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The five low-energy constants (LECs) in the electromagnetic current derived in chiral effective field theory
(χEFT) up to one loop are determined by a simultaneous fit to the A = 2−3 nuclei magnetic moments and to
the deuteron magnetic form factor and threshold electrodisintegration at backward angles over a wide range
of momentum transfers. The resulting parametrization then yields predictions for the 3He / 3H magnetic form
factors in excellent accord with the experimental values for momentum transfers ranging up to ≈0.8 GeV/c,
beyond the expected regime of validity of the χEFT approach. The calculations are based on last-generation two-
nucleon interactions including high orders in the chiral expansion and derived by Entem, Machleidt, and Nosyk
[Phys. Rev. C 96, 024004 (2017)] and by Piarulli et al. [Phys. Rev. C 94, 054007 (2016)], using different χEFT
formulations. In the A = 3 calculations, (chiral) three-nucleon interactions are also accounted for. The model
dependence resulting from these different formulations of the interactions is found to be mild for momentum
transfer below ≈0.8 GeV/c. An analysis of the convergence of the chiral expansion is also provided.
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I. INTRODUCTION AND CONCLUSIONS

The nuclear electromagnetic current derived in chiral ef-
fective field theory (χEFT) at one loop is characterized by
five low-energy constants (LECs). Three of these LECs en-
ter a subleading one-pion-exchange (OPE) term, while the
remaining two are associated with contact terms induced by
nonminimal coupling to the electromagnetic field. Resonance
saturation arguments can be used [1] (and have been used
[2,3]) to relate the two LECs in the isovector component of
the subleading OPE current to the N-to-� transition axial cou-
pling and transition magnetic moment. The remaining LECs
have been determined by fitting experimentally known few-
nucleon observables at low energy and momentum transfers,
such as the magnetic moments of deuteron, 3H, and 3He [2,3]
and/or the deuteron magnetic form factor [4] and/or the cross
section for radiative capture of thermal neutrons on protons
[2].

In the present work we adopt a different strategy for
constraining these LECs: (i) we do not invoke resonance satu-
ration, and (ii) we determine the complete set of five LECs by
a simultaneous fit to the magnetic moments of the A = 2−3
nuclei, and the deuteron magnetic form factor and threshold
electrodisintegration cross section at backward angles over
a wide range of momentum transfers. It turns out that these
five LECs provide enough flexibility to allow us to repro-
duce well all these observables in a region of momentum
transfers that extends above 4 fm−1. That a satisfactory fit
of these high momentum transfer data is possible was not
anticipated. It suggests that the present parametrization of the
current is robust in kinematical regimes (momentum transfers

of the order of 0.8 GeV/c) outside the limits of validity
of the χEFT expansion. This conclusion is further corrobo-
rated by the excellent agreement between the measured and
predicted magnetic form factors of 3H / 3He for momentum
transfers up to 0.8 GeV/c, including partially their diffraction
regions. Previous parametrizations of the χEFT current, using
resonance saturation arguments and based on fits of static
magnetic properties of deuteron and trinucleons, had failed
to provide a good description of these regions [2,3].

The present paper is organized as follows. In the next
section we list the expressions for the χEFT current up to
one loop. These are well known by now, but are reported here
for completeness and to facilitate the ensuing discussions. In
Sec. III we detail the determination of the LECs and associ-
ated uncertainties, and in Sec. IV we present a comparison
between the measured trinucleon magnetic form factors and
those predicted by the present parametrization of the χEFT
current. We also show in that section that the (crucial) two-
body terms in the current yield contributions in the deuteron
threshold electrodisintegration and A = 3 magnetic form fac-
tors that are proportional to each other. The implications of
this fact are discussed.

II. EM CURRENTS UP TO ONE LOOP

Independent derivations of nuclear electromagnetic current
and charge operators up to one loop in χEFT have been
carried out within a variety of different formalisms and in
a number of papers [1,2,5–9] in the past three decades or
so. For clarity of presentation and for later reference, we
report below the explicit expressions for the electromagnetic
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current operators of interest in the present work. We adopt the
notation of Refs. [1,2]; in particular, we denote the generic
low-momentum scale with Q and the momentum due to the
external electromagnetic field with q, and define

ki = p′
i − pi, Ki = (p′

i + pi )/2, (2.1)

k = (k1 − k2)/2, K = K1 + K2, (2.2)

where pi (p′
i) is the initial (final) momentum of nucleon i.

We further note that in the j(n) expressions reported below the
superscript n specifies the order e Qn in the power counting (in
a two-nucleon system). The leading-order (LO) contribution
j(−2) consists of the single-nucleon current

j(−2)
NR (q) = e

2 mN

[
2 eN,1

(
q2

μ

)
K1 + i μN,1

(
q2

μ

)
σ1 × q

]
× δ(p′

2 − p2) + 1 � 2, (2.3)

where mN is the nucleon mass, q = ki with i = 1 or 2 (the
δ function enforcing overall momentum conservation q = k1

has been dropped for brevity here and in the following),

eN,i
(
q2

μ

) = [
GS

E

(
q2

μ

) + GV
E

(
q2

μ

)
τi,z

]
/2,

μN,i
(
q2

μ

) = [
GS

M

(
q2

μ

) + GV
M

(
q2

μ

)
τi,z

]
/2, (2.4)

and GS/V
E and GS/V

M denote the isoscalar/isovector combi-
nations of the proton (p) and neutron (n) electric (E ) and
magnetic (M) form factors:

GS/V
E/M

(
q2

μ

) = Gp
E/M

(
q2

μ

) ± Gn
E/M

(
q2

μ

)
. (2.5)

The power counting e Q−2 of this current results from the
product of a factor e Q, due to the coupling of the external
electromagnetic field to the individual nucleons, and the factor
Q−3 from the momentum δ function entering this type of dis-
connected contributions. Of course, such a counting ignores
the fact that the nucleon form factors themselves also have a
power series expansion in Q. Here, they are taken from fits
to elastic electron scattering data off the proton and deuteron
rather than derived consistently in chiral perturbation theory
(χPT) [10]; specifically, we utilize the dipole parametrization
with

Gp
E

(
q2

μ

) = GD
(
q2

μ

)
, Gn

E

(
q2

μ

) = −μn
q2

μ

4 m2
N

GD
(
q2

μ

)
1 + q2

μ/m2
N

,

Gp
M

(
q2

μ

) = μpGD
(
q2

μ

)
, Gn

M

(
q2

μ

) = μnGD
(
q2

μ

)
,

where μp and μn are, respectively, the proton and neutron
magnetic moments, and

GD
(
q2

μ

) = (
1 + q2

μ/�2
)−2

, (2.6)

with � = 0.83 GeV. We take these form factors as functions
of the four-momentum transfer q2

μ = q2 − ω2, where ω is the
energy transfer. We also note that the calculations presented
below are carried out in the laboratory frame.

