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Interpolating between small- and large-g expansions using Bayesian model mixing
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Bayesian model mixing (BMM) is a statistical technique that can be used to combine models that are predictive
in different input domains into a composite distribution that has improved predictive power over the entire input
space. We explore the application of BMM to the mixing of two expansions of a function of a coupling constant
g that are valid at small and large values of g respectively. This type of problem is quite common in nuclear
physics, where physical properties are straightforwardly calculable in strong and weak interaction limits or at
low and high densities or momentum transfers, but difficult to calculate in between. Interpolation between these
limits is often accomplished by a suitable interpolating function, e.g., Padé approximants, but it is then unclear
how to quantify the uncertainty of the interpolant. We address this problem in the simple context of the partition
function of zero-dimensional φ4 theory, for which the (asymptotic) expansion at small g and the (convergent)
expansion at large g are both known. We consider three mixing methods: linear mixture BMM, localized bivariate
BMM, and localized multivariate BMM with Gaussian processes. We find that employing a Gaussian process
in the intermediate region between the two predictive models leads to the best results of the three methods. The
methods and validation strategies we present here should be generalizable to other nuclear physics settings.
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I. MOTIVATION AND GOALS

In complex systems, such as nuclei, there is typically more
than one theoretical model that purports to describe a physical
phenomenon. Among these models may be candidates that
work well in disparate domains of the input space: energy,
scattering angle, density, etc. In such a situation it is not
sensible to select a single “best” model. How, instead, can we
formulate a combined model that will be optimally predictive
across the entire space?

A concrete realization of this situation is the combination
of predictions from expansions about limiting cases, which
provide theoretical control near those limits. Nuclear physics
examples include low- and high-density limits (e.g., quark-
hadron phase transitions in dense nuclear matter [1–4]); strong
and weak interaction limits (e.g., expansions in positive and
negative powers of the Fermi momentum times scattering
length for cold atoms [5]); high- and low-temperature limits
(e.g., Fermi-Dirac integrals [6]); and four-momentum transfer
limits (e.g., the generalized GDH sum rule [7]).

We propose using Bayesian statistical methods, and the
technique of Bayesian model mixing (BMM) in particular, to
interpolate between such expansions. Bayesian methods are
well suited to this problem since they enable the inclusion of
prior information and provide principled uncertainty quantifi-
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cation (UQ). For a brief introduction to the basics of Bayesian
statistics, see Appendix A.

In this work, we explore BMM strategies for interpolant
construction in the case of the partition function of zero-
dimensional φ4 theory as a function of the coupling strength
g [see Eq. (3)]. These series expansions—in g and 1/g
respectively—provide excellent accuracy in their respective
regions but, depending on the level of truncation, can exhibit
a considerable gap for intermediate g where they both diverge
(see Fig. 1).

A variety of resummation methods have been used to ex-
tend the domain of convergence of the small-g expansion of
the zero-dimensional partition function of φ4 theory, although
only a few have incorporated the constraints from the large-g
expansion; Ref. [5] discusses some of the possibilities. In
Ref. [8], this zero-dimensional partition function was used to
test the suitability of a generalized form of Padé approximants
as an interpolant between the small-g and large-g expansions.
The resulting “fractional powers of rational functions” per-
form well in that case, but there is no obvious principle that
guides the choice of the “best” rational power and, relatedly,
without access to the true partition function, the accuracy of
different interpolants is not accessible in the region of the gap.
The same criticism applies to the constrained extrapolations
with order-dependent mappings introduced in Ref. [9].

Here we will apply Bayesian methods to obtain an inter-
polant that agrees with the true model not only at both ends
of the input space where the power series are reliable, but
also in that gap. A key objective is that the interpolant should
come with a robust estimate of the uncertainty. A hallmark of
a Bayesian approach is the use of probability distributions for
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FIG. 1. The partition function in Eq. (3), denoted the true model,
overlaid with two series expansions (red denoting the weak coupling
expansion and blue the strong coupling expansion) truncated at vari-
ous orders, here labeled Ns and Nl [see Eq. (4)].

(almost) every component of the problem. Particularly useful
here will be the posterior predictive distribution, or PPD,
which is the distribution of possible values that a function can
take at a point where we do not have data. We will label the K
models under consideration by Mk (k = 1, . . . , K ). The kth
model is specified by what it predicts for an observation yi at
a point xi:

Mk : yi = fk (xi ) + εi,k . (1)

In our case the function fk is a deterministic physics model
depending on a single input xi, or a Gaussian process used to
improve the interpolation between models. The physics model
will usually also depend on parameters θk , and those param-
eters would then have to be estimated by calibration to some
observed data set D, consisting of pairs (x1, y1), . . . , (xn, yn),
but that is a complication we do not consider here.1 The
error term, εi,k , represents all uncertainties (systematic, sta-
tistical, computational) which may also enter at the point xi.
Since εi,k is a random variable, its probability distribution has
to be specified in order to specify the statistical model for
the relationship between xi and yi. In our prototype, the fk

are (different) expansions of the integral in Eq. (3), with the
xi’s a set of coupling strengths g, and εi,k modeled from the
truncation error at xi for fk .

The PPD for a new observation (x̃, ỹ) for model k is de-
noted p(ỹ|x̃,Mk ). (Dependence on parameters θk , if present,
would be integrated out—“marginalized”—here.) Our goal is
a combined PPD, which is a weighted sum of the PPD for
each model:

p(ỹ|x̃) =
K∑

k=1

ŵk p(ỹ|x̃,Mk ). (2)

1We note that the BAND [10] software package surmise is capable
of emulating and calibrating models and can be employed prior to
using SAMBA to mix the models [11].

Conventional Bayesian model averaging (BMA) [12] and
Bayesian stacking [13] are implementations of BMM for
which the ŵk are independent of xi, but in general the weights
ŵk may depend on x̃ [14,15]. Such dependence clearly has
to be present for expansions that are valid in different input
domains.

