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Background: Equations of state for a cold neutron star’s interior are presented in three-column tables that relate
the baryonic density, the energy density, and the pressure. A few analytical expressions for those tables have
been established these past two decades as a convenient way to present a large number of nuclear models for
neutron-star matter. Some of those analytical representations are based on nonunified equations of state, in the
sense that the high- and the low-density part of the star are not computed with the same nuclear model.
Purpose: Fits of equations of state based on a piecewise polytropic representation are revised by using unified
tables of equations of state, that is to say, models which have been calculated consistently for the core and the
crust.
Methods: A set of 52 unified equations of state is chosen. Each one is divided in seven polytropes via an adaptive
segmentation, and two parameters per polytrope are fit to the tabulated equation of state. The total mass, radius,
tidal deformability, and moment of inertia of neutron stars are modeled from the fits and compared with the
quantities calculated from the original tables to ensure the accuracy of the fits on macroscopic parameters.
Results: We provide the polytropes parameters for 15 nucleonic relativistic mean-field models, seven hyperonic
relativistic mean-field models, five hybrid relativistic mean-field models, 24 nucleonic Skyrme models, and one
ab initio model.
Conclusions: The fit error on the macroscopic parameters of neutron stars is small and well within the estimated
measurement accuracy from current and next-generation telescopes.
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I. INTRODUCTION

The equation of state (EoS) plays a key role in modeling
a neutron star’s macroscopic parameters. Despite continuous
efforts to push the limits of nuclear experiments, conditions of
density and temperature in the deepest layers of neutron stars
remain out of reach for laboratories. Multimessenger astron-
omy provides a chance to probe deep inside these extremely
compact stars: the relativistic hydrodynamics equations op-
erate as a bridge between the unknown microphysics of
high-density neutron-rich matter and observable macroscopic
parameters. The measurement of the mass M, the radius R,
the tidal deformability �, and the moment of inertia I paired
with hydrodynamics equations in gravity theories have turned
neutron stars (NSs) into extra-terrestrial laboratories for high-
density nuclear physics.

Neutron stars are observed in various wavelengths of
the luminosity spectrum. On one hand, they are observed
in the x-ray spectrum. The spatial telescope X-ray Multi
Mirror-Newton (XMM-Newton [1]) from the European Spa-
tial Agency and its American counterpart Chandra [2] have

been operating for more than 20 years, providing data for
isolated, accreting, and highly magnetized neutron stars. The
younger Nuclear Spectroscopic Telescope Array (NuSTAR
[3]), and the Neutron-star Interior Composition ExploRer
(NICER [4]) observe respectively in hard and soft x-rays. The
next generation of x-ray telescopes is already on its way: the
Enhanced X-ray Timing and Polarimetry (eXTP [5]) mission
is scheduled to be launched in 2027, and the highly antic-
ipated Advanced Telescope for High-ENergy Astrophysics
(ATHENA [6]) with a state-of-the-art X-Ray Integral Field
Unit (X-IFU) spectrometer will provide unprecedented spec-
tral resolution for a wider effective area, hopefully in the
2030s. On the other hand, neutron stars are observed as
radio sources, for example, in the observatories of Parkes,
Green Bank, and Nancay. After almost 60 years of operation
in Porto Rico, Arecibo fell in November 2020; fortunately,
the largest worldwide telescope, the Square Kilometer Array
(SKA [7]), will be operational in a few years and will include
the 2017 launched Chinese contribution Five-hundred-meter
Aperture Spherical radio Telescope (FAST [8]). Gravitational
wave (GW) detection is the most recently explored area for
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compact object messaging: the LIGO Scientific Collabora-
tion, the Virgo Collaboration, and the KAGRA Collaboration
(LVK [9]) have provided promising results with the detection
of double-neutron-star binary mergers, and will keep on with
run O4 starting in early 2023, and then O5. The Einstein tele-
scope [10] and its American counterpart the Cosmic Explorer
[11] are both scheduled to start observing in the mid 2030s
and should detect continuous gravitational waves.

Part of the outer crust of neutron stars is well constrained
by laboratory measurements of mildly neutron rich nuclei.
However, the inner crust and the core are respectively poorly
and very poorly constrained, which leads to many different
supranuclear theories: nucleonic matter, confined or decon-
fined quarks, hyperonic matter, strange quark matter, etc.
There exists dozens of equations of state for cold and highly
dense neutron-star matter, a large number of them are gathered
in an online database named CompOSE [12,13]. The crust
equation of state is more difficult to compute than the core’s
because it requires a treatment of inhomogeneous matter. For
that reason, one can find nonunified constructions of equa-
tions of state: the core and the crust are not computed using
the same nuclear model; the common practice is to attach
an already established crust to the core equation of state.
Nonunified constructions are oftentimes found in the literature
but have been shown to result in large errors in the modeling
of macroscopic parameters, see Ref. [14].

The output format for computations of cold matter equa-
tions of state is a three column table with the baryonic density
n, the energy density ε, and the pressure P. However, an
analytical form of tabulated equations of state is convenient,
particularly for neutron-star simulations. To establish ana-
lytical representations of equations of state, one chooses a
parametrized expression and then adjusts parameters to the
tabulated equation of state. Having one expression with easily
comparable parameters is also a practical way to compare
microscopic and macroscopic features of neutron stars. Ad-
justing the parametrized representation is called a fit: a few
have been proposed so far, e.g., spectral fits as presented in
Ref. [15], and piecewise polytropic fits by Ref. [16].

In this paper, piecewise polytropic fits based on nonunified
constructions are revised, and new fits for 52 unified equa-
tions of state of neutron star’s matter are presented. In Sec. II,
the most relevant microscopic and macroscopic features re-
quired for a realistic equation of state are presented. After a
brief overview of the various frameworks for nuclear interac-
tion modeling used to compute equations of state, we present
the equations of state used in this paper. Piecewise polytropic
fits as well as the relation between polytropic parameters,
and quantities n, ε, and P, are presented in Sec. III. The
importance of using unified equations of state on the accuracy
of macroscopic parameters is investigated; this section ends
with details on our fitting method. In Sec. IV, the accuracy
of fits on the mass, the radius, the moment of inertia, and the
dimensionless tidal deformability calculated within the frame-
work of Einstein’s theory of general relativity is presented
for key astrophysical quantities. The role of nonunified con-
structions on the accuracy of so-called “universal” relations is
discussed. The parameters for the fits are presented in tables
in Appendix A.

II. CHOICE OF EQUATIONS OF STATE

The three basic physics rules that an EoS is required to
meet are

(i) thermodynamic consistency: the first law of thermo-
dynamics must be fulfilled;

(ii) causality: interpreted as subluminal EoSs (vsound< c),
for details concerning Lorentz invariance and causal-
ity see Ref. [17];

(iii) Le Chatelier’s principle, which states that the energy
increases with pressure.

The natural limit up to which one can study the properties
of dense matter using NS observations is set by the proper-
ties of matter at the center of the star with maximum mass
configuration—the corresponding value of the central baryon
number density is denoted nmax.

Astrophysical and nuclear laboratory data can impose more
constraints to ensure that the equation of state is realistic for
NS matter.

A. What makes a reasonable neutron-star equation
of state from the macroscopic point of view?

The macroscopic parameters of cold NSs are computed
by injecting the EoS into the equations of hydrodynamics
equilibrium within a given theory of gravity. Here we adopt
Einstein’s theory of general relativity. Comparing modeled
macroscopic parameters to their measurement provides infor-
mation on the NS-matter EoS. More to the point, the quality of
an EoS relies on its ability to be consistent with observations
of the NS’s astrophysical quantities.

The modeling of a NS’s macroscopic parameters treated
within general relativity imposes a first constraint on the
mass/radius ratio: it must always be larger than that of
Schwarzschild which excludes any mass/radius relation for
which R < 2GM/c2. A second constraint is imposed by the fi-
nite nature of the pressure and renders R > 9GM/4c2 (yellow
region in Figs. 1 and 2). A third constraint on the mass/radius
ratio is imposed to ensure a subluminal EoS: R > 2.9GM/c2

(green region in Figs. 1–3).
An important test for an EoS is to reach the highest

NS mass measured: in this article, we use the massive mil-
lisecond pulsar J1614 − 2230 [18] measured with a mass of
(1.908 ± 0.016)M� (solar mass M�) as a selection criterion.
Sources with larger masses have been reported, such as the
millisecond pulsar J0740 + 6620, whose mass was previously
measured with relativistic Shapiro delay at 2.14+0.10

−0.09M� [19]
but was recently revised to a (2.08 ± 0.07)M� [20]. The
source J0348 + 0432 was reported with a mass of 2.01 ±
0.04M� [21] and J1810 + 1744 has been measured with a
mass of 2.13 ± 0.04M� [22]; their mass-measurement tech-
nique is based on a highly-model-dependent analysis of the
companion’s photometry (white dwarf). We refer to Fig. 1
of Ref. [14] for an overview of NS measured masses. The
maximum mass of a cold nonrotating star was constrained
by gravitational wave (GW) detection [23] of the double
NS binary GW170817 in Ref. [24], which highlighted the
importance of finite temperature in the relation between the
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FIG. 1. Mass-radius sequence for unified Skyrme EoSs and the
ab initio model BCPM. Mass measurement of J0740 + 6620 and
J1614 − 2230 within 1σ precision are presented, as well as NICER
mass-radius contours of J0740 + 6620 and J0030 + 0451 within 1σ

(see text for details), and mass-radius constraint on GW170817.
Exclusion regions for finite pressure and subluminal EoSs are rep-
resented respectively in yellow and green.

gravitational mass Keplerian limit and the maximum mass of
a nonrotating cold star.