At order n = −1 (next-to-leading order or NLO) there is a
one-pion exchange (OPE) contribution that reads

j(−1)
π (q) = −i e

g2
A

4 f 2
π

GV
E

(
q2

μ

)
(τ1 × τ2)z

(
σ1 − k1

σ1 · k1

ω2
k1

)

×σ2 · k2

ω2
k2

+ 1 � 2, (2.7)

where gA is the nucleon axial coupling constant (gA = 1.29),
fπ is the pion decay amplitude ( fπ = 92.4 MeV) and we have
defined ω2

k = k2 + m2
π , with mπ being the pion mass. The

inclusion of the isovector electric form factor GV
E (q2

μ) in j(−1)

can be justified on the basis of the continuity equation; see
Ref. [2].

Relativistic corrections to the leading order one-body cur-
rent operators enter at n = 0 (denoted as N2LO), and are given
by

j(0)
RC(q) = − e

8 m3
N

eN,1
(
q2

μ

) [
2

(
K2

1 + q2/4
)

× (
2 K1 + iσ1 × q

) + K1 · q (q + 2 i σ1 × K1)
]

− i e

8 m3
N

[
μN,1

(
q2

μ

) − eN,1
(
q2

μ

) ][
K1 · q

× (4 σ1 × K1 − i q) − (2 i K1 − σ1 × q) q2/2

+2 (K1 × q) σ1 · K1
]
δ(p′

2 − p2) + 1 � 2. (2.8)

In the calculations of electromagnetic observables to follow,
we also utilize chiral 2N and 3N interactions which retain
explicitly �-isobar degrees of freedom, the Norfolk models
(denoted as NV) of Refs. [11–13]. In these instances, we
account for the N2LO currents originating from explicit �

intermediate states, given by [6]

j(0)
� (q) = i e

gA hA

18 m�N f 2
π

Gγ N�

(
q2

μ

) σ2 · k2

ω2
k2

× [4 τ2,z k2 − (τ1 × τ2)z σ1 × k2]q + 1 � 2,

(2.9)

where m�N is the �-nucleon mass difference (m�N = 293
MeV), and hA and Gγ N� are, respectively, the N-to-� tran-
sition axial coupling constant (hA = 2.74) and transition
electromagnetic form factor. The latter is parametrized as

Gγ N�

(
q2

μ

) = μγ N�(
1 + q2

μ/�2
�,1

)2
√

1 + q2
μ/�2

�,2

, (2.10)

where μγ N�—the transition magnetic moment—is taken to be
3 μN from an analysis of γ N data in the �-resonance region
[14]. This analysis also gives ��,1 = 0.84 GeV and ��,2 =
1.2 GeV.

The currents at order e Q (N3LO) consist of (i) terms
generated by minimal substitution in the four-nucleon contact
interactions involving two gradients of the nucleon fields as
well as by nonminimal couplings to the electromagnetic field;
(ii) OPE terms induced by γπN interactions of subleading
order; and (iii) one-loop two-pion-exchange (TPE) terms. We
discuss them below.
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The contact minimal and nonminimal currents, denoted by
the subscripts “min” and “nm” respectively, are written as [2]

j(1)
min(q) = i e

16
GV

E

(
q2

μ

)
(τ1 × τ2)z

[
(C2 + 3C4 + C7) k1

+ (C2 − C4 − C7) k1 σ1 · σ2

+C7 σ1 · (k1 − k2) σ2

]
− i e

4
eN,1

(
q2

μ

)
C5

× (σ1 + σ2) × k1 + 1 � 2, (2.11)

j(1)
nm(q) = −i e

[
GS

E

(
q2

μ

)
C′

15 σ1 + GV
E

(
q2

μ

)
C′

16(τ1,z − τ2,z ) σ1
]

× q + 1 � 2. (2.12)

The low-energy constants (LECs) C1, . . . ,C7 enter the
two-nucleon (2N) contact interaction (at NLO), and are con-
strained by fits to the np and pp elastic scattering data and
the deuteron binding energy. We take their values from the
various 2N interactions we have adopted in the present study
(see Sec. III). We should point out that in the case of the NV
models the original parametrization of the contact interaction
at NLO is subjected to a Fierz rearrangement, so as to make it
local [11]. As a consequence, the LECs C2, C4, C5, and C7 in
Eq. (2.11) are related to those introduced in Ref. [11,12] and
denoted with a P superscript here for clarity via

C2 = −4CP
2 − 12CP

4 + 6CP
6 , (2.13)

C4 = −4CP
2 + 4CP

4 + 14CP
6 , (2.14)

C5 = CP
7 , and C7 = −24CP

6 . In Ref. [3] this correspondence
between the Ci and CP

i has been inadvertently ignored. The er-
ror affects the contribution labeled N3LO(MIN) in Tables III
and IV, and the fitted values dS

1 , dS
2 , and dV

1 in Table I of
Ref. [3]. However, we have verified that it does not signifi-
cantly change the predicted values for the various observables
considered in that work, or alter the ensuing discussions.1

The LECs C′
15 and C′

16 (as well as d ′
8, d ′

9, and d ′
21 below) are

determined by fitting measured photonuclear observables of
the A = 2 and 3 systems, as discussed in Sec. III. Finally, there
is no a priori justification for the use of GS

E/GV
E (or GS

M/GV
M)

in the nonminimal contact current; they are included so as to
provide a reasonable falloff with increasing q2

μ for the strength
of this current.