The optimal ways to determine location-dependent weights
in BMM for various applications is a topic of current research.
The Bayesian Analysis of Nuclear Dynamics (BAND) project
will produce a general software Framework for Bayesian
analysis, with nuclear physics examples, and has a particular
interest in the development and application of BMM method-
ologies. A general description of the BAND goals and BMM
is given in the BAND Manifesto [16].

The present work develops a theoretical laboratory (“sand-
box”) that uses the example of the partition function in
zero-dimensional φ4 theory to explore some possible ap-
proaches to BMM that produce reliable interpolants with
principled UQ. We begin this enterprise in Sec. II, where
we present in detail the prototype case we have chosen, and
provide a concise description of Bayesian methods in the
context of our problem. Following this, in Sec. III, we discuss
BMM based on linear mixtures of individual models’ PPDs
and present results of such an approach. In Sec. IV we apply
an alternative method, that we dub “localized bivariate mix-
ing,” which uses the series expansions and their variances to
produce a precision-weighted combination of the small-g and
large-g expansions. As an improvement upon this method, we
introduce a Gaussian process as a third model, and present
results for “localized multivariate mixing” with that Gaussian
process in Sec. V. A summary of lessons learned and the
outlook for future applications of these techniques, as well as a
short discussion of our publicly available SAndbox for Mixing
using Bayesian Analysis (SAMBA) computational package, are
contained in Sec. VI.

II. FORMALISM

A. Test problem

Our prototype true model is a zero-dimensional φ4 theory
partition function [8]

F (g) =
∫ ∞

−∞
dx e− x2

2 −g2x4 = e
1

32g2

2
√

2g
K 1

4

(
1

32g2

)
, (3)

with g the coupling constant of the theory, and K 1
4

the modified
Bessel function of the second kind. This function can be
expanded in either g or 1/g to obtain

F Ns
s (g) =

Ns∑
k=0

skgk, F Nl
l (g) = 1√

g

Nl∑
k=0

lkg−k, (4)

with coefficients

s2k =
√

2�(2k + 1/2)

k!
(−4)k, s2k+1 = 0, (5)

and
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2 + 1
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)
2k!

(
−1

2

)k

. (6)
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The weak coupling expansion, F Ns
s (g), is an asymptotic series,

while the strong coupling expansion, F Nl
l (g), is a convergent

series. The former is a consequence of the factorial growth of
the coefficients s2k at large k; as for the latter, the coefficients
lk decrease factorially as k → ∞.

To apply Bayesian methods to the construction of an in-
terpolant that is based on these small- and large-coupling
expansions it is necessary to think of each expansion as a
probability distribution. We follow Refs. [17–19] and assign
Gaussian probability distributions to the error made by trun-
cating each series at a finite order. That is, we define the PPD
for the small-g expansion at order Ns as

MNs : F (g) ∼ N (
F Ns

s (g), σ 2
Ns

(g)
)
, (7)

and that for the large-g expansion at order Nl as

MNl : F (g) ∼ N (
F Nl

l (g), σ 2
Nl

(g)
)
. (8)

Note that by assuming that the mode of the PPD is the value
obtained at the truncation order we are assuming that the final
result is equally likely to be above or below that truncated
result.

B. Truncation error model

This leaves us with the task of defining the “1σ error,” i.e.,
the standard deviation, associated with each PPD. The error in
F Ns

s (g) is nominally of O(gNs+2) (note that the series contains
only even powers of g) but the factorial behavior of the coeffi-
cients modifies the size of the error dramatically. We therefore
build information on the asymptotics of the coefficient s2Ns+2

into our model for that error. Analyzing the first few terms of
the series (see Appendix B) we might guess

σNs (g) =
{
�(Ns + 3)gNs+2c̄ if Ns is even,
�(Ns + 2)gNs+1c̄ if Ns is odd.

(9)

The standard deviation takes this alternating form because the
small-g series contains only even terms. c̄ is a number of order
one that is estimated by taking the (nonzero) terms in the
expansion up to order Ns, rescaling them according to Eq. (9)
so that the large-Ns behavior is accounted for, and computing
their rms value. We deem Eq. (9) an “uninformative error
model” for large Ns.

A closer look at the behavior of the series as Ns gets bigger
leads to a more informed statistical model for the uncertainty
at order Ns:

σNs (g) =
{
�(Ns/2 + 1)(4g)Ns+2c̄ if Ns is even,
�(Ns/2 + 1/2)(4g)Ns+1c̄ if Ns is odd.

(10)

c̄ is again estimated by taking the nonzero terms in the ex-
pansion, this time rescaling them according to Eq. (10), and
computing their rms value. Further discussion of how we
arrived at these two forms for the behavior of higher-order
terms can be found in Appendix B.

Similarly the error in F Nl
l (g) is nominally of O(g−Nl −3/2)

[recall that F (g) goes as g−1/2 at large g] but we must first
account for other factors that dramatically affect the conver-
gence of the series. We therefore take

σNl (g) = 1

�(Nl + 2)

1

gNl +3/2
d̄ (11)

as an uninformative model of the error at large Nl and

σNl (g) =
(

1

4g

)Nl +3/2 1

�(Nl/2 + 3/2)
d̄, (12)

as the informative model. d̄ is to be estimated using the same
approach taken for c̄.

It is important to note that all sets of coefficients discussed
are alternating, so an error model with mean zero is appropri-
ate. However, the error model only builds in some aspects of
the series’ behavior: it assumes that the higher-order coeffi-
cients are randomly distributed around zero, which does not
account for their alternating-sign pattern. Some consequences
of this choice will later be manifest in Fig. 6.

III. LINEAR MIXTURE MODEL

A. Formulation

In some situations the true probability distribution is a
linear mixture of two simpler probability distributions. For
example, the height of adult males and the height of adult fe-
males2 in the US are each approximately normally distributed
[20], but the two probability distributions have different
means and variances, and so the distribution of adult heights in
the US is (at the same level of approximation) a linear mixture
of the two:

p(height of US adults) = αp(height of US males)

+ (1 − α)p(height of US females),
(13)

where α is the probability of drawing a male from the popula-
tion.

