̄ C( f )
T T σμν f

) + (
χ̄σμνγ 5χ

)(
f̄ C( f )′

T T σμν f
)
, (B1)

where m f is the mass of the quark of flavor f . From the point of view of the large-Nc expansion, contributions from strange
quarks and heavy quarks are highly suppressed in processes involving only nucleons. Therefore, we only consider couplings to
up and down quarks in this work. The single-nucleon matrix elements of the quark currents are

〈N ′|m f f̄ f |N〉 = mN F ( f ,N )
S (q2)N̄ ′N, (B2)

〈N ′|m f f̄ iγ 5 f |N〉 = mN F ( f ,N )
P (q2)N̄ ′iγ 5N, (B3)

〈N ′| f̄ γ μ f |N〉 = N̄ ′
[

F ( f ,N )
1 (q2)γ μ + i

2mN
F ( f ,N )

2 (q2)σμνqν

]
N, (B4)

〈N ′| f̄ γ μγ 5 f |N〉 = N̄ ′
[

F ( f ,N )
A (q2)γ μγ 5 + 1

2mN
F ( f ,N )

P′ (q2)γ 5qμ

]
N, (B5)

〈N ′| f̄ σμν f |N〉 = N̄

[
F ( f ,N )

T,0 (q2)σμν + i

2mN
F ( f ,N )

T,2 (q2)γ [μ q ν] + i

m2
N

F ( f ,N )
T,2 (q2)q[μ k ν]

]
N , (B6)

where we use the notation N ′ = N (p′) and q = p′ − p. Here, N also refers to a specific nucleon rather than the isodoublet of the
proton and neutron.

In order to match the EFTπ/ LEC C(PT )
1,χN to σπN , it is convenient to rearrange the scalar current according to∑

f

C�Sm f f̄ f = C(s)
�Sm̄q̄q − C(v)

�S (md − mu)q̄τ 3q, (B7)

C(s)
�S = 1

2

[
C(u)

�S (1 − ξ ) + C(d )
�S (1 + ξ )

]
, (B8)

C(v)
�S = 1

4

[
C(u)

�S

(
1 − 1

ξ

)
+ C(d )

�S

(
1 + 1

ξ

)]
, (B9)
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where ξ = md −mu
md +mu

= 0.35 ± 0.02 [105], and � indicates the
relevant dark-matter Dirac matrix. In the text, we consider
C(s)

�S = C(v)
�S for simplicity, but this choice can easily be modi-

fied in order to study other scenarios. Now, taking the matrix
element at zero momentum transfer yields

〈N |m̄q̄q|N〉 = σπN , (B10)

〈N |(md − mu)q̄τ 3q|N〉 = ±δmN , (B11)

where the upper (lower) sign corresponds to the proton (neu-
tron).

In order to finish the matching, we perform a nonrelativistic
expansion of the nucleon matrix elements through O(1/mN )

N̄N = N†N, (B12)

N̄iγ 5N = 1

2mN
∇i(N†σ iN ), (B13)

N̄γ 0N = N†N, (B14)

N̄γ iN = − i

2mN
N†

↔
∇

i

N + 1

2mN
εi jk∇ j (N†σ kN ), (B15)

N̄γ 0γ 5N = − i

2mN
N†σ i

↔
∇

i

N, (B16)

N̄γ iγ 5N = N†σ iN, (B17)

N̄σ 0iN = 1

2mN
∇i

(
N†N

) − i

2mN
εi jkN†σ j

↔
∇

k

N, (B18)

N̄σ i jN = εi jkN†σ kN, (B19)

N̄iσ 0iγ 5N = −N†σ iN, (B20)

N̄iσ i jγ 5N = 1

2mN
εi jk∇k

(
N†N

)
+ i

2mN
[N†σ j

↔
∇

i

N − N†σ i
↔
∇

j

N] (B21)

This expansion is derived from a heavy particle expansion
such as that performed in nonrelativistic QED and heavy
quark effective theory (see, e.g., Refs. [106,107]). Analogous
reductions hold for the dark matter bilinears.

Taking the relevant combinations of proton and neutron
matrix elements yields

C(PT )
1,χN = C(s)

SS σπN , (B22)

C(PT )
4,χN = C(v)

SS δmN , (B23)

when we restrict ourselves to the scalar current. When we
include the isovector corrections to the three-body response
functions, we merely assume C(s)

SS /C(v)
SS = 1. However, one can

easily implement other ratios for these couplings.
It is straightforward to use the remaining form factors and

nonrelativistic reductions to derive a general set of matching
relations. A similar procedure, just in a different context, has
been carried out in Refs. [29,30,38,85,89]. The coefficients
of the operators in Eq. (B1) match onto the zero-derivative
one-nucleon currents of Eq. (11) in the following way:

C(PT )
1,χN = C(s)

SS σπN + C(s)
VV F (s)

1 , (B24)

C(PT )
2,χN = C(v)

AA F (v)
A + 2C(v)

T T F (v)
T,0 , (B25)

C(PT )
3,χN = C(s)

AAF (s)
A + 2C(s)

T T F (v)
T,0 , (B26)

C(PT )
4,χN = C(v)

SS δmN + C(v)
VV F (s)

1 . (B27)

The /PT one-nucleon currents receive the contributions

C(/PT )
5,χN = − 1

2mN
C(v)

AV

(
F (v)

1 + F (v)
2

) + 1

2mχ

C(v)
VA F (v)

A , (B28)

C(/PT )
6,χN = − 1

2mN
C(s)