The subleading OPE currents at N3LO have isovector (IV)
and isoscalar (IS) components given by, respectively,

j(1)
πIV(q) = i e

gA

4 f 2
π

Gγ N�

(
q2

μ

)
μγ N�

σ2 · k2

ω2
k2

× [d ′
8 τ2,z k2 − d ′

21 (τ1 × τ2)z σ1 × k2]

×q + 1 � 2, (2.15)

and

j(1)
πIS(q)=i e

gA

4 f 2
π

d ′
9 Gγπρ

(
q2

μ

)
τ1 · τ2

σ2 · k2

ω2
k2

k2 × q + 1 � 2,

(2.16)

1Tables of the corrected values of the dS
1 , dS

2 , and dV
1 LECs are

available upon request.

and depend on the three (unknown) LECs d ′
8, d ′

9, and d ′
21.

The LECs d ′
8 and d ′

21 can be related [1] to the N-� transition
axial coupling constant and magnetic moment in a resonance
saturation picture, which justifies the use of the γ N� electro-
magnetic form factor for this term. However, we emphasize
that, in contrast to Ref. [3], � saturation for these LECs is not
assumed here.2 The LEC d ′

9 reduces, in a resonance saturation
picture, to the well known γπρ current [1]. Accordingly,
we have accounted for the q2

μ falloff of the electromagnetic
vertex by including a γπρ form factor, which in vector-meson
dominance is parametrized as

Gγπρ

(
q2

μ

) = 1

1 + q2
μ/m2

ω

, (2.17)

where mω is the ω-meson mass.
The one-loop TPE currents are written as [1,2]

j(1)
2π (q) = −i e GV

E

(
q2

μ

) [
(τ1 × τ2)z ∇k F1(k) − τ2,z

×
[

F0(k) σ1 − F2(k)
k σ1 · k

k2

]
× q

]
+ 1 � 2,

(2.18)

where k is the relative momentum defined above, and the
functions Fi(k) are

F0(k)

= g2
A

128 π2 f 4
π

[
1 − 2 g2

A + 8 g2
A m2

π

k2 + 4 m2
π

+ G(k)

[
2 − 2 g2

A − 4
(
1 + g2

A

)
m2

π

k2 + 4 m2
π

+ 16 g2
A m4

π

(k2 + 4 m2
π )2

]]
,

(2.19)

F1(k) = 1

1536 π2 f 4
π

G(k)

[
4m2

π

(
1 + 4g2

A − 5g4
A

)

+ k2
(
1 + 10g2

A − 23g4
A

) − 48 g4
Am4

π

4 m2
π + k2

]
, (2.20)

F2(k) = g2
A

128 π2 f 4
π

[
2 − 6 g2

A + 8 g2
A m2

π

k2 + 4 m2
π

+ G(k)

×
[

4 g2
A − 4

(
1 + 3 g2

A

)
m2

π

k2 + 4 m2
π

+ 16 g2
A m4

π(
k2 + 4 m2

π

)2

]]
,

(2.21)

with the loop function G(k) defined as

G(k) =
√

4 m2
π + k2

k
ln

√
4 m2

π + k2 + k√
4 m2

π + k2 − k
. (2.22)

2In other words, in the present study, when using the NV inter-
actions, we include both j(0)

� and j(1)
π IV, whereas in Ref. [3] we only

included j(0)
� . However, with the interactions of Ref. [15] we only

consider j(1)
π IV.
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As noted in Refs. [1,2], the expression above follows from
expanding the TPE current in powers of the external field
momentum q and in retaining up to linear terms in q. It
satisfies current conservation with the TPE 2N interaction at
NLO.

These currents have power law behavior at large momenta,
and need to be regularized before their matrix elements be-
tween nuclear wave functions can be calculated (incidentally,
we note that these calculations are done here in r space).
We adopt two different regularization schemes depending
on whether the interactions used to generate the wave func-
tions are in momentum space—the 2N N4LO interactions of
Refs. [15]—or in configuration space—the 2N N3LO inter-
actions of Ref. [12]. In the case of the interactions of Ref.
[15], the momentum-space two-body currents are multiplied
by a cutoff function of the form C�(p) = e−(p/�)4

where p is
equal to the momentum transfer ki to the single nucleon i in
the “seagull” term of Eq. (2.7) and in Eqs. (2.11,2.15,2.16),
and it is equal to the relative momentum k in the pion-in-flight
term of Eq. (2.7) and in Eqs. (2.12,2.18). As already noted,
we do not retain the �-excitation current of Eq. (2.9) with the
interactions of Ref. [15]. Fourier transforms are then reduced
to one-dimensional integrations, which are easily carried out
numerically.

When using the chiral interactions of Ref. [12], we first
carry out the Fourier transforms of the various currents, result-
ing in configuration-space operators which are highly singular
at vanishing internucleon separations, and then remove this
singular behavior by multiplying the various terms by ap-
propriate r-space cutoff functions, identical to those used in
Ref. [12] for the 2N interaction. The procedure as well as the
explicit expressions for the resulting currents can be found in
Ref. [3].

III. DETERMINATION OF LOW-ENERGY CONSTANTS

In this section we proceed to the determination of the
LECs d ′

8, d ′
9, d ′

21, C′
15 and C′

16 entering the current operators
at N3LO. Before discussing fitting procedures, we introduce
the various nuclear interaction models and provide references
to the numerical methods used in the calculation of the various
observables.

In this study we consider two different sets of interac-
tion models. The first consists of the Norfolk models from
Ref. [12]. These are N3LO chiral interactions that include,
beyond pion and nucleon, �-isobar degrees of freedom ex-
plicitly. They are formulated in configuration space with two
regulators, RS and RL respectively, for the short-range (con-
tact) component and long-range (one- and two-pion exchange)
component. There are two classes of NV interactions, which
differ in the range of laboratory energy over which the fits
to the 2N database were carried out. The first, denoted as
NVI, was fitted in the range 0–125 MeV, while for the second,
denoted as NVII, this range was extended to 200 MeV. Within
each class, two different sets of cutoff values RS and RL

were considered, and the resulting models were designated as
NVIa/b or NVIIa/b (see Table I).