This kind of linear mixture of probabilities defines a con-
ceptually simple form of BMM; cf. Eq. (2). If the weights in
Eq. (2) are chosen to be independent of the location in the
input space and equal to the Bayesian evidence [the denomi-
nator in Eq. (A1)], what results is an example of BMA.

In this section we follow Coleman [21] and make the
weights in Eq. (2) dependent on location in the input-space
variable, g. Reference [21] applied this technique to mix two
different models of heavy-ion collisions developed by the
JETSCAPE Collaboration (although there the mixing protocol
was also modified to account for correlations between observ-
ables across the input space).

We apply it to large-g and small-g models, MNl and MNs .
The PPD computed in this section therefore takes the form

p(F (g)|θ) ∼ α(g; θ)F Ns
s (g) + (1 − α(g; θ))F Nl

l (g). (14)

We take the variance of the two individual-model probability
distributions to be the form of the informative error model
[see Eqs. (10) and (12)]. The mixing function α(g; θ) depends
not just on the location in the input space, g, but also on
parameters θ defining that dependence on g. These parameters
dictate how the mixing function “switches” from being 1 at
g = 0, where F Ns

s dominates, to being 0 at g = 1, where F Nl
l

dominates.

2“Male” and “female” here refer to the sex assigned at birth.
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FIG. 2. The piecewise cosine mixing function, evaluated at the
MAP values of θ, shown as the solid black curve, for the case
Ns = Nl = 2. The dashed green, dashed orange, and dash-dotted
purple lines represent the MAP values of the three parameters θ1,
θ2, and θ3, which give the location of transition points in the function
[see Eq. (15)].

We employ parametric mixing, which means we must spec-
ify the functional form of α. In Ref. [21] Coleman employed
the well-known logistic function (which is also referred to as
a sigmoid function, and has been used as a simple activation
function in recent machine learning applications) and the CDF
(cumulative distribution function) of the normal distribution.
However, these do not meet the requirements of our applica-
tion. We require α(g; θ) become strictly 0 before the value of
g where the small-g power series diverges. Likewise, α(g; θ)
must remain constant at 1 for all g for which the large-g
expansion diverges. We therefore adopted a third mixing func-
tion, henceforth referred to as the cosine mixing function,
which is constructed piecewise so that it switches the large-g
model on at a value θ1 that is “late enough,” and switches the
small-g model off at a value θ3 that is “early enough.” Figure 2
provides a pictorial example of our function and its success in
this constraint. The function is

α(g; θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, g � θ1;
1
2

[
1 + cos

(
π
2

( g−θ1

θ2−θ1

))]
, θ1 < g � θ2;

1
2

[
1 + cos

(
π
2

(
1 + g−θ2

θ3−θ2

))]
, θ2 < g � θ3;

0, g > θ3.

(15)

The parameter θ2 specifies the location in input space, i.e., the
value of g, at which each model has a weight of 0.5 in the final
PPD.

The mixing function thus has three parameters θ that need
to be estimated from data. Bayes’ theorem, Eq. (A1), tells
us that the posterior for the parameters is the product of
the likelihood of that data and the prior distribution for the
parameters. If we assume that we have i = 1, . . . , n evenly
spaced data points in the gap and the error on these is σ 2

di
, then

we can use Bayes’ theorem and the mixed-model definition

[Eq. (14)] to write

p(θ|D) = p(θ)
n∏

i=1

{
α(gi; θ)N (

F Ns
s (gi ), σ

2
di

+ σ 2
Ns

)
+ [1 − α(gi; θ)]N (

F Nl
l (gi ), σ

2
di

+ σ 2
Nl

)}
. (16)

Note that σ 2
Ns

and σ 2
Nl

correspond to the theory error model
chosen (here the informative model). The prior distribution,
p(θ), is defined as

p(θ) = U (θ1 ∈ [0, b])N (θ1; μ1, 0.052)

× U (θ2 ∈ [θ1, b])N (θ2; μ2, 0.052)

× U (θ3 ∈ [θ2, b])N (θ3; μ3, 0.052). (17)

This prior ensures that θ1 < θ2 < θ3. The value b is a cutoff
that can be selected to indicate where we believe the end
of the mixing region between the models is (heretofore and
henceforth deemed “the gap”). This can be set to separate
values in each uniform prior, depending on the user’s knowl-
edge of their system, or to the same value for all parameter
priors. Note that this can indeed be part of the prior in this
analysis, because we have access to information on where the
gap between the expansions is based solely on the expansions
themselves. Also, note that the values for the mean of the
Gaussian priors [μ1, μ2, and μ3 in Eq. (17) above] can be
assigned depending on the estimated location of the gap.

We determine [Eq. (16)], and hence the posteriors of the
three parameters θ, by employing Markov chain Monte Carlo
(MCMC) sampling, implemented via the Python package
emcee [22]. We assigned 20 walkers with 3000 steps each,
for a total of 60 000 steps. We selected the first 200 steps of
each walker as burn-in and removed them from consideration
in the parameter chains.

We can write the PPD [Eq. (14)] as

p(ỹ(g)|θ, D) =
M∑

j=1

α(g; θ j )F
Ns

s (g) + (1 − α(g; θ j ))F
Nl

l (g),

(18)

where we sum over M values of the θ vector from trace results
in our MCMC samples. In this way we are not just including a
maximum a posteriori (MAP) value of our estimated parame-
ters, but using all of the posterior distribution information we
gained from our MCMC calculation to determine them.

B. Results and discussion

Before discussing the results for the linear mixture model
we point out that the need for data in the gap between these
two expansions to calibrate the parameters of the mixing
function could be a concern for applications to physical prob-
lems where obtaining these data would be costly, difficult, or
both.