AV

(
F (s)

1 + F (s)
2

) + 1

2mχ

C(s)
VAF (s)

A , (B29)

C(/PT )
7,χN = −C(v)

VA F (v)
A , (B30)

C(/PT )
8,χN = C(s)

AV F (s)
1 , (B31)

C(/PT )
9,χN = −C(s)

VAF (s)
A , (B32)

C(/PT )
10,χN = C(v)

AV F (v)
1 . (B33)

Lastly, the LECs of the /P /T operators are related to the quark
level couplings according to

C(/P /T )
11,χN = 1

2
C(v)

SP F (v)
P + 1

m2
N mχ

C(v)′
T T F (v)

T,2 , (B34)

C(/P /T )
12,χN = − 1

2mχ

C(s)
PS σπN + 1

2mN
C(s)′

T T

(
F (s)

T,0 + F (s)
T,1

)
, (B35)

C(/P /T )
13,χN = − 1

2mχ

C(v)
PS δmN + 1

2mN
C(v)′

T T

(
F (v)

T,0 + F (v)
T,1

)
, (B36)

C(/P /T )
14,χN = 1

2mN
C(s)

SP F (s)
P + 1

m2
N mχ

C(s)′
T T F (s)

T,2, (B37)

C(/P /T )
15,χN = −C(v)′

T T F (v)
T,0 + 1

m2
N mχ

C(v)′
T T F (v)

T,2 , (B38)

C(/P /T )
16,χN = −C(s)′

T T F (s)
T,0 + 1

m2
N mχ

C(s)′
T T F (s)

T,2. (B39)

Finally, we reiterate a point from Ref. [30]: it is inconsistent
to turn off all but one coupling in the nucleon level EFT. For
example, the operators proportional to C(/PT )

5,χN and C(/PT )
7,χN are

generated by the same operator at the quark level. Therefore,
if one of these operators is included in an analysis the other
one is also required.

APPENDIX C: TWO-BODY CURRENTS WITH DIBARYONS

The couplings of two-body currents to the external dark
matter current in EFTπ/ with dibaryon fields can be matched to
the theory without dibaryon fields by matching the amplitudes
for dark-matter–dibaryon scattering. The interactions between
the external WIMP and the dibaryon fields appear in Eq. (96)

Ldibaryon = lχ

1 χ†χt†
i ti + ilχ

2 εi jk (χ†σ iχ )t†
j tk

+ lχ

3 (χ†σ iχ )(s†
3ti + H.c.) + lχ

4 (χ†χ )s†
asa

+ lχ

5 iε3ab(χ†χ )s†
asb + lχ

6 Iab(χ†χ )s†
asb

+ lχ

7 (χ†σ iχ )(is†
3ti + H.c.). (96)

To be concrete, consider WIMP-deuteron elastic scattering
again but with dibaryon fields. A NLO calculation in the Z
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parametrization leads to

iM = −Z
8γ

q
tan−1

(
q

4γ

)(
iδi jδrsC

(PT )
1,χN + εi jkσ

k
rsC

(PT )
3,χN

)
− ilχ

1 δi jδrs
8πγ

m2y2
+ lχ

2 εi jkσ
k
rs

8πγ

m2y2
. (C1)

The LECs lχ

1 and lχ

2 can be determined in terms of the LEC
combinations C(SI,s)

1,χNN + C(SI,s)
2χNN and C(SD,s)

1,χNN by matching the
amplitudes in q2 → 0 limit. This leads to the relations

lχ

1 = m2
N y2

t

4πγ
C(PT )

1,χN (Z − 1) + m2
N y2

t

8π2
(μ − γ )2(C(SI,s)

1,χNN + C(SI,s)
2χNN

)
,

(C2)

lχ

2 = m2
N y2

t

4πγ
C(PT )

3,χN (Z − 1) + m2
N y2

t

8π2
(μ − γ )2C(SD,s)

1,χNN . (C3)

In both matching relations, the second term scales in the
way with Nc as the first term. Calculating analogous ampli-
tudes shows that this is a general feature, although knowing
the exact form of the relationships is not imperative at this
stage. Therefore, we may apply the large-Nc scalings of
the two-nucleon currents from Eq. (58) to the correspond-
ing LECs in the dibaryon formalism, which indicates the

scalings

lχ

3 ∝ C(SD,v)
1,χNN ∼ O(Nc), (C4)

lχ

4 ∝ C(SI,s)
1,χNN − 3C(SI,s)

2χNN ∼ O(Nc), (C5)

lχ

5 ∝ C(SI,v)
1,χNN ∼ O(1), (C6)

lχ

6 ∝ C(SI,t )
1,χNN ∼ O(Nc), (C7)

lχ

7 ∝ C(SD,v)
2,χNN ∼ O(1). (C8)

Furthermore, the LECs in the dibaryon formulation are renor-
malization group invariant.

From the definition of x in Eq. (91), we also find

lχ

1 = mN

γ
C(s)

SS σπN (Z − 1)

(
x

2
+ 1

)
. (C9)

Thus, setting l1 ≈ 14.67σπNC(s)
SS , we may use the large-Nc

scalings to estimate the values of the remaining LECs in order
to predict the remaining response functions in the three-body
system. We expect lχ

3 , lχ

4 , and lχ

6 to be roughly the same size
and lχ

2 , lχ

5 , lχ

7 to be about 1/3 of lχ

1 if a coupling is also turned
on at the quark level that generates spin-dependent scattering.
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