The second set of interaction models are those developed
by Entem, Machleidt and Nosyk (EMN) in Ref. [15]. These

TABLE I. Summary of 2N interaction models utilized in this
study. In the first column we indicate the name adopted to iden-
tify each model and in the remaining columns its main features,
including degrees of freedom (DOF), chiral order (Oχ ), cutoff values,
laboratory-energy range over which the fits to the 2N database have
been carried out (E range), and whether it is in configuration (r) or
in momentum (p) space.

Name DOF Oχ (RS, RL ) or � E range Space

NVIa π, N,� N3LO (0.8,1.2) fm 0–125 MeV r
NVIb π, N,� N3LO (0.7,1.0) fm 0–125 MeV r
NVIIa π, N,� N3LO (0.8,1.2) fm 0–200 MeV r
NVIIb π, N,� N3LO (0.7,1.0) fm 0–200 MeV r
EMN450 π, N N4LO 450 MeV 0–300 MeV p
EMN500 π, N N4LO 500 MeV 0–300 MeV p
EMN550 π, N N4LO 550 MeV 0–300 MeV p

are momentum-space chiral interactions including only pions
and nucleons as degrees of freedom. The regularization is im-
plemented in momentum space as well, and as a consequence
these models, in contrast to the NV ones, are strongly nonlocal
in configuration space. For this set of interactions, which have
all been fitted to the 2N database up to 300 MeV labora-
tory energy, three different cutoff values, � = 450, 500, and
550 MeV, are considered. All chiral orders are available for
these models and so, as discussed below, fits of the electro-
magnetic LECs were carried out order by order from NLO to
N4LO. However, we will report only the values corresponding
to the N4LO interactions, if not otherwise specified.3 All the
interactions considered in the present study along with their
main features are listed in Table I.

In the calculations of A = 3 observables, we include (chi-
ral) three-nucleon (3N) interactions at LO (in particular, for
the NV models we also account for the LO two-pion-exchange
term originating from �-resonance intermediate states [13]).
The LECs (cD and cE , in standard notation) that characterize
them have been constrained by reproducing the 3H - 3He bind-
ing energies and the Gamow-Teller matrix element in tritium
beta decay. We take the LECs from Table III of Ref. [16] for
the NV set of 2N interactions and from Table II of Ref. [17]
for the EMN set. In the following, we will denote with the
∗ superscript the NV Hamiltonians consisting of these 2N
and 3N interactions. The ∗ is to differentiate them from the
NV Hamiltonians in which the 3N interactions are fitted
to reproduce a different set of trinucleon observables [13]
(3H - 3He binding energies and nd doublet scattering length).
The A = 3 wave functions have been obtained from solutions
of the Schrödinger equation with the hyperspherical-harmonic
approach [18,19].

The calculation of the A = 2−3 magnetic form factors and
magnetic moments is performed using Monte Carlo integra-
tion techniques [20]. The number of sampled configurations
utilized is of the order of 106 for the deuteron and 5 × 105

for the A = 3 systems. The statistical errors due to these

3Values for the electromagnetic LECs obtained with the lower order
EMN interactions are available from the authors upon request.
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TABLE II. Adimensional values of the LECs corresponding to
the NV Hamiltonians Ia∗, Ib∗, IIa∗, and IIb∗ fitted to various data
sets; see text for more details.

Set dV
1 dV

2 dV
3 dS

1 dS
2 χ 2/N

NVIa∗

A −0.050(2) 0.49(7) 0.094(4) 0.012(1) 0.023(7) 11.0
A� −0.050(2) 0.59(6) 0.109(4) 0.012(1) 0.028(9) 2.6
B −0.052(1) 0.45(3) 0.093(3) 0.011(1) 0.032(8) 12.4
B� −0.050(1) 0.61(6) 0.114(6) 0.009(1) 0.044(6) 3.9

NVIb∗

A −0.055(3) 0.09(5) 0.073(3) 0.025(2) 0.030(6) 11.0
A� −0.053(1) 0.18(3) 0.086(3) 0.029(2) 0.044(8) 2.7
B −0.057(1) 0.07(3) 0.073(3) 0.026(2) 0.038(6) 12.0
B� −0.052(2) 0.21(4) 0.090(4) 0.030(2) 0.052(5) 3.6

NVIIa∗

A −0.066(2) 0.01(7) 0.069(4) 0.011(1) 0.019(7) 11.0
A� −0.064(3) 0.15(9) 0.086(5) 0.011(1) 0.020(8) 2.6
B −0.068(2) −0.03(5) 0.069(3) 0.010(1) 0.025(8) 12.0
B� −0.067(1) 0.10(5) 0.087(5) 0.009(1) 0.040(8) 3.5

NVIIb∗

A −0.049(2) 0.09(4) 0.048(3) 0.017(1) 0.018(3) 12.5
A� −0.048(3) 0.17(5) 0.060(4) 0.019(2) 0.022(4) 3.2
B −0.050(3) 0.08(4) 0.047(3) 0.017(1) 0.020(3) 13.4
B� −0.050(3) 0.14(3) 0.058(3) 0.020(2) 0.027(5) 4.0

Monte Carlo integrations are typically � 1% over the range
of momentum transfers considered. In the final results these
errors are summed up in quadrature with uncertainties from
other sources we account for in the present study (see below).

The cross section for the deuteron threshold electrodisinte-
gration at backward angles (d threshold) has been obtained by
evaluating the relevant matrix elements of the electromagnetic
current between the ground state and np continuum states
using standard Gaussian quadrature methods [3,21]. While the
d-threshold experimental data have been averaged over the
interval 0–3 MeV of the final np-pair center-of-mass energy,
the theoretical results have been computed at a fixed energy of
1.5 MeV. It is known that the effect of the width of the energy
bin over which the cross-section values are averaged is small
[21].