Even if data are available—as we have assumed they are—
two obvious pitfalls of the linear mixture model in our test
case can be seen in Figs. 3 (Ns = Nl = 2) and 4 (Ns = Nl = 5).
The PPD mean connects to the two series expansions across
the gap, but in both cases the discontinuities in the first deriva-
tives of the mixed model at the left and right edges of the gap
would not easily be explained by natural occurrence, unless
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FIG. 3. The PPD median and 68% credibility interval for the lin-
ear mixture model [Eq. (18)] are shown in solid green and as a shaded
green band, respectively, overlaid on the Ns = 2 (dashed red curve)
and Nl = 2 (dashed blue curve) small-g and large-g expansions. The
location in g of the three mixture parameters of the piecewise cosine
mixture function, θ1, θ2, and θ3, are indicated by the solid light purple
lines. The true model curve is shown in solid black as a reference,
with the black dots around it comprising the randomly distributed
data set used in this analysis. This data has a 1% error from the true
curve added to it.

one crossed a phase transition or other new physics entered at
a specific value of g.

Second, even though the theory error of the small- and
large-g expansions (in the form of the informative error model
used in this analysis) is accounted for in our analysis, we see
that in Fig. 3 the 68% credibility interval does not include
the true model 68% of the time, indicating that this method
is not accurately quantifying uncertainty in this toy problem.
We did find cases where this linear mixture model produces
a PPD with good empirical coverage properties, i.e., does not
suffer from this defect, but we were only able to achieve that

FIG. 4. The PPD median and 68% credibility interval, with all of
the curves as for Fig. 3, but for the case Ns = Nl = 5.

FIG. 5. The results of computing the bivariate model mixing are
shown for (a) Ns = 2, Nl = 2 and (b) Ns = 5, Nl = 5, using the
informative error model. The result from computing f† [Eq. (20)] is
shown in green, with the 68% credibility interval shown as the green
shaded region.

for Ns, Nl = 5 (as in Fig. 4) as well as for some values that are
much higher than would be attainable in a physics application.

There is a separate, but perhaps related, issue in choos-
ing which mixture function we use by hand. If we are not
choosing one that really represents the transition from one
model’s domain to the next, we are building in an implicit
bias to the mixed model result, as the model will always adopt
features of the mixing function chosen. In the next section, we
construct another method that addresses this problem directly
by eliminating the need for a mixing function to cross the gap.

IV. LOCALIZED BIVARIATE BAYESIAN MODEL MIXING

A. Formalism

One way to formulate a mixed model that incorporates
the model uncertainty of the models being mixed is to use
the simple method of combining Gaussian distributed random
variables [16]. This can be written for any number of models
K . Each model is weighted by its precision, the inverse of the
variance:

f† = 1

ZP

K∑
k=1

1

vk
fk, ZP ≡

K∑
k=1

1

vk
. (19)
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FIG. 6. A comparison between the uninformative error model (left panel) and the informative error model (right panel), shown side by side
applied to the case Ns = 3, Nl = 3. The greater size of the uncertainty in the gap when the uninformative error model is used is evident in the
left panel.

From the rule for a linear combination of independent nor-
mally distributed random variables Xk ∼ N (μk, vk ),

∑
k

akXk ∼ N
(∑

k

akμk,
∑

k

a2
kvk

)
, (20)

the distribution of f† is

f† ∼ N
(

Z−1
P

∑
k

1

vk
fk, Z−1

P

)
. (21)

The variance vk is determined by the error models previously
discussed in Sec. II B, thereby incorporating the theory un-
certainty into this mixing method. This section focuses on
the bivariate case of Eq. (21), where model 1 and model 2
are F Ns

s (g) and F Nl
l (g), respectively. We employ the so-called

informative error model and several values of Ns and Nl (for
more examples of Ns and Nl , see the Supplemental Material
for this work [23]).

B. Results and discussion

The results of this method for two different cases of Ns, Nl

are presented in Fig. 5. The bivariate mixed model completes
the journey across the gap for both the lower orders [panel (a)]
and the higher orders [panel (b)] in a continuous fashion, as
desired. In both cases the true curve is also encompassed by
the 68% interval of the PPD obtained through bivariate model
mixing.

However, there are two negative aspects of the result of
Fig. 5 which are quite striking. First, the shape of the mean
of the PPD is not in line with our intuition for this problem.
Second, the 68% interval is, if anything, too wide. Consid-
ering that F only varies between 2.5 and 1.8 between g = 0
and g = 0.6 an error bar of order 0.3, as is obtained even for
Ns = Nl = 5, seems rather conservative.

In fact, as was discussed in Sec. IV A, the right variances
to use in Eq. (20) to mix the two power series are nontrivial to
determine. This adds to the challenges of this technique. There
is a significant effect of the form of the variance on the results
of the bivariate mixed model: the credibility interval changes
by a noticeable amount depending on whether we employ
the so-called uninformative or the informative formulas (see
Fig. 6 and Sec. II B). Hence, there is a substantial amount of
uncertainty—at least in the 68% interval of the interpolant’s
PPD—from not knowing the correct form of the truncation er-
ror. This affects the final result obtained from this two-model
mixing in a way that cannot be ignored.

In fact, these “failures” all stem from the same root cause:
the use of only the small-g and large-g power series of F to
form the interpolant. If this is truly all the information one has
then this is all one can say [24]. Given the errors on the small-
and large-g expansions, behavior encompassed by the green
band is possible. And nothing we have put into our bivariate
model-mixing formulation precludes a sinusodial variation of
the type seen in both panels of Fig. 5.

But such curvature of the mixed model mean is not a fea-
ture that is supported by any prior knowledge of our particular
system. The intuitive expectation would be to see a smooth,
linear path from one model to the other, and that is not being
shown in our result from this simple two-model method. In
the next section we incorporate this expectation by including
in our mixing a nonparametric form for the function F in the
gap between the two expansions.