The radius is directly connected to the EoS’s stiffness. For a
significant range of pressures typical of a neutron-star interior,
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FIG. 2. Mass-radius (MR) sequence for unified nucleonic and
hyperonic relativistic mean field EoSs used in this paper. Mass
measurements of J0740 + 6620 and J1614 − 2230 within 1σ pre-
cision are presented, as well as NICER mass-radius contours of
J0740 + 6620 and J0030 + 0451 within 1σ (see text for details)
and the mass-radius constraint on GW170817. Exclusion regions for
finite pressure and subluminal EoSs are represented respectively in
yellow and green.
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FIG. 3. MR sequence for the unified hybrid relativistic mean
field EoSs used in this paper. Mass measurements of J0740 + 6620
and J1614 − 2230 with 1σ precision are presented as well as NICER
mass-radius contours of J0740 + 6620 and J0030 + 0451 within 1σ

(for details see text) and the mass-radius constraint on GW170817.
NL3 models are in blue and DD2 models are in green. The pressure
bag constant B is either set to zero (plain lines) or takes a nonzero
value (dotted lines). The exclusion region for subluminal EoSs is
represented in green.

the corresponding densities are smaller for a stiff EoS than
for a soft one. As a result, from the Tolman-Oppenheimer-
Volkoff equations, the thickness of this region is larger for
stiff EoSs which can lead to a larger radius of the NS. A
strong correlation exists between the pressure and the radius
at densities (1–2.5)n0 (saturation density n0 = 0.16 fm−3),
as shown by Ref. [25]. The relations between the total mass
and the total radius for the EoSs used in this paper are pre-
sented in Figs. 1–3. The radius and mass of two sources, PSR
J0030 + 0451 and PSR J0740 + 6620, have been reported by
the NICER telescope by two teams each. The measurement
technique is based on an analysis of the surface emission of
the pulsar, precisely, of its hot spots. The source J0030 + 0451
was reported by Ref. [26] to have a mass of 1.34+0.15

−0.16M� and
radius of 12.71+1.14

−1.19 km and reported by Ref. [27] to have a
mass of 1.44+0.15

−0.14M� and a radius of 13.02+1.24
−1.06 km within 1σ

precision. The source J0740 + 6620 was reported by Ref. [28]
to have a radius of 13.7+2.6

−1.5km and by Ref. [29] to have a
radius of 12.39+1.3

−0.98km within 1σ precision; prior knowledge
from XMM-Newton telescope on the mass for this source was
used. Contours for those sources are presented in Figs. 1–3;
for the source reported by Ref. [27], the contours for two
signal analysis are given because no preference for one or the
other was significant. Because the uncertainty for the radius is
quite large, measurements serve more as a proof of concept for
an elegant radius determination than a conclusive constraint
on NS matter. In Refs. [30,31], an indirect estimation of the
radius was established from GW170817 gravitational wave
(GW) detection; the authors either used “universal” relations
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established by Ref. [32] to present a radius with 3.5 km error
bars, or a collection of EoSs in a Bayesian analysis to give a
likelihood for the radius. As a substitute for radius measure-
ment, a series of papers attempt to impose limits on the radius.
Reference [33] used a prior distribution of EoSs to obtain
a radius interval of [10.4–12.9] km for a 1.4M� NS with a
95% confidence level. A similar approach is used by Ref. [34]
in a Monte Carlo analysis with five low-mass x-ray binary
sources to extract a minimum radius of 9.1+1.3

−1.5 km with a 90%
confidence level. Unfortunately, those limits are established
from a small set of sources. Reference [35] established a
constraint on the radius based on the assumption that NS’s
rotation follows a Keplerian frequency; the authors conclude
that R1.4 � 9.3 km for the radius of a 1.4 M�. However, NSs
might not follow such frequencies when the rotation of the star
is associated with GW emission or when triaxial deformability
sets on.

The tidal deformability � is the propensity of a star to
be deformed by a neighboring gravitational field. For the
binary NS merger GW170817, the tidal deformabilities of
the stars were extracted from the inspiral waveform. This
detection has indicated a preference towards a soft EoS, see
Refs. [36,37]. Conciliating a high-enough maximum mass
with a soft EoS while keeping a small radius is a delicate ques-
tion of balance for the inner-core composition. Constraints
on the tidal deformability of a 1.4M� NS are discussed in
Ref. [30].

The moment of inertia I is a parameter that has not been
measured so far. It requires a monitoring of the relativistic
features of the binary orbit (the more compact the better) over
a long period of time, see Ref. [38]. This parameter would
be best measured in a pulsar binary such as the famous PSR
J0737 − 3039 [39]. One can extract I by using “universal”
relations: Ref. [40] have used a Markov chain Monte Carlo
analysis of NICER J0030 + 0451 data to establish a radius
distribution for the star of mass 1.3381M� in double binary
PSR J0737 − 3039; from the compactness C = GM/Rc2, they
estimate the moment of inertia.

B. What makes a reasonable neutron star equation
of state from the microscopic point of view?

A large portion of the outer crust is constrained by lab-
oratory measurements of mildly rich nuclei; for example,
Ref. [41] has catalogued such results in a table with thousands
of nuclei data. All models for NS interior should therefore be
similar for the first few layers of the crust.

The symmetry energy and the slope of the symmetry
energy at saturation density, respectively J and L, are two
microscopic parameters used to describe an EoS. The symme-
try energy is defined as the difference between the energy per
baryon calculated for pure neutron matter and the energy per
baryon calculated for symmetric matter. A series of laboratory
experiments can constrain both those parameters; we refer to
Table II and Fig. 8 of Ref. [42] for a systematic approach.
We refer to Ref. [43] for a compilation of constraints on the
symmetry energy obtained from experiments and theory. In
the following, we briefly present, nonexhaustively, how both
these parameters can be constrained by laboratory data.

The binding energy described by the finite-range droplet
model (FRDM) includes symmetry-related terms whose val-
ues can be explored by using large tables of nuclei data. The
formula for the FRDM binding energy presented in Ref. [44]
is paired with the table of nuclei of Ref. [45] to extract
L = 70 ± 15 MeV and J = 32.5 ± 0.5 MeV. Coulomb effects
are linked to the surface symmetry term in the FRDM (see
Ref. [46], Sec. II C); experiments are performed on isobaric
nuclei [47] in order to alleviate this entanglement. The same
method has been used with Skyrme forces in Ref. [48].

The heavy-ion collision (HIC) of nuclei such as gold has
introduced constraints on symmetric matter over the satura-
tion density. The collision of nuclei such as isotopes of tin
allows us to probe the asymmetry between the number of pro-
tons and the number of neutrons [49]. Recently, the spectral
pion ratio of tin isotopes has been used to determine the slope
L of the symmetry energy at saturation density and, at a 95%
confidence level, 42 < L < 117 MeV, an interval consistent
with the conclusions drawn in Ref. [43].

Neutron-rich nuclei are particularly interesting to investi-
gate the symmetry energy when they present an asymmetric
number of neutrons and protons, as is the case of Sn isotopes
or 208Pb that closes its nucleon shells, which simplifies the
nucleus structure. An asymmetry in favor of neutrons implies
that the nucleus will present a large difference in the radius
distribution of neutrons and protons, also called neutron skin.
There are a few different ways of measuring the neutron-skin
thickness, one of which is to see how electroweak parity of
208Pb is violated by polarized electrons in the experiments
PREX-I and PREX-II [50,51] and of 48Ca in the experi-
ment CREX [52]. To extract L from neutron-skin thickness
measurements, the correlation between the two quantities is
exploited via a fit established within a nuclear theoretical
framework. In Ref. [53], the Skyrme Hartree-Fock model is
used on measurements of Sn isotopes to constrain the relation
between J and L. In Ref. [54], the FSU2Gold relativistic
mean-field parametrization is used on PREX-II data to extract
J = 38.1 ± 4.7 MeV and L = 106 ± 37 MeV; this result is in
tension with other nuclear experiment constraints. An analysis
of the compatibility between PREX-I and PREX-II and CREX
experiments and other experiments determining J and L is
discussed in Ref. [55]. The values of J and L for Skyrme and
relativistic mean-field models used in this paper are presented
respectively in Figs. 4 and 5. The laboratory constraints from
Ref. [42] and PREX-II data are shown.