We can now discuss the fit of the electromagnetic LECs
entering the OPE and nonminimal contact currents at N3LO.
We introduce the set dS

i and dV
i of adimensional LECs—the

superscript specifies the isoscalar (S) or isovector (V ) charac-
ter of the associated operators—in units of mπ (cutoff �) for
the NV (EMN) Hamiltonians, namely

C′
15 = dS

1 /λ4, d ′
9 = dS

2 /λ2,

C′
16 = dV

1 /λ4, d ′
8 = dV

2 /λ2, (3.1)

d ′
21 = dV

3 /λ2,

with λ = mπ or � for the NV or EMN Hamiltonians, respec-
tively. Their corresponding values are reported in Tables II and
III. We fitted the LECs using a χ2 minimization procedure
on two different sets of data. Set A includes the magnetic
moments of deuteron (μd ), tritium (μ3H), helium (μ3He) [22]
and the d-threshold cross-section data up to q2

μ = 40 fm−2

TABLE III. Same as for Table II, but for the EMN Hamiltonians
corresponding to � = 450, 500, and 550 MeV.

Set dV
1 dV

2 dV
3 dS

1 dS
2 χ 2/N

EMN450
A 1.9(2) 6.2(1) 0.39(2) 2.4(3) 0.08(10) 11.3
A� 2.9(2) 6.7(1) 0.51(2) 2.0(3) 0.23(9) 2.8
B 2.4(2) 6.4(1) 0.43(2) 3.32(6) −0.29(3) 13.0
B� 3.8(2) 7.2(1) 0.60(2) 3.36(6) −0.31(3) 4.4

EMN500
A −1.2(6) 4.3(3) 0.55(3) 2.2(3) 1.5(2) 14.7
A� −0.5(6) 4.6(3) 0.65(3) 2.2(2) 1.5(1) 4.7
B −0.2(6) 4.9(3) 0.57(3) 2.08(4) 0.33(7) 34.3
B� 0.5(6) 5.2(3) 0.67(3) 2.09(4) 0.35(7) 24.5

EMN550
A −0.6(1.5) 5.7(6) 0.31(5) 5.2(2) 6.2(4) 17.7
A� 0.2(1.4) 6.0(6) 0.41(5) 5.3(2) 6.4(4) 7.9
B −0.3(1.5) 5.8(6) 0.26(5) 2.4(1) −0.6(1) 34.1
B� 0.8(1.5) 6.3(6) 0.36(5) 2.4(1) −0.6(1) 24.9

[23–27], whereas set B includes the A data set plus the
deuteron magnetic form factor GM (qμ) data up to momentum
transfers of qμ = 6 fm−1. The star superscript indicates that
from the sets A and B we have removed the d-threshold
cross-section data corresponding to the Rand et al. experiment
of 1967 [23]. While these data do not impact significantly the
determination of the LECs, they do produce a large increase
in the χ2/datum.

In the present study we carry out a simultaneous fit of
these data sets, without separating them into (predominantly)
isoscalar and isovector observables. Thus, we are able to
account explicitly for the fact that the trinucleons are not
pure isospin T = 1/2 states, but also include small T =
3/2 admixtures, induced by isospin symmetry-breaking in-
teraction terms present in the NV and EMN Hamiltonians.
Furthermore, in the d-threshold cross-section calculations, we
include all continuum states and not just the dominant 1S0

channel. Note that the present strategy for constraining the
LECs is different from that adopted in Refs. [2,3], where
resonance saturation arguments were invoked to reduce their
number and only the magnetic moments of A = 2 and 3 nuclei
and/or the radiative capture cross section for thermal neutrons
on protons were fitted.

The LECs of Tables II and III are generally in line with
the expected values based on the naive power counting given
in Ref. [3]. However, dV

2 is too large by a factor of 10–20
for all Hamiltonian models we have considered, as is dS

2
corresponding to the data sets A and A� for the EMN500 and
EMN550 models. Lastly, the LEC dV

1 for the EMN500 and
EMN550 interactions is poorly constrained by the fits, and so
it is difficult to have a meaningful comparison with the naive
power counting.

In an attempt to improve the description of the deuteron
GM (qμ) data at higher momentum transfers (thus, “stretching”
significantly the regime of applicability of the present χEFT
framework), we included these data in the fits of the LECs (set
B). However, this has a completely negligible impact, as can
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FIG. 1. Deuteron magnetic form factor computed using the NVIa
interaction and corresponding to set A or B of LECs. The difference
between the two curves cannot be appreciated. Similar results have
been obtained with all the other interactions we consider. For clarity,
errors have not been included in the figure.

be seen in Fig. 1 where we compare the results for GM (qμ)
obtained using the LECs corresponding to sets A and B. We
also note that including the deuteron GM (qμ) data in the fits
does not alter the description of all remaining observables we
consider in the present study.

By removing the d-threshold data of Ref [23] (sets A� and
B� of LECs), the reduced χ2 decreases very substantially,
reaching a value of ≈3 for the NV interactions (the total
number of data is of the order of 40 for set A and 65 for
set B). It is worthwhile remarking here that we are fitting
cross sections that fall by several orders of magnitude and
span a region of momentum transfers q2

μ extending up to
40 fm−2, in fact, well beyond the regime of validity of χEFT.
We also note that, overall, the quality of the fits for the other
observables as well as the predictions for the A = 2−3 nu-
clei magnetic form factors do not differ appreciably when
using the unstarred and starred sets of LECs (the only ex-
ceptions are the EMN550-based predictions for the trinucleon
magnetic form factors, see below). For this reason, here-
after we will discuss only the results obtained with set A of
LECs.

Individual contributions, associated with the various terms
of the current, to μd , μ3H, and μ3He, are reported in Tables IV,
V, and VI, respectively. The quoted errors are obtained by

propagating the uncertainties on the fitted LECs. The Monte
Carlo statistical errors are also included (in quadrature) in
the uncertainties quoted for the total results. The theoretical
errors of these observables are less than 1%. In general, the
fit is able to reproduce a value compatible with experiment
within the theoretical error bars, except for the EMN500
and EMN550 interactions in the deuteron magnetic moment
case.