V. BRIDGING THE GAP: LOCALIZED MULTIVARIATE
BAYESIAN MODEL MIXING WITH GAUSSIAN

PROCESSES

A. Formalism

To improve upon Sec. IV, we introduce a third model to
interpolate across the gap in g in the form of a Gaussian
process. A Gaussian process (GP) is fundamentally stochastic:
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TABLE I. Results of the squared Mahalanobis distance for the Matérn 3/2 kernel and RBF kernel for all three training methods discussed.
The mean of each training method per kernel is also calculated. From these data, it is evident that the Matérn 3/2 kernel is the most suitable
for our problem.

D2
MD (Matérn 3/2) D2

MD (RBF)
Training method Training method

Ns Nl 1 2 3 1 2 3

2 2 1.6 1.4 1.6 60 70 60
2 4 1.1 0.6 5.0 140 170 1500
3 3 0.5 0.3 3.0 65 110 7
4 4 1.8 4.3 5.6 66 29000 600
5 5 2.7 1.2 1.2 350 15 15
8 7 1.9 0.4 0.8 4200 210000 14
5 10 5.1 3.4 6.0 1100 140 2100

Mean 2.1 1.7 3.3 850 34000 610

a collection of random variables, any subset of which will
possess a multivariate Gaussian distribution [19]. We can de-
scribe a GP with its mean function and positive semidefinite
covariance function, or kernel. The kernel should reflect the
physical and mathematical characteristics of our system. In
this work, we focused on two of the many possible kernel
forms: the RBF (radial basis function) kernel, and the Matérn
3/2 kernel. The former is described by

k(x, x′) = exp

(
− (x − x′)2

2l2

)
, (22)

while the latter is given by

k(x, x′) = 1

�(ν)2ν−1

(√
2ν

l
(x − x′)

)ν

Kν

(√
2ν

l
(x − x′)

)
,

(23)

where � is the gamma function, and Kν is the modified
Bessel function of the second kind. We employed the package
scikit learn to compute our GP within the wrapper of
SAMBA [25]. General draws from both of these kernels can be
seen in Sec. 1.7.5 of the scikit learn documentation [26].
We chose the Matérn 3/2 kernel specifically, hence ν = 3/2
in Eq. (23).

Employing an emulator typically involves three steps: set-
ting up a kernel, choosing and training the emulator on a data
set, and predicting at new points using the trained GP. Our
toy model is trained using four points from training arrays
generated across the input space. The four points chosen are
determined by

(i) Generating an array of training points from both
expansions.

(ii) Selecting two fixed points from the small-g expansion
training array and the last fixed point in the large-g
expansion training array.

(iii) Determining the fourth and final training point from
the large-g expansion training array using what we
will call a training method.

We also include the truncation error on each point of the
training set. This is done as symmetric point-to-point uncer-
tainty, fixed using the informative error model.

In our case, we applied three different training methods in
the final step. Their results can be found in Table I. The first
(referred to as method 1) fixes the fourth training point at g
= 0.6 for every value of Ns and Nl investigated. The second
(method 2) allows the training point to shift given the values
of Fs(g) and Fl (g), locating the final training point where the
value of Fs(g) becomes much larger than the range of output
values in this problem. The third (method 3) employs the
theory error on each training array point. This method fixes
the fourth training point at the location in the data set where
the value of the theory error at that point changes by more than
5% of Fl (g) at the next point.

With the GP in hand we then use Eq. (21) to mix it with
F Ns

s (g) and F Nl
l (g) to obtain our mixed model. Results of this

procedure are discussed in Sec. V C.

B. Diagnostics: Mahalanobis distance

We employ the (squared) Mahalanobis distance to check
which kernel and training method are optimal for this toy
model. The Mahalanobis distance includes correlated errors
and maps the differences of the GP and the true solution across
the input space to a single value. It is given by

D2
MD = (y − m)T K−1(y − m), (24)

where y is a vector of solutions (either of a draw from the GP
being used or the true solution) and m, K are the mean and
covariance matrix from the GP, as previously noted [19].

To determine whether or not the calculated squared Maha-
lanobis distance is reasonable, we compare it to a reference
distribution. To construct the reference distribution we take y
to be numerous draws from a multivariate normal distribution
constructed from the GP mean and covariance matrix. This
reference distribution should converge to a χ2 distribution
with the degrees of freedom matching the number of points
used to calculate D2

MD [27]. We used samples from the emu-
lator to construct the reference distribution and compared to
a χ2 with the appropriate degrees of freedom. This verifies
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that the reference distribution is indeed the χ2 distribution, so
hereafter we compare our value of D2

MD to the expected value
given the χ2.

Now we take y to be the vector representing the true
solution at a series of points in g, as we want to compare
our model to the true result for this toy problem. We pick
three points in g to calculate the Mahalanobis distance, and
ensure that they are sufficiently spaced that there are not too
many points within one length scale of the GP. We obtain the
results for D2

MD for each training method and kernel given in
Table I. Seven pairs of truncation orders Ns, Nl were chosen
to test each training method and kernel previously discussed.
A suitable Mahalanobis distance is one that is close to the
number of degrees of freedom of the χ2 distribution we are
comparing to. Examining the RBF kernel results, it is obvious
that this kernel is not the correct choice for this problem.
The computed D2

MD is orders of magnitude too large in many
cases there, regardless of training method. Because of this, we
rule out using the RBF kernel entirely. The enormous squared
Mahalanobis distance values given by this kernel seem to be
due to its smoothness: the RBF kernel is so smooth that it
breaks down and leads to K in Eq. (24) becoming asymptoti-
cally singular. Inverting this matrix then leads to these inflated
D2

MD numbers. This can be seen by invoking the singular value
decomposition (SVD). This shows a drop in the magnitude of
the eigenvalues by several orders, progressing from the first to
the last. Often the final eigenvalue is on the order of 10−7 or
smaller, because the RBF covariance matrix is near degenerate
[28].