Constraints on L and J can be combined with NS lumi-
nosity observations to explore the core composition. Indeed,
Direct Urca (DUrca), which is a neutrino-emissive rapidly
cooling process, is required to explain the cooling of accreting
NSs [56]. This process is permitted if the proton fraction
is high enough and is therefore triggered at a given value
of the density nDUrca. This threshold is constrained by the
density dependence of the symmetry energy such that a large
L favors a large proton fraction and a process allowed for
lower nDUrca—equivalently NS mass. The presence of hyper-
ons in the core implies that there is no need for an elevated
L to trigger the DUrca process, it necessarily appears for a
nDUrca < nmax, for details see e.g., Ref. [57]. In the set of EoSs
presented in this paper, nucleonic models DD2, DDME2,
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FIG. 4. Symmetry energy and its slope at saturation density re-
spectively denoted J and L for Skyrme models used in this paper.
Experimental data constraints are presented: in blue is the compiled
constraint presented in Ref. [42], and in red that of PREX-II. The
names of the EoSs in green refer to nucleonic models that do not
permit the direct Urca process.

BSk20, BSk26, KDE0v1, SLy2, DH, and Skb do not permit
DUrca (nDUrca > nmax); they are presented in green in Figs. 4
and 5.

The collective motion of nuclei is a source of giant reso-
nances: let there be an exterior isoscalar monopole operator,
the strength function of excited states in response to that
operator is directly linked to the nuclear incompressibility
K for which experimental data are available (see Tables I
and II of Ref. [58]); again, the relation between experimen-
tal data and K is established within a theoretical framework
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FIG. 5. Symmetry energy and its slope at saturation density re-
spectively denoted J and L for the relativistic mean-field models used
in this paper. Experimental data constraints are presented: in blue is
the compiled constraint presented in Ref. [42], and in red is that of
PREX-II. The names of the EoSs in green refer to nucleonic models
that do not permit the direct Urca process.

(e.g., Skyrme or Gogny forces). Constraints on L and J can
also be extracted, such as presented in Refs. [59,60].

There are also some attempts at including results from cold
atom experiments to constrain a part of the low-density EoS
using the unitary Fermi gas approach. The idea is to consider
that low-density neutron matter can be solely characterized
by an infinite-range scattering and can be considered as a
unitary Fermi gas—see Chap. 2 of Ref. [61] for details—in
which the energy per nucleon is determined by a single and
universal parameter. There are, however, no considerations of
lattice nor clusters with this approach, which are essential in
the understanding of crust physics.

Techniques to infer knowledge on microscopic parameters
of EoSs from astrophysical measurements were recently de-
signed. Bayesian inference statistical analysis of GW signal
data helps provide constraints on the EoS; we refer to Ref. [62]
for a recent study of this technique, and to Ref. [63] and refer-
ences therein for a review. GW170817 detection was used in
Ref. [64] to constrain L: the effective tidal deformability of the
binary is strongly correlated to that quantity and GW170817
indicates a preference for low L. Reference [36] discovered
strong correlations between the tidal deformability and lin-
ear combination of pairs of nuclear parameters of different
orders. References [28,29] related to NICER observations of
J0740 + 6620 used a Bayesian analysis based on likelihood
of measurement to infer high-density EoS properties. Per-
fect knowledge of the EoS under half the saturation density
(n0/2 = 0.08 fm−3) is assumed; over n0/2, a parametrized
EoS and Gaussian-process-based models are used. A similar
technique is used by Ref. [65] with chiral effective theory
(CET) constraints. Note that these techniques depend strongly
on the priors chosen.

C. The variety of core composition

In the innermost parts of NSs, densities can go as high
as 15n0. Such a supranuclear framework is out of reach for
laboratories, which leaves the description of NS cores open
to various composition hypotheses. In the present paper, we
use the following three categories: nucleonic, hyperonic, and
hybrid models for the core composition.

In addition to nucleons in the core, the presence of
hyperons—baryons with at least one strange quark—softens
the core EoS, which induces a smaller radius; hyperons in
NSs were first introduced in the 1960s. Because the nucle-
onic Fermi pressure is higher than the hyperonic pressure
at fixed density, allowing the presence of hyperons results
in a smaller radius. Softening the EoS, however, leads to a
lower maximum mass. This is a problem referred to as the
“hyperon puzzle,” which can be counteracted if one finds a
way to stimulate hyperonic pressure. One way to do so is
to instigate repulsion from the nature of baryon interactions,
see Refs. [66,67]. Hyperons are expected to appear over 2n0

through a series of reactions involving nucleons such as (but
not exclusively)

p + e− → � + νe,

p + e− → �0 + νe,

n + e− → �− + νe. (1)
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Those reactions have their inverse, thus creating loops of high-
neutrino-emissive processes; the role of hyperonic neutrino
emission on the cooling of NSs was studied by Ref. [68].
Hyperons �(uds), �0(uds), and �−(dds), once created in
Eqs. (1), can themselves be sources of double strange �−(dss)
hyperons. Laboratory measurements of hyperons are per-
formed in heavy-ion collision experiments at the Thomas
Jefferson National Accelerator facility (Jlab, USA), the Mainz
Microtron Accelerator (MAMI-C, Germany), and the Japan
Proton Accelerator Research Complex (J-Parc, Japan); for
details, see Ref. [69]. However, only very-short-lived hy-
pernuclei can be measured, making it difficult to give solid
constraints on the parametrization of YN (hyperon-nucleon)
and YY (hyperon-hyperon) interactions. For example, no
scattering has been measured, which is needed to accu-
rately calculate hyperon properties. Attempts at extracting
the strange composition of NSs from observations of mass,
radius, and thermal evolution have concluded that the radius
of the star decreases linearly with the increase of the total
hyperon content, see Ref. [70].

In the inner core, a phase transition from confined
(baryons) to deconfined quarks can be included: the core is
therefore made of (strange-) quark matter and EoSs are called
hybrid.

A common approach to compute hybrid EoSs is the
relativistic mean field (RMF) approach. Quark matter is
frequently described in the framework of the Nambu–Jona-
Lasinio (NJL) model, the quark-meson model, or the MIT
bag model. The hybrid EoSs we consider in the present study
were built in Refs. [71,72] within the SU(3) NJL model for
quark matter and a RMF model for hadronic matter. The
confined phase follows the same Lagrangian density as nu-
cleonic or hyperonic (strange quark) matter. The Lagrangian
density of deconfined quarks in the NJL model includes four-
quark scalar and pseudoscalar interaction terms with coupling
constant GS , four-quark vector and pseudovector interaction
terms—both vector-isoscalar (VP) with coupling constant Gω

and vector-isovector (VIPI) with coupling constant Gρ are
considered—and the six-quark t’Hooft term that ensures that
the axial symmetry U(1)A is broken. In the NJL models, the
pressure and energy density are defined up to a constant B.
The pressure bag constant B is chosen to ensure either that
the effective pressure falls to zero when the baryon chem-
ical potential vanishes (B0) or to impose another type of
constraint such as fixing the deconfinement baryonic density
(B). Finally, the ratio between the vector and scalar coupling
constants, in particular ξ = Gω/Gs and η = Gρ/Gs, are pa-
rameters that characterize the models and define the intensity
of the VP and VIPI channels, respectively (for more details,
see Refs. [71,73]). In the following, we designate the hybrid
EOS by the hadronic EoS Bx − 100ξ − 100η, where x char-
acterizes the magnitude of the bag constant in MeV/fm3. The
quark phase transition induces a density jump that ensures a
softening of the EoS. If this jump exceeds a critical value,
the softening is such that the MR sequence presents a branch
which is partly unstable (with respect to radial oscillations). In
this case, a single EoS corresponds to the two stable branches
of stellar models, and twin stars with the same mass but
different radius can exist.

Hybrid stars have also been described within ab initio
approaches such as the Brueckner-Hartree-Fock many-body
theory with realistic two-body and three-body forces [74,75]
(for other ab initio approaches see the reviews [42,76]).