The μd observable receives contributions only from the
isoscalar terms of the current. The results corresponding to
the NV interactions obtained for the LO and N2LO are iden-
tical to those given in Ref. [3], but not for the N3LO(min)
contribution or the contributions proportional to the refitted
LECs dS

1 and dS
2 , for the reason explained above. Inspection

of Table IV shows that (for the NV interactions) the N3LO
OPE correction of Eq. (2.16) has opposite sign for models
a and b, as in Ref. [3], where the origin of this sign flip is
explained (see Fig. 3 of that paper). A sign flip also results
between EMN450 or EMN500 and EMN550. Generally, the
μd ’s obtained with the EMN interactions tend to overestimate
the experimental value. The main reason seems to be that the
fits based on these models are not able to constrain the LEC
dS

2 as for the NV cases.
Next, we discuss the results for the A = 3 magnetic mo-

ments in Tables V and VI. We note that the row labeled
N2LO includes only the contribution of the relativistic single-
nucleon current (j(0)

RC in the notation of the previous section)
for the EMN models. However, in the case of the NV models,
this row also includes the contribution of the �-excitation
current (j(0)

� ), which is dominant at N2LO and responsible
for the sign flip. Both the NV and EMN interactions yield
excellent fits of the experimental values of the trinucleon
magnetic moments.

In Fig. 2 we present the results of the fit of the d-threshold
data. The bands represent the error that has been calculated
by propagating the uncertainties on the LECs with standard
methods. All interactions reproduce nicely the data up to
q2

μ = 30 fm−2 [panels (a) and (b) for the NV models, and
panel (c) for the EMN models]. The q2

μ behavior is sensitive
to the interference between the fitted N3LO terms and the
LO and (remaining) higher order terms in the current. For
both the NV and EMN interactions the dominant interfer-
ence is in the isovector sector for q2

μ in the range 10 � q2
μ �

20 fm−2. For q2
μ � 20 fm−2, the interference in the isoscalar

sector becomes significant and, in some instances, of the same

TABLE IV. Individual contributions to the deuteron magnetic moment (in units of n.m.) corresponding to the NV and EMN 2N interactions.
The errors on the dS

i terms are only generated by the LECs (set A). The uncertainties quoted for the total are given by the sum in quadrature of
the uncertainties due to the LECs and Monte Carlo integration.

NVIa∗ NVIb∗ NVIIa∗ NVIIb∗ EMN450 EMN500 EMN550

LO 0.8499 0.8486 0.8500 0.8501 0.8549 0.8564 0.8562
N2LO −0.0062 −0.0062 −0.0065 −0.0071 −0.0069 −0.0070 −0.0074
N3LO(min) 0.0284 0.0301 0.0271 0.0242 0.0425 0.0317 0.0330
N3LO(dS

1 ) −0.0115(9) −0.021(2) −0.0100(9) −0.014(1) −0.029(4) −0.012(2) −0.0199(6)
N3LO(dS

2 ) −0.0015(4) 0.008(2) −0.0011(4) 0.006(1) −0.003(3) −0.0049(8) 0.0094(6)
Total 0.859(6) 0.860(5) 0.860(6) 0.860(2) 0.859(10) 0.864(2) 0.871(2)
Expt. 0.8574

044001-6



MAGNETIC STRUCTURE OF FEW-NUCLEON SYSTEMS AT … PHYSICAL REVIEW C 106, 044001 (2022)

TABLE V. Same as Table IV for the tritium magnetic moment. Note that the row labeled N2LO includes the contributions of both j(0)
RC and

j(0)
� for the NV models, but only those of j(0)

RC for the EMN models.

NVIa∗ NVIb∗ NVIIa∗ NVIIb∗ EMN450 EMN500 EMN550

LO 2.593 2.585 2.592 2.590 2.599 2.620 2.614
NLO 0.196 0.223 0.195 0.223 0.173 0.213 0.223
N2LO 0.032 0.057 0.031 0.054 −0.024 −0.026 −0.027
N3LO(TPE) 0.026 0.018 0.026 0.015 0.064 0.047 0.044
N3LO(min) 0.041 0.043 0.038 0.035 0.045 0.033 0.035
N3LO(dV

1 ) 0.110(5) 0.106(5) 0.144(5) 0.090(4) −0.046(4) 0.015(8) 0.01(1)
N3LO(dV

2 ) 0.046(6) 0.130(7) 0.001(7) 0.139(7) 0.185(3) 0.090(7) 0.10(1)
N3LO(dV

3 ) −0.048(2) −0.051(2) −0.036(2) −0.034(3) 0.024(1) 0.015(1) 0.006(1)
N3LO(dS

1 ) −0.014(1) −0.026(2) −0.013(1) −0.017(1) −0.037(5) −0.015(2) −0.024(1)
N3LO(dS

2 ) −0.003(1) 0.008(2) −0.003(1) 0.006(1) −0.004(5) −0.015(2) −0.005(0)
Total 2.98(1) 2.98(1) 2.98(1) 2.98(1) 2.98(2) 2.97(1) 2.97(2)
Expt. 2.979

magnitude as in the isovector sector. The EMN450 model
stands out in that the interference in the isoscalar sector is
dominant. For this model the fit appears to be unable to con-
strain the LEC dS

2 , generating the big error band that can be
seen in panel (c) of Fig. 2.

IV. MAGNETIC FORM FACTORS OF THE DEUTERON
AND TRINUCLEONS

The d , 3H and 3He magnetic form factors corresponding to
set A of LECs for all interaction models used in this study are
compared with experimental data in Figs. 3–5, respectively. In
all figures the bands represent the uncertainties coming from
the statistical errors in the Monte Carlo integration (albeit
these errors are essentially negligible), and the propagation
of the fitted LECs errors summed in quadrature. The error
band expands because the relative weight of the N3LO terms
and associated uncertainties becomes larger and larger as qμ

increases. These magnetic form factors represent predictions
of our models. The trinucleon magnetic form factors have
been normalized to unity at qμ = 0.