Examining the training method results under the Matérn
3/2 kernel, each of the calculated squared Mahalanobis dis-
tances is within the variance of the χ2(N = 3) distribution.
This implies that the method used does not have an overly
strong correlation with the result of the interpolation such as
to be detrimental if we chose, say, method 1 over method 2. In
all of our final results we employed method 2, as it yields the
smallest Mahalanobis distance of the three methods here.

C. Results and discussion

In Fig. 7, the mixed models have been plotted for Ns, Nl =
2 and Ns, Nl = 5 [panels (a) and (b), respectively]. These
truncation orders are the same as those in Fig. 5, chosen for
ease of direct comparison between the two figures. Adding the
GP as an interpolant is shown to greatly lessen the curvature
of the mixed model across the gap, as well as suppress the
uncertainty in that region to obtain a more precise estimate of
the true curve. The improvement in UQ is so significant that
the error model chosen (discussed in Secs. II B and IV) no
longer has a sizable effect on the results of the mixed model.
This is excellent news in regards to generalizing this method:
if the final mixed curve does not display a lot of sensitivity to
the high-order behavior of the coefficients in the theory error
model the interpolants that result will be much more robust.

A complementary verification of our success in estimating
the uncertainty of the mixed model is evident in Table II,
where the gap length (over g) is given for each truncation
order pair, and the area in the uncertainty band is calculated
via a simple implementation of Simpson’s rule. The reduction

FIG. 7. The results of employing the Matérn 3/2 kernel in a GP
to cross the gap between the two series expansions, truncated at (a)
Ns = 2, Nl = 2 and (b) Ns = 5, Nl = 5. Compare this result to Fig. 5,
which did not include the GP.

of the gap area as the truncation order increases and the width
decreases supports our GP result as a good interpolant for this
mixed model, because the size of the uncertainty band should
decrease as one adds more terms (information) to the mixed
model.

A direct comparison of the bivariate results to those of the
multivariate model mixing using a GP for Ns, Nl = 3 can be
examined in Fig. 8. In this case, the mixed model including
the GP [panel (b)] is a very close approximation to the true

TABLE II. Calculated areas of each uncertainty band per trunca-
tion order in Ns and Nl . As expected, as both Ns and Nl increase, the
uncertainty reduces.

Ns Nl Gap length (g) Gap area

2 2 0.92 0.05
2 4 0.60 0.02
3 3 0.92 0.04
4 4 0.26 0.03
5 5 0.21 0.02
8 7 0.13 0.01
5 10 0.11 0.003
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FIG. 8. A comparison of the results of the method from Sec. IV and that of Sec. V, applied to the Ns = 3 and Nl = 3 cases. The reduction
in the credibility interval is evident in the latter method, as is the lessening of the curvature in the gap between the expansions.

curve, a stark contrast to the mixed model in panel (a), where
the mixed curve follows the individual models much more
closely than the true curve. The effect of the two expansions
both approaching −∞ is nearly nonexistent when the GP is
employed for this case, showing that this method has greatly
improved upon Sec. IV in multiple ways. Both the reduction
of the overly conservative error bar in panel (a) and the im-
provement of the mean curve are promising results. These
further our argument that this method, suitably generalized,
will be a great asset to anyone wishing to model mix across
an input space such as this.

D. Weights

As previously discussed, within BMM it is possible to
construct weights that are dependent upon the location in the
input space considered; for our toy problem this means the
weights are a function of g. We explicitly plot them for each
BMM method used for the cases of Ns = Nl = 2 (Fig. 9) and
Ns = Nl = 5 (Fig. 10). These weights are plotted as α and
(1 − α) functions in the linear mixture model [panel (a) in
both figures], and normalized precisions in the case of the
bivariate BMM and trivariate BMM [panels (b) and (c) in both
figures].

Panels (a) in these two figures both look like we would
expect, given our knowledge of α(g; θ) from Sec. III: the red
curve dominates until some crossing point where the blue
takes over as the dominant weight, indicating that the most
influential model on the mixed model turns slowly from the
F Ns

s (g) (weighted by the red curve) to F Nl
l (g) (weighted by the

blue curve). The same can be seen in panels (b) in Figs. 9 and
10 where the two curves also progress in the same fashion as
in panels (a), showing the crossover from F Ns

s (g) dominance at
low g to F Nl

l (g) dominance at large g. But, the crossover in the
bivariate case is much sharper than that in the linear mixture
model case.

Panels (c) highlight the substantial influence of the GP in
the trivariate mixed model result across the gap: in the center

of the gap for both Figs. 9 and 10, the GP reaches a weight of
nearly 1.0, indicating it is exerting the most control over the
result of BMM there. The decline of the GP curve is rather
slow on the large-g side compared to the sharp rise on the
low-g side of the input space, which could be related to the
gap slowly closing on the large-g end in comparison to its
somewhat quicker opening on the small-g end [see Fig. 7(a),
where this is evident]. The location in the input space of the
crossover from GP to F Nl

l (g) for the trivariate mixed model
compared to when F Nl

l (g) takes over when we mix only two

FIG. 9. The normalized weights of each model (Ns, Nl = 2,
shown in typical red and blue) computed across the input space g,
for each method: (a) linear mixture model, (b) bivariate BMM, and
(c) trivariate BMM including the GP. Note the green in panel (c) is
the weights curve for the GP interpolant.
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FIG. 10. The normalized weights of each model as a function of
the input space g, as in Fig. 9, though now for Ns, Nl = 5. Note the
decrease in the region in which the GP dominates in this figure, in
contrast to the case in Fig. 9.

models varies with the orders considered. In the Ns = Nl = 5
case it is similar to the linear mixture model but for the
Ns = Nl = 2 case the GP dominates well beyond where the
gap closes for two models.