D. Set of equations of state

The large number of available EoSs stems from two vari-
ables: the core composition, and the nuclear theory used for
computations. There are two approaches to compute parti-
cle interactions of NS matter. The microscopic one is based
on many-body interactions: such models are time consum-
ing and only accurately apply to homogeneous matter. The
phenomenological approach consists of theories based on
parameters adjusted to reproduce the properties of matter
measured in laboratories.

The RMF description of hadronic matter is a phenomeno-
logical approach in which particles are considered to be
immersed in a common potential established in quantum
field theory. The Lagrangian density for nucleonic matter
contains terms for (naked) baryons, leptons, and quarks, as
well as terms for interacting mesons of type σ (scalar),
ω (vector-isoscalar), and ρ (vector-isovector), with self and
cross interactions, see Ref. [77].

The EoS is obtained from the Lagrangian density

L =
∑
i=p,n

Li + Lσ + Lω + Lρ + Lσωρ + Llep, (2)

where the first term Li is the nucleonic term, the last term Llep

is the leptonic contribution, and the middle terms refer to the
mesonic contributions. The nucleon Lagrangian density reads

Li = ψ̄i[γμiDμ − M∗]ψi, (3)

with the covariant derivative iDμ = i∂μ − gωωμ − gρ

2 τ · ρμ ,
gσ , gω, and gρ being the meson-nucleon couplings. τ

are the SU(2) isospin matrices, and the effective mass is
M∗ = M − gσ σ, with M being the vacuum nucleon mass. The
leptonic Lagrangian density is given by

Llep =
∑

i=e,μ

ψ̄i[γμi∂μ − mi]ψi, (4)

where the sum is over electrons and muons, and mi is their
mass. The mesonic contributions are

Lσ = +1

2

(
∂μφ∂μσ − m2

σ σ 2 − 1

3
κσ 3 − 1

12
λσ 4

)
,

Lω = −1

4
�μν�

μν + 1

2
m2

ωωμωμ + ζ

4!
ζg4

ω(ωμωμ)2
,

Lρ = −1

4
Bμν · Bμν + 1

2
m2

ρρμ · ρμ + ξ

4!
g4

ρ (ρμρμ)2
,

Lσωρ = �ωg2
ρg2

ωωμωμρμ · ρμ,

where �μν = ∂μων− ∂νωμ, Bμν = ∂μρν − ∂νρμ− gρ (ρμ×ρν ),
mσ , mω, and mρ are the meson masses and κ , λ, ζ , ξ , and �ω

are constant coupling parameters. We consider models with
constant couplings, NL, NL-ωρ, TM, TM-ωρ, GM, H, FSU;
the BSR models which include nonlinear meson terms, and
DD models which have density-dependent couplings, and for
which the couplings related to nonlinear mesons terms are
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TABLE I. Classification of relativistic mean-field models by the interacting mesons that appear in the Lagrangian density of the theory.

Self-interaction Cross-interaction

Family σ ω ρ σ − ω σ − ρ ω − ρ Model Ref.

BSR 1 1 0 1 1 1 BSR2 [83]
BRS6

DD 0 0 0 0 0 0 DD2 [84]
DDME2 [85]
DDHδ [86]

FSU 1 1 0 0 0 1 FSU2 [87]
FSU2H [88]
FSU2R [88]

GM, H 1 0 0 0 0 0 GM1 First model of Table II in Ref. [89]
H3 [89,90]
H4

NL 1 0 0 0 0 0 NL3 [91]
NL-ωρ 1 0 0 0 0 1 NL3ωρ [92]
TM 1 1 0 0 0 0 TM1 [93]

TM2
TM-ωρ 1 1 0 0 0 1 TM1ωρ [94]

TM2ωρ

zero (in particular, the couplings κ , λ, ξ , ζ , and �ω). For
the DD models the isoscalar couplings of the mesons i to the
baryons take the form

gi(n) = gi(n0)ai
1 + bi(x + di )

2

1 + ci(x + di )
2 , (5)

and the isovector ones are given by

gi(n) = gi(n0) exp [−ai(x − 1)]. (6)

In these expressions, n0 is the symmetric nuclear saturation
density, and x = n/n0. For more information, we refer to
references listed in the last column of Table I.

For hyperonic matter, terms for naked hyperons and
mesons mediating the hyperonic interaction are added to the
Lagrangian density. Coupling constants for the YY and YN
interactions are presented in Refs. [70,77,78]. For the hyper-
onic sector, interactions are much simpler and include no cross
terms between the hyperonic mesons [77]. For quark matter,
terms for scalar, vector, and pseudovector quark couplings
are added; we refer to Refs. [71] and [73] for a discussion
on the coupling constants in the quark Lagrangian. Once the
Lagrangian density is established, the variation of the action
(integral of the Lagrangian density) with regards to the wave

functions and fields in play yields a set of equations that must
be solved numerically.

Another phenomenological approach to compute the EoS
are Skyrme density functionals. NS matter is out of the
reach of perturbative quantum chromodynamics (QCD), as
is oftentimes represented in QCD phase diagrams. However,
mesons that mediate the strong interaction can be treated in
an effective-field theory designed to replace the extension of
QCD to low-temperature neutron matter. The Skyrme force
is a nonrelativistic approach to the interaction of nucleons;
the Skyrme density functional derived from this interaction
is treated with the variational principle to design a Hamil-
tonian; baryons emerge as solutions to an approximation of
Schrödinger equations (e.g., Hartree-Fock). In this frame-
work, a series of (Skyrme) parameters (xi, with i ∈ [0, n];
t j , with j ∈ [1, m]; W0 and αk with k ∈ [1, l]) are used. The
upside of this phenomenological approach is that some micro-
scopic quantities (energy per baryon, effective nucleon mass,
symmetry energy, incompressibility, etc.) are established an-
alytically from the above-mentioned parameters; for details,
see the review [79]. Nuclear data tables and properties of ho-
mogeneous neutron matter are used to adjust the parameters.
Skyrme density functionals can be separated in two classes:
standard and generalized. To classify Skyrme models, we refer
to the expression for the Skyrme force ruling the interaction
between nucleons presented in Ref. [80]:

S1(ri j ) = t0(1 + x0Ps)δ(ri j ) + t1(1 + x1Ps)

2h̄2

(
p2

i jδ(ri j ) + δ(ri j )p2
i j

) + t2(1 + x2Ps)

h̄2 pi j · δ(ri j )pi j

+ t3(1 + x3Ps)

6
ρ(r)α1δ(ri j ) + t4(1 + x4Ps)

2h̄2

(
p2

i jρ(r)α2δ(ri j ) + δ(ri j )ρ(r)α2 p2
i j

)

+ t5(1 + x5Ps)

h̄2 pi j · ρ(r)α3 pi j + iW0

h̄2 (σ i + σ j ) · pi j × δ(ri j )pi j . (7)

035805-7



LAMI SULEIMAN et al. PHYSICAL REVIEW C 106, 035805 (2022)

The quantity ri j is defined as between the spatial coordinates
of nucleon i and j, and pi j designates the relative momentum
(difference between the momentum operator of i and of j).
The spin-exchange operator between nucleons is denoted Ps,
and ρ(ri j ) is the local density, or, in other words, the density
at the barycenter r = 1/2(ri + r j ).

The terms of Eq. (7) can be understood as follows:

(i) terms proportional to t0 are the effect of the force at
zero range (hence the δ function);

(ii) terms proportional to t1 and t2 are effects for an ef-
fective range, and express the momentum dependence
of the interaction—consequently finite temperature
effects; note that t4 and t5 represent the effective range
in the generalized form of the Skyrme force and intro-
duce density dependence to the term;

(iii) terms proportional to t3 account for a three-body in-
teraction expressed as a density-dependent two-body
interaction;

(iv) terms proportional to W0 account for the two-body
spin interaction with spin-orbit coupling.

To the Skyrme force can be added a pair force and Wigner
force as is the case for Brussels-Skyrme models presented in
this paper.

Although it is computationally costly, microscopic EoSs
can be established by solving the N-body Schrödinger equa-
tion. In this framework, the only requirement to construct the
EoS is a solid understanding of the nucleon-nucleon interac-
tion (calibrated to nuclear data). Different approaches exist,
for example, the nonrelativistic Brueckner-Hartree-Fock ap-
proach or the relativistic Dirac-Brueckner-Hartree-Fock [81]
approach. In practice, the N-body problem is reduced to a
three-body problem, which is sometimes itself reduced to
a density-dependent two-body problem. Another promising
microscopic approach which has been largely explored for
neutron-star matter in recent years is chiral effective theory,
but it only reaches densities that are twice the saturation
density; in practice, one can glue low-density chiral effective
theory results to a higher-density EoS, as is presented in, e.g.,
Ref. [82].