The deuteron magnetic form factor obtained with the NV
interactions is shown in Figs. 3(a) and 3(b). Despite the more
sophisticated fitting procedure adopted here than in previous

works, we have very good agreement with experimental data
only for qμ � 3.5 fm−1. At higher qμ, theory overestimates
the data; this overestimate is primarily due to the isoscalar
spin-orbit term in the min current of Eq. (2.11) that is only
partially corrected by the fitted (isoscalar) nonminimal term
of Eq. (2.12). The isoscalar OPE contribution (at N3LO) is
instead almost negligible.

The results for the EMN models in Fig. 3(c) show a similar,
albeit more pronounced, behavior. In particular, for EMN500
and EMN550 the form factors are almost flat for qμ � 5 fm−1.
In these cases, the main contribution is again given by the
contact (isoscalar) spin-orbit term proportional to C5, which is
especially large in the EMN models. Moreover, the qμ falloff
comes primarily from that of GS

E (q2
μ). The EMN500 also tends

to underestimate the data in the region of 2 � qμ � 5 fm−1.
The NV predictions for the trinucleon magnetic form fac-

tors with the present fitting procedure of LECs are generally
in excellent agreement with the data up to qμ � 4 fm−1 as
can be seen in Figs. 4(a) and 4(b) for 3H and Figs. 5(a) and
5(b) for 3He (with the exception of the NVIb∗ model). The
fitted currents at N3LO are able to fill in the diffraction region
generated at LO (by contrast, see Ref. [3]) and, particularly in
the case of the NVIa∗/IIa∗ models, reproduce well the minima

TABLE VI. Same as Table V for the helium magnetic moment.

NVIa∗ NVIb∗ NVIIa∗ NVIIb∗ EMN450 EMN500 EMN550

LO −1.775 −1.770 −1.774 −1.772 −1.767 −1.786 −1.783
NLO −0.193 −0.221 −0.193 −0.220 −0.171 −0.211 −0.220
N2LO −0.044 −0.070 −0.044 −0.068 0.009 0.011 0.011
N3LO(TPE) −0.026 −0.017 −0.026 −0.014 −0.062 −0.045 −0.043
N3LO(min) 0.030 0.032 0.029 0.025 0.062 0.047 0.045
N3LO(dV

1 ) −0.107(4) −0.104(5) −0.141(5) −0.088(4) 0.045(4) −0.014(8) −0.01(1)
N3LO(dV

2 ) −0.045(6) −0.013(7) −0.001(6) −0.014(7) −0.181(3) −0.088(7) −0.10(1)
N3LO(dV

3 ) 0.047(2) 0.051(2) 0.035(2) 0.033(2) −0.023(1) −0.014(1) −0.005(1)
N3LO(dS

1 ) −0.014(1) −0.025(2) −0.012(1) −0.017(1) −0.036(5) −0.015(2) −0.024(1)
N3LO(dS

2 ) −0.003(1) 0.008(2) −0.002(1) 0.006(1) −0.004(5) −0.014(2) −0.004(0)
Total −2.13(1) −2.13(1) −2.13(1) −2.13(1) −2.13(2) −2.13(1) −2.13(2)
Expt. −2.126
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FIG. 2. The deuteron threshold electrodisintegration data at backward angles are compared to fits corresponding to interaction models
NVIa∗ and NVIIa∗ in panel (a), NVIb∗ and NVIIb∗ in panel (b), and EMN450, EMN500, EMN550 in panel (c). The bands represent the
error that has been calculated propagating the uncertainties on the LECs with standard methods. The dashed line in panel (a) is the calculation
performed with the LO current for the NVIa∗ interaction.

seen in the 3He magnetic form factor. The interplay between
the terms proportional to the LECs dV

1 and dV
3 and, in partic-

ular, the fine tuning between these LECs play a major role in
achieving, at these high qμ, such a level of success. Thus, the
new procedure appears to validate the χEFT modeling of the
electromagnetic current well beyond the qμ � 2 fm−1 limit of
Ref. [3].

The picture for the EMN models is somewhat less satisfac-
tory. The EMN450 model, as in the d case, completely fails
to describe the data much beyond q � 3 fm−1. The EMN500
model provides the best description of the measured form
factors, in fact at the same level of the NV interactions. The
EMN550 reproduces poorly the data because of the large
contribution proportional to dS

2 , which becomes dominant for
qμ � 3 fm−1. As a matter of fact, the dS

2 contribution resulting
from the fit of the data set B (or B�) is much reduced, and
provides a description of the trinucelon magnetic form factors
similar to that obtained with the EMN500 model. Because
of the constraint on the LECs provided by the d-threshold

cross-section data at high q2
μ, the present fitting procedure is

much more successful in describing the magnetic form factors
of the trinucleons at qμ � 2 fm−1 than reported previously in
Refs. [2,3]. The dominant isovector terms in the two-body cur-
rents convert spin/isospin S/T = 0/1 pairs into S/T = 1/0
pairs, and vice versa. Since in nuclei the correlated pair wave
functions in these spin-isospin channels are similar in shape
and only differ by a scale factor [28], one expects a similar
scaling to occur in the two-body isovector transition densities,
defined as

ρ2b(r) = 〈ψpn(1S0)|
∑
i< j

ji j,y(qx̂)δ(ri j − r)|ψd〉 (4.1)

in the deuteron, and as

ρ2b(r) = 〈ψ3N |
∑
i< j

P01
i j ji j,y(qx̂)δ(ri j − r)P10

i j |ψ3N 〉

+ 〈ψ3N |
∑
i< j

P10
i j ji j,y(qx̂)δ(ri j − r)P01

i j |ψ3N 〉 (4.2)
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FIG. 3. The deuteron magnetic form factor is compared to predictions obtained with interaction models NVIa∗ and NVIIa∗ in panel (a),
NVIb∗ and NVIIb∗ in panel (b), and EMN450, EMN500, EMN550 in panel (c). The bands represent the error that has been calculated
propagating the uncertainties on the LECs with standard methods. Note that in panel (a) the error bands almost coincide.
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FIG. 4. The same as Fig. 3 for the 3H magnetic form factor.