E. Comparison with the FPR method

In Ref. [8] a method involving fractional powers of rational
functions (FPR method) was used to interpolate between these
two limits. The FPR method postulates a form

F (g) = ga

(
1 + c1g + c2g2 + · · · + cpgp

1 + d1g + d2g2 + · · · + dqgq

)α

(25)

that is designed to mimic a Padé approximant, but be more
flexible since it allows an arbitrary leading power at small
g and quite a lot of flexibility as regards the choice of the
fractional power α to which the Padé will be raised. If we
have Ns (Nl ) coefficients from the small (large)-g expansion
then we need [8]

p = 1

2

(
Nl + Ns + 1 − (a − b)

α

)
,

q = 1

2

(
Nl + Ns + 1 + (a − b)

α

)
. (26)

The p and q coefficients ck and dk are then adjusted to satisfy
the constraints imposed by the need to reproduce the first Ns

terms of the small-g expansion of F and the first Nl terms
of the large-g expansion of F . As is clear from Eq. (25), the
coefficient a serves to ensure the small-g behavior is correctly
reproduced. In our specific toy problem, we possess a = 0 and
b = −1/2.

FIG. 11. Overlay of the FPR method curves for different values
of α in the Ns, Nl = 3 case with the mixed model results using the
GP. Inset: A closeup of the central mixing region, where it is easier
to note the deviation of the FPR results from the true solution as the
value of α decreases.

In Fig. 11 we compare the results of Honda’s FPR code
[8] with our multivariate mixed model for Ns, Nl = 3. Honda
chooses three different α values, and as α decreases the ac-
curacy of the FPR method decreases, as shown in the inset.
Our GP mixed model mean is not as close to the true result
as the FPR results for α = 1/2 and 1/6. Nevertheless, the
FPR method does not include any UQ, which is arguably
the most important development of this work, making our
method a compelling option for researchers wishing to include
principled UQ in their results. Furthermore, while the FPR
interpolation method applies only to series expansions, our
approach can be adapted to many other situations.

VI. SUMMARY AND OUTLOOK

In this work we have explored how to apply Bayesian
model mixing to a simple test problem, interpolating expan-
sions in the coupling constant g of a zero-dimensional φ4

theory partition function (see Sec. II A). Rather than choose
the single “best” model, as in Bayesian model selection, or
an optimal global combination of predictions, as in BMA, we
seek to vary the combination of models as a function of input
location. The goal is to optimize the predictive power across
the full input domain and quantify the prediction’s uncertainty.
Introducing BMM with a transition region is more flexible
than treating this as a model selection problem. (Model se-
lection can be considered a special case of BMM, for which
the weights of each model are either zero or one.)

The basic output of BMM for our example and for more
general cases is a combined PPD, see Eq. (2), which is a prob-
ability distribution for the output at a new input point based
on an appropriate weighted sum of individual PPDs. To be
clear, the prediction is not simply the most probable outcome,
although the distribution may be summarized by MAP values
and the variance (or covariances in general). The challenge is
to how to best determine these input-dependent weights.
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A general feature of this task is the need to incorporate
error estimates from theory or learned from data. In our toy
model, we exploit analytic solutions for the full integral and
for small g and large g expansions. Analytic knowledge of
these expansions enables credible error estimates; in practice
we simulate different levels of credibility with “uninforma-
tive” and “informative” error models, as in Fig. 6 for example.
By changing the order of each expansion, we can adjust the
gap between their individual regions of highest validity as a
function of g. Thus this problem serves as a prototype for com-
bining predictive models with different patterns of coverage
across the full input domain of interest.

We have explored a sequence of BMM strategies. In
Sec. III we considered linear mixtures of PPDs, following
Coleman [21], using the informative error model and paramet-
ric mixing with a switching model (see Fig. 2). We identified
pitfalls with this approach when it is necessary to “mind the
gap”; in particular, when the gap is large, this approach does
not yield a statistically consistent result for the intermediate
region. The linear mixture model did produce a PPD with
good empirical coverage properties for high-order expansions.
Perhaps unsurprisingly, it is easier to bridge the gap when the
gap is small.

While reaching such high orders is unlikely to be realistic
for physics applications, linear mixing may be an appropriate
procedure when the domains of applicability overlap signif-
icantly. Many discussions about what to do in the region
between the two expansions become moot if the expansions
share a region in which both are convergent. Competing EFT
expansions provides an example, such as those for pionless
and chiral effective field theory (EFT) in the few-nucleon
problem.

In Sec. IV we considered localized bivariate mixing, with
each model weighted by its precision (inverse variance) to
incorporate the theory uncertainty. Here we found good but
rather conservative empirical coverage and a nonintuitive
mean prediction for our model problem: where we expected
a more-or-less straight joining of the limiting expansions the
mean curves were significantly curved. These are not, how-
ever, failures because they correctly reflect the limited prior
information about the behavior of the function in the gap.
Since we used only the small-g and large-g expansions to in-
form the mixture, sinusoidal behavior of the mean is not ruled
out, and is seen in Fig. 5. The small- and large-g expansions
themselves do not preclude a rapid change in the region where
neither is valid.

Taking care not to overconstrain intermediate behavior
may be relevant for the application to bridging the nuclear
matter equation of state between saturation density and QCD
“asymptopia.” At the low density end, chiral EFT provides an
expansion with theoretical truncation errors, while at the high
density end one can anchor the result with a QCD calcula-
tion, as in Ref. [29]. Because the question of an intermediate
phase transition is open, we would want to minimize prior
constraints.

Ambiguities as regards the behavior in the intermediate
regime will disappear in applications where competing expan-
sions overlap, as already pointed out for linear mixing. Even
if expansions do not overlap we may have prior information

that the observable being studied is smooth in the interme-
diate region. In Sec. V we introduced a model to bridge the
gap in the toy model with prior expectations of smoothness,
implemented as localized multivariate mixing using a GP. Not
unexpectedly, the details of the GP, such as the choice of the
kernel, matter (Matérn 3/2 is much favored over RBF), but the
use of a Mahalanobis diagnostic to check on the kernel and
training method shows reasonable insensitivity to the choice
of the latter. The final results are very good. If we did not seek
an uncertainty estimate, the FPR results [8] might be favored
for highest precision in this particular application. But, for
the more likely extensions to nuclear physics problems, our
multivariate model mixing is a compelling approach.