In this paper, we use the following cold matter EoSs:

(i) Nucleonic relativistic mean field (×15):
(a) BSR2 and BSR6;
(b) DD2, DDME2, DDHδ: in this family of EoSs, no

self or cross interactions are taken into account,
but the meson coupling constant in the covariant
derivative and effective mass of the naked baryon
are density dependent;

(c) FSU2, FSU2H, FSU2R;
(d) GM1;
(e) NL3 and NL3ωρ;
(f) TM1 and TM1ωρ;
(g) TM2 and TM2ωρ;
for references, see Table I.

(ii) Hyperonic relativistic mean field (×7): for references,
see Refs. [70,77]:
(a) DD2 and DDME2;
(b) FSU2H;

(c) H3 and H4: based on the same nuclear model as
the purely nucleonic GM1. The parameters for the
nucleonic sector of this seminal model were cho-
sen to reproduce simple nuclear constraints on the
incompressibility (K = 300 MeV) and effective
mass at saturation (m∗/m = 0.7). Much more up-
to-date and refined models are now available and
used in this paper. However, we employ GM1,
H3, and H4 in this work as a comparison with
Ref. [16]. Note that, while GM1 and H4 have
maximum masses larger than 2 M�, H3 does not:
Mmax � 1.79M�, see Table VI;

(d) NL3 and NL3ωρ.
(iii) Hybrid relativistic mean field (×5): for references, see

Refs. [71,73].
(a) DD2-B15-40-20;
(b) NL3ωρB20-50-0, NL3ωρ-B28-75-0;
(c) NL3ωρ-B0-50-0;
(d) NL3ωρ-B0-50-50.

The terms for mesons self and cross interaction
in the Lagrangian density are used to categorize the
different family of models in Table I. Within a family
of EoSs, the difference between models lies in the
value of the coupling constants.

(iv) Nucleonic Skyrme (×24):
(a) BSk20–BSk26;
(b) KDE0v1;
(c) Rs;
(d) Ska, Skb, SkOp, Sk255, Sk272;
(e) SkI2–SkI6, SkMP;
(f) SLy2, SLy9, SLy230a;
(g) DH: based on SLy4 parametrization but contrary

to the other SLy EoSs presented in this paper, it
has been calculated consistently for the core and
the crust.

Classification of Skyrme EoSs and references are
presented in Table II using the Skyrme parameters
presented in Eq. (7).

(v) Ab initio (×1): The BCPM as presented in Ref. [95]. It
is based on the microscopic Brueckner-Hartree-Fock
theory of nucleon interaction with the addition of a
density-dependent two-body force.

All above-mentioned EoSs with the exception of H3 meet
the maximum mass criterion.

III. POLYTROPIC FITS

In the following, convention as presented in Ref. [16]
(later referred to as PPFRead with PPF standing for Piece-
wise Polytropic Fits) is used: the rest-mass density ρ is
directly connected to the baryonic density n via the baryon
mass mB = 939 MeV/c2 (ρ = n mB). The energy density ε

is calculated by using the first law of thermodynamics in the
zero-temperature limit:

d

(
ε

ρ

)
= −Pd

(
1

ρ

)
. (8)
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TABLE II. Classification of Skyrme models from parameters
presented in Eq. (7). In column one is the Skyrme family, in col-
umn two are presented the parameters of the Skyrme force that are
included in the model, in column three is the name of the EoS, and
in column four is the reference for the model.

Family Parameters Model Ref.

BSk t2 = 0, t2x2 �= 0 BSk20, BSk21 [80]
BSk22–BSk25 [96]

SLy x4 = x5 = t4 = t5 = 0 SLy2, SLy9 [97]
DH [98]
SLy230a [99]

KDE t4 = t5 = 0 KDE0v1 [100]
Rs x1 = x2 = t5 = 0 [101]
Sk x1 = x2 = x4 = x5 = t4 = t5 = 0 Ska, Skb [102]

Sk x4 = x5 = t4 = t5 = 0 Sk255, Sk272 [103]
SkMP [104]
SkOp [105]
SkI1–SkI5 [106]
SkI6 [107]

A. Piecewise polytropes

A polytrope takes the form

P = κρ�, (9)

with κ being the polytropic constant, and � being the adiabatic
index. This type of crude approximation for the EoS is simple
but oftentimes used: for example, the outer crust of NSs is
well approximated by the pressure of ultrarelativistic electrons
(� = 4/3). The whole NS cannot be accurately approximated
with only one polytrope; however, it is possible to divide the
EoS in N parts, each of which would pertain to a polytrope
with fixed κ and �, which is what we call piecewise poly-
tropes.

A practical fit contains a restricted number of polytropes in
order for the parametrization to be convenient. PPFRead are
based on N = 7 polytropes with four in the crust and three in
the core and we shall use it as well. One could suppose that a
total of 3N − 1 parameters is needed to fit the EoS: N�s, Nκs,
and N − 1 transition densities ρt[i→i+1] that defines areas of
the EOS by which polytrope i is fit (with i ∈ [1, N]). However,
pressure continuity reduces the number of parameters to 2N
with N adiabatic indices, N − 1 transition densities and only
one κ: at ρt[i→i+1], κi+1 is calculated from �i, κi, and �i+1.

Integrating Eq. (8) with the help of Eq. (9) gives an expres-
sion for the energy density that depends on the adiabatic index
and polytropic constant:

ε(ρ) = (1 + ai )ρ + κi

�i − 1
ρ�i , (10)

with ai being the integration constant determined at the tran-
sition between polytropes. Expression for this constant can be
found in Ref. [16], and its initial value is a physical require-
ment: the rest mass density zero limit implies ε = ρ.

The major downside of piecewise polytropic fits is the
nonderivability of quantities; for example, the sound velocity
is not continuously defined.

B. Highlight on the importance of unified equations of state

It is common to find nonunified EoSs in the literature:
the core and the crust EoS are not computed using the same
nuclear model. However, nonunified constructions may in-
duce non-negligible errors in the modeling of macroscopic
parameters. Those constructions exist because computing the
crust inhomogeneities is more tedious than computing the
homogeneous core. A widespread practice within the astronu-
clear physics community is to compute a core EoS and glue
an already-established crust EoS. If this core-crust matching
is performed with no care for thermodynamic consistency, it
can lead to nonphysical jumps in the pressure. Only part of
the outer crust is constrained by nuclei data, such that the
high-density outer crust and the inner crust are subject to
model-dependent differences. Therefore, core-crust matching
of two EoSs with very different microscopic parameters such
as the symmetry energy Jm and its slope Lm at the matching
density results in errors as large as 20% in the modeling of
macroscopic parameters; for details, see Ref. [14].

The relativistic hydrodynamics equations are nonlinear and
the NS interior is opaque to observations. Therefore, one
cannot separate the contribution of different parts of the EoS
in the modeling of the total macroscopic parameters. Let us
note that some quantities are more sensitive to certain parts of
the star interior; for example, the role of the crust treatment is
more important for the radius of the star than for the mass,
the total moment of inertia, and the tidal deformability. If
one wants to explore high-density matter with NS observa-
tions, the artificial errors introduced by nonunified models can
mislead into the acceptance or exclusion of the investigated
nuclear model.

Examples for the use of nonunified EoSs are found in more
simulations than can be listed: analytical representations used
for GW data, finite temperature simulations, modelization of
NS parameters in modified gravity, magneto-hydrodynamics,
“universal” relations, etc.

All EoSs presented in Sec. II D are unified models:

(i) The set of EoSs based on RMF models are taken
from Refs. [70,78,108]; those that include hyperons
are constructed consistently with the available experi-
mental measurements of the properties of hypernuclei
[70,77]. The EoS for the inner crust is calculated
within the Thomas-Fermi approximation consistently
with the EoS of the core [78,109]. The EoS of the
outer crust has not been obtained consistently but
taken from Ref. [110]. Several other outer crust EoSs
are available (e.g., Refs. [111,112]) but they all are
strongly constrained by nuclear physics data and
therefore very similar. In addition, as mentioned in
Ref. [108], we have checked that the use of an EOS
for the outer crust not fully consistent with the rest of
the star does not significantly affect the star proper-
ties, the radius in particular, for masses above 1.0M�,
which is the mass range of all NS currently observed.

(ii) The set of EoSs based on Skyrme models are taken
from Ref. [108]. The construction of the crust does
not include shell effects and curvature terms which
results in a mass shift with respect to experimentally
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measured masses, see Ref. [113]. Thus the EoS of the
external part of the outer crust differs from the one we
would get by employing experimental data, but it is
small enough to impact the relation between the mass
and the radius by less than 1%.