in the trinucleons, where ψd and ψ3N are, respectively, the
deuteron and trinucleon wave functions, ψnp(1S0) is the np
scattering wave function in the 1S0 channel, ji j,y is the y
component of the two-body isovector current (including all
terms up to N3LO), and PST

i j is the projector operator over
ST states for the pair i j. In Fig. 6 we show the densities
corresponding to the NVIa∗ and EMN500 interactions. They
have been computed at qμ ≈ 0.67 and 3.45 fm−1, and have
been rescaled so as to peak at 1. As expected, the ratio of two-
body current matrix elements in the d-threshold cross section
and 3H / 3He magnetic form factors is very nearly the same.
Therefore, knowledge of these matrix elements in d threshold
is sufficient to predict the corresponding matrix elements in
the 3H / 3He form factors (or vice versa). In the region of
qμ � 3.5 fm−1, the contribution of two-body currents in these
observables is dominant. It is then not surprising that, if we
reproduce the d-threshold cross section in this qμ region,
we will also be able to reproduce the trinucleon magnetic
form factors. Incidentally, this scaling behavior also occurs
in Gamow-Teller matrix elements of two-body weak currents
in light nuclei [29].

We conclude this section by making a few remarks regard-
ing the chiral convergence and the systematic errors generated
by the truncation of the chiral expansion. As case study, we se-
lect the EMN500 model, which provides the best description

of the trinucleon FM (qμ) and for which we have interactions
at increasing orders, from LO to N4LO. While a Bayesian
analysis based on Ref. [30] is ongoing, for the time being
we carry out a study based on the approach by Epelbaum
et al. [31]. For the observable FM (qμ), we consider two dis-
tinct expansions, one for the nuclear interaction and one for
the electromagnetic current. Therefore, we label the magnetic
form factor as F i, j

M (qμ), where with i (NiLO, i = 0 for LO) we
indicate the order of the interaction and with j the order of the
electromagnetic current at which FM (qμ) has been computed.
To estimate the error due to the truncation of the interaction,
we fix the current at N3LO, and then use the prescription of
Ref. [31], namely

�F I
M (qμ) = max

[
α6 × ∣∣F 0,3

M (qμ)
∣∣,

α4 × ∣∣F 1,3
M (qμ) − F 0,3

M (qμ)
∣∣,

α3 × ∣∣F 2,3
M (qμ) − F 1,3

M (qμ)
∣∣,

α2 × ∣∣F 3,3
M (qμ) − F 2,3

M (qμ)
∣∣,

α × ∣∣F 4,3
M (qμ) − F 3,3

M (qμ)
∣∣]. (4.3)

Similarly, for estimating the uncertainty due to the truncation
of the current, we fix the order of the interaction at N4LO, and
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FIG. 5. The same as Fig. 3 for the 3He magnetic form factor.
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evaluate

�FC
M (qμ) = max

[
α4 × ∣∣F 4,0

M (qμ)
∣∣,

α3 × ∣∣F 4,1
M (qμ) − F 4,0

M (qμ)
∣∣,

α2 × ∣∣F 4,2
M (qμ) − F 4,1

M (qμ)
∣∣,

α × ∣∣F 4,3
M (qμ) − F 4,2

M (qμ)
∣∣]. (4.4)

For simplicity, we assume that the two uncertainties are inde-
pendent, and conservatively estimate the total uncertainty as

�FM (qμ) = �F I
M (qμ) + �FC

M (qμ). (4.5)

The expansion parameter α is taken as

α = max

[ |q|
�χ

,
mπ

�χ

]
, (4.6)
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FIG. 7. The 3He magnetic form factor obtained with the
EMN500 Hamiltonian model. The red boxes represent the un-
certainties due to the truncation of the chiral expansion in the
electromagnetic current and two-nucleon interaction (systematic).
With the red bar we indicate instead the uncertainties produced by the
fit of the LECs that appear in the electromagnetic current (statistical).

where |q| is the magnitude of the three-momentum transfer
and �χ � 1 GeV. Of course, there is some degree of
arbitrariness in the choice of α, since, for example, the
external electromagnetic field, when it couples to a single
nucleon, imparts a momentum q to this nucleon, while, when
it couples to a pair of nucleons, it will impart, on average, q/2
to each nucleon in the pair.
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FIG. 8. Convergence results at selected values of qμ for the 3He
magnetic form factor. They are shown order by order in the expansion
of the two-nucleon interaction, but with the electromagnetic current
fixed at N3LO. The final points (blue) represent the full calculation,
which includes in addition the systematic uncertainty due to the
truncation of the electromagnetic current. The experimental values
are also reported for comparison.
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In Fig. 7 we plot the results of the present analysis for
the magnetic form factor of 3He. The red boxes represent
the systematic uncertainty �FM (qμ). The red points are the
central values and the bar represents the statistical uncertainty
due to the fitting procedure. It is immediately clear that this
statistical uncertainty is almost negligible, when compared to
the systematic one. The systematic uncertainty increases as qμ

increases, and seems to much reduce the predictive power of
the theory for qμ � 3.8 fm−1, albeit it should be noted that in
that region the form factor has a zero.

In Fig. 8 we show the result for the 3He magnetic form fac-
tor for selected values of qμ order by order in the two-nucleon
interaction, but with the current fixed at N3LO. The error bars
on the red points represent only the systematic uncertainties
�FC

M (qμ). For all the qμ < 4 fm−1 considered the conver-
gence of the chiral expansion appears to be satisfactory. At
larger qμ, the chiral expansion loses its predictive power and
the systematic uncertainties dominate, as already observed
in Fig. 7. It is also worthwhile noting that, for qμ = 1 and
2 fm−1, the point of convergence for the expansion appears
to be off the experimental value. However, by adding the

uncertainty due to the truncation of the chiral expansion in
the electromagnetic current (blue points indicated by Final in
Fig. 8), the theoretical predictions become compatible with
the experimental values (within 2σ for qμ = 1 fm−1). Similar
conclusions hold for the magnetic form factors of d and 3H
obtained with the EMN500 interaction.
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