When using this approach to construct the mixed model we
did not take into account correlations between the truncation
error in each of the power series across different values of
g. Such correlations do not affect the mixing at a particular
value of g. Extending the multivariate model mixing approach
employed here to obtain the covariance matrix of the mixed
model that emerges from combining K models, each of which
has a nondiagonal covariance matrix, is an interesting topic
for future investigation.

We expect that our explorations could be extended to many
different phenomena in nuclear physics. For example, an-
other candidate for BMM is to bridge the gap between the
situations in nuclear data where R-matrix theory dominates
and where Hauser-Feshbach statistical theory is the principal
choice. This and other applications will require extending the
BMM considered here to multidimensional inputs, as has been
done in the case of Bayesian model averaging (e.g., [30]). The
SAMBA computational package will enable new practitioners
to learn the basics and to explore strategies in a simple setting.
Not only can users try the toy model detailed in this work,
but they will be able to include their own data and try these
model mixing methods for themselves in the next release. This
will include adoption of other BMM strategies, such as using
Bayesian additive regression trees (BART) [31,32].
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APPENDIX A: BAYESIAN BACKGROUND

We provide a simple description of the mechanics of
Bayesian statistics (see [16] and [33] for a more compre-
hensive exposition). Bayes’ theorem relates two different
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conditional probability distributions:

p(θ|D) = p(D|θ)p(θ)

p(D)
, (A1)

i.e., it relates the likelihood determined from data D and the
prior information on parameters θ to the posterior of θ. The
evidence term in the denominator of Eq. (A1) serves as the
normalization of this relation and can be dropped if one is
only interested in working within a single model.

The prior probability distribution in Eq. (A1), p(θ), is a
specific representation of any prior knowledge we may have
about the parameters we are seeking. It is imperative that we
include any physical information known about the system in
this quantity when applying Bayesian methods to real physics
problems; this is the way we can include physical constraints
in the statistical framework.

A commonly used method to determine the posterior den-
sity distributions of parameters θ is Markov Chain Monte
Carlo (MCMC) sampling. This technique often utilizes a
Metropolis-Hastings algorithm to map out the posterior of
each parameter given the likelihood and prior probability den-
sity functions (PDFs). We employed this technique in Sec. III.

APPENDIX B: TRUNCATION ERROR MODEL
DEVELOPMENT, OR HOW TO BE A GOOD

GUESSER, OR HOW TO BE A POOR GUESSER
AT FIRST AND THEN GET BETTER

We take two models f1 and f2, with variances v1 and v2,
and form the PDF for the mixed model, f†, according to

f† ∼ N
(

v1 f2 + v2 f1

v1 + v2
,

v1v2

v1 + v2

)
, (B1)

as detailed in Sec. 3.4 of Ref. [16]. In our implementation
the variances are defined by the error model associated with
omitted terms.

Uninformative error model. For Fs(g), the expansion in
positive powers of g, we have coefficients that behave as

sn

n!
= {2.5066,−3.7599, 5.4833,−6.0316,

5.2507,−3.7688, 2.2984,−1.2178,

0.5702,−0.2391, 0.09081,−0.03150,

0.01006,−0.002975, 0.0008193;

n = 2, 4, 6, . . . , 30}, (B2)

with even more rapid decrease thereafter. All odd powers of
g have vanishing coefficients. Taking the first-omitted term
approximation to the part of the expansion omitted at order
2n we can adopt

σNs = c̄(Ns + 2)!gNs+2 (B3)

for Ns even and

σNs = c̄(Ns + 1)!gNs+1 (B4)

if Ns is odd. Here the coefficient c̄ is estimated by taking
the root-mean-square value of coefficients up to the order of

truncation Ns. This will have a tendency to overestimate the
next coefficient, but it provides a conservative error bar.

For Fl (g), the expansion in negative powers of g, we have
coefficients that behave as

lm × m! = {1.813,−0.3064, 0.1133,−0.05744,

0.03541,−0.02513, 0.01992,−0.01728,

0.01618,−0.01620, 0.01719,−0.01923,

0.02257,−0.02765, 0.03526;

m = 0, . . . , 14}, (B5)

with eventual rapid increase. Here we once again take the first-
omitted term approximation to v2 to estimate the error due to
truncation at order Nl as

σNl = d̄
1

(Nl + 1)!

1

gNl +3/2
. (B6)

Here, d̄ is estimated by taking the root-mean-square value of
coefficients from order 2 to the mth order.3 There might be
some tendency to underestimate the next coefficient if we are
unlucky as to where we stop. But, up to order m = 14, this
seems to provide a reasonable estimate of the size of the next
term.

Informative error model. Let us suppose we are better
guessers, as regards the asymptotic behavior of the coeffi-
cients. Then we might form

s2n

(n − 1)!42n
= {−0.469993, 0.514055,−0.530119,

0.538402,−0.543449, 0.546846,

− 0.549287, 0.551126,−0.552562,

0.553713;

n = 2, 4, . . . , 20}, (B7)

which is remarkably stable out to n = 60. Similarly, we might
look at

lm × �(m/2 + 1) × 4m = {1.8128,−1.086, 0.9064,

− 0.8145, 0.7553,−0.7127,

0.6798,−0.6533, 0.6312,

− 0.6125, 0.5962,−0.5818;

n = 0, . . . , 12}, (B8)

which has only a very slow decrease, reaching 0.3968 by n =
50. Based on these behaviors we formulate error model 2, as
defined by Eqs. (10) and (12).

3The first two coefficients shift d̄ to a value much higher than any
of the succeeding coefficients would indicate. This, in turn, widens
the interval on the large-g expansion much more than we would wish
to observe, so in this model we neglect them.
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