(iii) For the ab initio EoS, the outer crust is based on
the formalism of Ref. [111]; a density functional de-
signed from Brueckner-Hartree-Fock computations is
used in the deformed Hartree-Fock-Bogoliubov for-
malism for nuclei not included in the data table [45].
For the inner crust, the energy density functional
derived from Brueckner-Hartree-Fock calculations is
used in the Thomas-Fermi approximation.

A few groups care for the unification of EoSs in a differ-
ent manner, for example, Ref. [114] proposes a meta model
paired to the extended Thomas-Fermi approximation for the
low-density part of the EoS. References [115–117] use a set
of causal model-independent EoS obtained from a Taylor ex-
pansion around the saturation density; at low density, a crust
EoS is matched in a thermodynamically consistent way.

PPFRead are reduced to a core fit, to which the fit of EoS
DH’s crust is attached at a matching transition pressure which
is not derived from either crust or core nuclear model. Their
construction is the following:

(iv) the high-density part of the EoS is fit by three poly-
tropes;

(v) the low-density part of the EoS is fit by four poly-
tropes based on EoS DH;

(vi) the point at which the high-density and the low-
density polytropes are matched is adapted to ensure
a minimal fit error on the whole nonunified construc-
tion;

(vii) the last polytrope of DH is prolonged or shortened to
ensure that it crosses the first polytrope of the high-
density part.

Three models of our set of EoSs overlap with Read’s fitted
ones: DH, H3, and H4. We investigate the following construc-
tions:

(i) the unified EoS H3 and H4;
(ii) the unified EoS DH;

(iii) PPFRead for H3, H4, and DH;

and present the relation between pressure and baryonic den-
sity in Fig. 6. Results are not presented for EoS H4 in
this figure because our focus is on the low-density part of
the star, and H3 and H4 diverge only in the core (the dif-
ference between H3 and H4 lies in the hyperonic meson
couplings). The lowest-density parts of the EoSs, that is
to say, ρ < 1011.6 g/cm3, overlap for all constructions: this
corresponds mostly to the outer crust, which is calibrated
to experimental data; therefore, it is similar for all nuclear
models. Over 1011.6 g/cm3, DH and unified H3 are different.
The zoom in the figure highlights the matching area: for H3,
the matching density is ρH3

m = 7.9477×1013 g/cm3; for H4,
ρH4

m = 8.8774×1013 g/cm3. In between the last point of con-
vergence for all constructions, and the matching of DH and H3
PPFRead, the curves are different, which attests to the limit of

FIG. 6. Equation of state (relation between the pressure P and
the density ρ) for unified EoS H3 compared with Read’s piecewise
polytropic fit of H3 (PPFRead). Transition between polytropes of
PPFRead are presented with blue points.

laboratory measurement calibrations of the low-density part
of the EoS. Although precautions are taken to avoid jumps in
the pressure, the differences between the sole DH crust and
the various core EoSs in PPFRead are not negligible.

From the above-mentioned constructions, macroscopic pa-
rameters of a cold and nonrotating NS are computed by using
the relativistic equations of hydrostatics, the tidal deformabil-
ity and the moment of inertia equations. Results for the radius
R, dimensionless tidal deformability �, and moment of inertia
I as a function of mass M are presented in Fig. 7 for unified
H3, H4, and DH as well as their respective PPFRead. The
relative difference between the fits and unified tables for the

FIG. 7. Radius R, tidal deformability �, and moment of inertia
I as a function of the mass M for unified tables H3, H4, and DH,
as well as Read’s piecewise polytropic fits (PPFRead). In the right
panel, the relative difference at given mass M between unified tables
and PPFRead for each macroscopic parameters in the three cases of
EoS is presented. For EoSs H3 and H4, the relative uncertainty is
shown up to 98% of the maximum mass in plain lines, and the last
two percent in dotted lines, see Sec. IV A for details.
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variable X at given mass M is given by

� ≡ �X/X = [Xfit (M ) − Xuni(M )]/Xuni(M ), (11)

and is presented in the right panels of Fig. 7. DH PPFRead is
constructed from DH low-density polytropes and DH high-
density polytropes and therefore is unified: the red line in
the right panel of Fig. 7 shows that it coincides with the
tabulated unified EoS DH. We conclude that the fit method
is powerful when applied to unified EoSs. In the case of
PPFRead H3 and H4, the low-density polytropes of DH are
matched to the high-density polytropes of H3 and H4 at ρH3

m
and ρH4

m . Therefore, the whole fit is not unified and differs
from our unified tables as is shown for green and blue lines in
Fig. 7. This indicates that using nonunified EoSs for piecewise
polytropic fits induces an artificial error on the macroscopic
parameters.

From Fig. 7, the uncertainty related to the tidal deforma-
bility leads to two interesting points. On the one hand, despite
the largest relative error being that of the tidal deformability,
in the left panels of Fig. 7 the accuracy looks very similar for
all three quantities. This is due to the fact that � is plotted
on a logarithmic scale because it spans over two orders of
magnitude in the interesting range of masses. As a conse-
quence, the relative change of � by ≈15% corresponds to
≈2% in mass, and such error bars would be of a similar
size in Fig. 7 (left panel). On the other hand, one can notice
that the sign of the relative difference in radius and that in
tidal deformability are not the same. However, � is calcu-
lated according to the relation � = 2

3 k2C−5 [36,118], with k2

being the tidal Love number solved simultaneously with the
Tolman-Oppenheimer-Volkoff equations. The dimensionless
deformability being proportional to k2R5, an increase in radius
should correspond to an increase in the tidal deformability.
The sign difference in the relative uncertainty of the two
quantities in Fig. 7 can be explained by the large error of
PPFRead with regards to the unified EoS on the quantity k2. It
is particularly large for low mass stars, such that it dominates
the R5 factor. For higher-mass stars, the uncertainty on k2 is
smaller and the scale of R5 dominates. This large k2 error can
be understood as the strong effect of the crust matching on
this quantity. Indeed, the fit from H3 unified tables in which
the crust is treated correctly with the core—as is presented in
details in the next section—gives a relative error on k2 which
is at most 3% (for a 1.5M�) whereas PPFRead gives a relative
error on k2 of at most 50% (for a 1.0M�).

In the next section, we provide piecewise polytropic fits
parameters based on unified tables of EoSs presented in
Sec. II D.

C. Method for the fit

To revise PPFRead with unified tables of EoSs, we use
an adaptive nonlinear least squares method to calculate the
Npoly − 1 transition densities ρt , with the number of poly-
tropes Npoly = 7. They are adapted such that the fit error
is minimized for the entire EoS (core and crust) of the
P(ρ) fit.

For each unified table, we create a distribution for the
number of density points ρ different from the original tabu-

lated EoS. Our distribution of points allows us to give more
importance to the accuracy of the fit in some parts of the
star than others. We use a total of 1500 points, allocating 1/5
of the points in the crust and 4/5 of the points in the core
because it resulted in better fits of the full EoS. In each region,
we distribute these points uniformly on a logarithmic scale.
The fragment of the unified tables with the largest densities is
not used because the density goes beyond the central density
at maximum mass. We eliminate this highest-density part by
calculating the maximum mass of the star from the unified
table, and only interpolate the EoS up to nmax, thus increasing
the fit accuracy for astrophysical quantities.

The core-crust transition density has a particular influence
on the success of our fit method. This area is particularly
sensitive to changes in the polytropic parameters and in turn,
the points could be misallocated. Therefore, we chose to test
values of the core-crust transition densities from n = 0.06 to
n = 0.14 fm−3 for each EoS fit.

The relation P(ρ) is interpolated by using a first-order
spline method to establish the pressure points from our dis-
tribution of density points. Each polytrope is fit by using a
nonlinear least squares method from Eq. (9); � and κ are
determined for each polytrope. Then, transition densities are
recalculated from the polytropic parameters just fitted and the
whole process with these new transition densities starts over
until the set of ρt stagnates. Finally, the energy density ε is
calculated from Eq. (10).

Some alternatives to this fit method have been explored.
With regards to the number of points for the interpolation,
we have tested values between 200 and 10 000 points and
observed a plateau of accuracy for ≈1500 points. We have
also tested an inverse fit method, starting the fit from high
density to low density, which renders a similar accuracy.

The method described above is implemented to calculate
the fit parameters which are presented in Tables IV and V in
the Appendix. We provide a routine in Python and tables of
fit parameters in ASCII format to compute the tabulated fitted
EoSs presented in this paper [119].

IV. ROLE OF UNIFIED EQUATIONS OF STATE IN THE
ACCURACY OF MACROSCOPIC PARAMETERS

A. Performance of piecewise polytropic fit

The method we use to establish piecewise polytropic fits
of unified EoSs is intended to provide accurate modeling
of macroscopic parameters for a nonrotating NS. Therefore,
quantities M, R, I , and � are calculated from our fitted EoSs
and compared with that of unified tables. Results for macro-
scopic parameters of prime interest are presented in Tables VI
and VII: the maximum mass Mmax, density at the maximum
mass nmax, the radius at 1.0M� and 1.4M�, respectively de-
noted R1.0 and R1.4, as well as the radius at maximum mass
Rmax, the moment of inertia at 1.338M� denoted I1.338 and at
the maximum mass Imax, and the tidal deformability at 1.4M�
denoted �1.4 and at maximum mass �max. We provide the
relative errors � on these quantities except those defined at the
maximum mass. For the latter we include instead the relative
error δ defined as the relative difference between the quantities

035805-11



LAMI SULEIMAN et al. PHYSICAL REVIEW C 106, 035805 (2022)

FIG. 8. Adiabatic index � as a function of the baryonic density
for the nucleonic, hyperonic, and hybrid EoS DD2.

calculated at the maximum mass for the unified table, and at
the maximum mass for our fit. Indeed since the maximum
mass of the unified EoS and our fit are not equal, � at the
maximum mass and δ are different. The largest errors are
presented in red in the tables.

With regards to nucleonic relativistic mean-field models,
errors associated with the fit on Mmax, nmax, and quantities
related to the radius are systematically under under 1%. For
astrophysical quantities related to the moment of inertia, it
stays under 1.5%, and for the tidal deformability under 4%.
For a hyperonic relativistic mean-field models EoS consistent
with the maximum mass criterion (all but H3), the errors
associated with the fit on Mmax, nmax, and quantities related to
the radius stay under 1.5%. Quantities related to the moment
of inertia stay under 2.5%, and for the tidal deformability
under 7%. For hybrid relativistic mean-field models, the errors
associated with the fit stays under 2% for all quantities.

For Skyrme models, the error associated with the fit for
Mmax, nmax, quantities related to the radius and the moment of
inertia are under 1%. Once again, the tidal deformability does
not fair as well, with an error up to 5%.

The maximum mass is the most accurately reproduced
quantity, with an error under 0.5%. The tidal deformability
is systematically the quantity with largest errors associated
with the fit. Generally, nucleonic models are more accurately
reproduced by our fits than hyperonic or hybrid ones. This
is understandable because the number of polytropes chosen
in the core is fixed to three, and the presence of hyperons or
a phase transition to deconfined quarks in the core produces
respectively an additional softening and drop of the adiabatic
index as a function of the baryonic density (see Fig. 8).

In Fig. 9, the relative difference at given mass M between
our fit and the unified tables for the radius, the tidal deforma-
bility and the moment of inertia are presented as a function of
the mass for EoSs H3 and H4. The same quantities are plotted
in gray for PPFRead to compare. The impact of using unified

FIG. 9. Relative difference at given mass M in percent between
unified tables and our fits for the radius �R/R, the tidal deformability
��/�, and the moment of inertia �I/I as a function of the mass M
for EoS H3 and EoS H4. The relative difference between PPFRead
and unified EoSs H3 and H4 is presented in gray. For our fits, the
relative difference is presented up to 98% of the maximum mass in
plain lines, and the last two percent in dotted lines, see text for details.

fits on the relative difference for the radius is particularly
important for low-mass stars because the crust is relatively
more significant for such objects. In overview, the relative
difference for our fit is significantly smaller than for PPFRead
for all macroscopic parameters considered.

The large increase of the relative error close to the maxi-
mum mass (Fig. 7, right panel, and Fig. 9) is a consequence
of choosing the mass as an independent variable. Close to the
maximum mass point, the error increases significantly even
for a small difference between the values of the maximum
mass for the original and fitted EoS. This effect is absent for
the dependence of the error as a function of central density
or pressure. The relative inaccuracy of our fits for stellar
configurations with the same central pressure is smaller, in
particular in the region close to maximum mass and for R, �,
and I are 0.1%, 1.8%, and 1%, respectively, compared with
1%, 8.7%, and 2% for a fixed mass M = 2M� for EoS H4.

In overall, our fits perform well beyond the expected
current precision from NICER for the radius and for the
mass.

B. Universal relations

The story of universal relations started when Ref. [120]
established the famous I-Love-Q (moment of inertia, tidal
deformability, and quadruple moment) relations; the quadru-
ple moment Q expresses the deformation of the external
gravitational field of a star by its rapid rotation (hence
nonsphericity). It appeared that relations between some
macroscopic parameters was only minimally EoS dependent.
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These relations have powerful predictive power, for the mea-
surement of one parameter would permit the extraction of
the other: when the first I-Love-Q relations were established,
there was hope to extract the tidal deformability from the
moment of inertia, when actually it is the other way around
thanks to the detection of GWs. Many other relations ap-
peared throughout the years and were used in various NS
simulations. The physical meaning of this universality has
been attributed to two main reasons: the first being the low
density dependence of some of those relations and the second
being the extension of the no-hair theorem.1 The former refers
to the calibration to laboratory experiments of the low-density
part of the crust, but we have discussed that this argument
is viable for part of the outer crust only. The latter argument
is discussed in length in Refs. [122,123]: the authors explore
the approximate baldness of NSs, and the analytical meaning
of an extrapolated no-hair theorem in general relativity. It is
suggested that this universality may rise from an emergent
symmetry, acquired when the EoS parameters of a star are
tuned out from main sequence, to relativistic stars, to black
holes for which universality perfectly holds as per the no-hair
theorem.

Universal relations have been established by fitting the
modeled macroscopic parameters calculated from existing
EoSs which are nonunified. It has been shown in Ref. [14] that
the precision presented for some of those relations no longer
held when compared with the modeled relation of parameters
calculated with unified EoSs. Therefore, although the quasi-
universality of those relations is not put into question, the pre-
cision of the fits can be tainted by the use of nonunified EoSs.

Recently, Godzieba et al. [124] proposed a revision of
universal relations for multipole Love numbers based on the
fit of polytropic-type constructions. Under approximately the
saturation density, the EoS is that of DH approximated by one
polytrope, whereas, in the core, three polytropes are used with
parameters adjusted to a Monte Carlo-Markov-chain: around
two million EoSs are created, following basic rules of causal-
ity, maximum mass constraint around 2M�, and GW170817
measurement of the tidal deformability; this construction of
the EoS is not unified, however, authors use a method that
adapts the matching density between [0.15–1.2]n0 at the junc-
tion of DH and their polytropic cores, similar to PPFRead.
Universal relations are established for dimensionless electric
tidal deformability � of order two, three, and four with the
compactness, but we focus on the relation C − �2 which
relates the compactness and the tidal deformability as mea-
surable by GW detectors as of today. The fit is a logarithmic
expansion as presented by Ref. [32] (Yagi and Yunes) and by
[125] (Maselli et al.):

Cfit =
N∑

k=0

ak (ln �)k . (12)

1The no-hair theorem refers to a theorem in general relativity,
stating that all properties of a black hole depend solely on its mass,
angular momentum, and electric charge. This theorem does not nec-
essarily hold in modified gravity, in which black hole can be hairy,
e.g., see Ref. [121].

The fit of Godzieba et al. yields a0 = 0.3388, a1 =
−2.3×10−2, a2 = −4.651×10−4, a3 = −2.636×10−4, a4 =
5.424×10−5, a5 = −3.188×10−6, and a6 = 6.181×10−8. We
calculate the relative difference between the compactness cal-
culated with various EoS constructions and the compactness
calculated using Godzieba et al., Yagi and Yunes, and Maselli
et al. fits:

�Cfit = |C − Cfit|
Cfit

. (13)

The following EoS constructions are used:

(i) unified EoS NL3 (stiff) and DD2 (soft), and BSR6 (in
between);

(ii) DH crust matched to NL3, DD2, BSR6, H3, and H4
core at 0.15n0;

(iii) DH crust matched to NL3, DD2, BSR6, H3, and H4
core at 0.1 fm−3, the density at which Ref. [14] has
shown that the uncertainty due to the use of a nonuni-
fied model is minimized for models NL3, DD2, and
BSR6;

(iv) DH crust matched to NL3, DD2, BSR6, H3, and H4
core at 1.2n0.

The relation C − �2 established from unified EoSs, and
the universal relation fit of Godzieba et al., Yagi and Yunes,
and Maselli et al. are presented in the Appendix in Fig. 10
for NL3 and DD2 and in Fig. 11 for H3 and H4. For both
EoSs NL3 and DD2, the quasi-universality of the relations is
evident from the bottom plots of Fig. 10; all three universal
relation fits overlap the relation C(�) for unified EoSs. In the
case of H3 and H4, whose results are presented in Fig. 11, the
deviation from the universal relations is visible, particularly
for high-mass NSs. After calculating the accumulated differ-
ence on all three fits of universal relations and unified EoSs,
we found that the Yagi and Yunes one fairs better than Maselli
et al., itself faring slightly better than Godzieba et al. for EoSs
NL3, DD2, H3, and H4.

Additional results are presented in Table III: the maximum
relative difference between the fit for universal relations, and
the EoS constructions is displayed with the mass at which it
is calculated. We choose to show results only for the Yagi and
Yunes fit and Godzieba et al. fits because Maselli et al. was
shown to step outside of their reported error when compared
with unified tables, see Ref. [14]. We find that the Yagi and
Yunes fit is coherent with its 6.5% reported error, for all
constructions of EoSs. In Ref. [124], the authors emphasize
that their fit is an improvement on the Yagi and Yunes one
based on their collection of two million polytropic EoS con-
structions, however, when compared with tables of unified
EoSs, the fit of Godzieba et al., which is based on nonunified
constructions, generally fairs worse than the fit of Yagi and
Yunes.

In overview, the Yagi and Yunes fit performs the best out of
the three fits. This fit falls within its reported precision when
compared with unified as well as nonunified EoSs, for soft and
stiff EoSs and modern or older (H3 and H4) EoSs.
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TABLE III. Maximum relative difference in percent between the compactness calculated via fits of universal relations established by
Godzieba et al. and Yagi and Yunes, and various constructions of EoS discussed in this paper for NL3, BSR6, and DD2. In parentheses, we
present the value of the mass at which the maximum error is calculated.

EoS Uni. 0.15n0 0.1 fm−3 1.2n0 Uni. 0.15n0 0.1 fm−3 1.2n0

C − � Godzieba et al. Yagi and Yunes
NL3 2.37 (1.54) 7.14 (1.01) 2.88 (1.40) 2.90 (2.77) 2.94 (1.01) 4.66 (1.28) 1.78 (1.00) 2.78 (2.47)
BSR6 3.77 (1.21) 6.85 (1.00) 3.98 (1.01) 2.28 (1.01) 2.12 (1.33) 4.53 (1.20) 2.20 (1.31) 1.20 (2.22)
DD2 2.78 (1.00) 4.84 (1.01) 3.53 (1.01) 2.70 (1.01) 1.11 (2.22) 2.66 (1.17) 1.52 (1.23) 1.34 (2.21)
H3 5.80 (1.79) 7.83 (1.79) 6.60 (1.79) 5.35 (1.78) 4.20 (1.79) 6.33 (1.79) 5.02 (1.79) 3.76 (1.78)
H4 3.64 (2.03) 7.72 (1.00) 4.28 (2.03) 3.17 (2.03) 3.09 (1.00) 5.44 (1.20) 3.54 (2.03) 2.49 (2.03)

V. CONCLUSION

We have established piecewise polytropic fits based on
unified tables of equations of state for 52 different nuclear
models: 15 nucleonic relativistic mean-field models, 7 hyper-
onic relativistic mean-field models, 5 relativistic mean field
hybrid models, 24 nucleonic Skyrme models, and 1 ab initio
model.

The set of 52 equations of state chosen in this paper is
confronted with both astrophysical observations and nuclear
matter laboratory constraints. Microscopic constraints on nu-
clear models are discussed, particularly how the quantities J
and L, respectively the symmetry energy and its slope cal-
culated at saturation density, are constrained by laboratory
measurements. The direct Urca process, which is a very ef-
ficient cooling reaction in the core, occurs for 47 models of
our set of equations of state.

We show that establishing piecewise polytropic fits based
on nonunified equations of state results in errors in the
modeling of macroscopic parameters that can be as high as ap-
proximately 15%; note that this value corresponds to errors on
the tidal deformability and is given excluding configurations
close to maximum mass because the relative uncertainty at
fixed mass is then artificially high, as discussed in Sec. IV A.
This artificial uncertainty is brought forth by the incompati-
bility of the crust and the core with regards to the microscopic
quantities L and J .

We present parameters for piecewise polytropic fits based
on unified equations of state. Fourteen parameters per model
are required to establish the relation between the pressure, the
energy density, and the baryonic density; a Python routine
and tables of fit parameters in ASCII format to compute the
tabulated equations of state are provided [119]. To establish
the fit, a nonlinear least squares method is used with adjusted
transition densities. The precision of our fit was evaluated on
macroscopic quantities.

For our 51 models consistent with Mmax � 2M�, the fit
error on key values of the mass, the radius, and the moment
of inertia stays under 0.6% and 3.5% in the case of the tidal
deformability for a broad range of NS masses except the
region very close to the maximum mass, where this inaccuracy
can be few times larger.

Finally, we confront the universal relations established by
Ref. [124] between the compactness and the second-order

tidal deformability to that of unified equations of state as well
as two other universal relations [32,125]. We conclude that
the unified treatment of the crust plays a role in the reported
precision of some of those relations.
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APPENDIX A: PIECEWISE POLYTROPIC
FIT PARAMETERS

We present the parameters of the piecewise polytropic
fits based on unified tables of relativistic mean-field mod-
els in Table IV and of Skyrme and ab initio models in
Table V.

APPENDIX B: ACCURACY OF MACROSCOPIC
PARAMETERS

We present the relative difference for astrophysical quan-
tities of interest between the unified tables and our piecewise
polytropic fits for relativistic mean-field models in Table VI
and for Skyrme and ab initio models in Table VII.

APPENDIX C: UNIVERSAL RELATION VS UNIFIED
EQUATIONS OF STATE

We present results for various fits of so-called universal
relations between the tidal deformability and the compactness
for different (soft and stiff, old and modern) relativistic mean-
field models.
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TABLE IV. Parameters of unified fits by 7 polytropes of 15 nucleonic, 7 hyperonic, and 5 hybrid relativistic mean-field equations of state.
The transition densities ρi between the polytropes are given in g/cm3. For each polytrope i, the adiabatic index �i is presented. Only the first
constant κ0 is presented because all others can be calculated from pressure continuity.

EoS log10(κ0) �0 log10(ρ1) �1 log10(ρ2) �2 log10(ρ3) �3 log10(ρ4) �4 log10(ρ5) �5 log10(ρ6) �6

Nucleonic RMF EoS
BSR2 12.4812 1.6379 6.9304 1.3113 11.3669 0.8349 12.7363 1.3136 14.0413 3.2464 14.8162 2.8221 14.9832 2.3788
BSR6 12.4804 1.6381 6.9312 1.3109 11.4161 0.7053 12.8819 1.2421 13.5005 2.5053 14.4823 3.1753 14.9091 2.4855
DD2 12.4878 1.6369 6.9309 1.3114 11.3929 0.6260 12.3993 1.2833 13.7322 2.3253 14.3792 3.4041 14.8719 2.6026
DDHδ 12.4849 1.6372 6.9466 1.3092 11.4523 0.5441 12.1843 1.1022 14.1019 4.1828 14.5019 3.1328 14.8150 2.4599
DDME2 12.4955 1.6353 6.9470 1.3106 11.4015 0.6160 12.3748 1.2921 13.6025 2.0223 14.3561 3.5998 14.8460 2.6395
FSU2 12.5074 1.6330 6.9793 1.3076 11.4658 0.6605 12.7237 0.8687 13.5102 2.9854 14.1278 2.6376 14.9194 1.9831
FSU2H 12.4979 1.6349 6.9546 1.3097 11.4067 0.7657 12.4968 1.3578 14.2427 3.9780 14.6581 3.1615 14.8787 2.1387
FSU2R 12.4986 1.6347 6.9527 1.3103 11.3870 0.7898 12.4679 1.3331 14.2033 3.7040 14.6178 2.8757 14.8944 2.0137
GM1 12.4928 1.6356 6.9626 1.3082 11.4783 0.5103 12.2341 0.9431 13.6981 3.2095 14.3853 2.8973 14.9312 2.5144
NL3 12.4945 1.6355 6.9470 1.3103 11.4119 0.6234 12.3397 0.9161 13.5283 2.8788 14.5470 3.4771 14.8390 2.5896
NL3ωρ 12.4740 1.6396 6.8920 1.3155 11.2354 0.7958 12.8470 1.6250 14.2557 3.9080 14.7642 3.1231 14.9024 2.5096
TM1 12.4922 1.6360 6.9387 1.3113 11.3769 0.5885 12.2818 1.0673 13.6098 2.8867 14.2938 2.6964 14.8874 2.0656
TM1ωρ 12.4834 1.6377 6.9197 1.3125 11.3283 0.8353 13.0023 1.7447 14.2658 3.2911 14.7090 2.6657 14.9376 2.0072
TM2 12.4986 1.6347 6.9558 1.3096 11.4258 0.7248 12.7689 1.0601 13.5766 2.8071 14.8360 2.4069 14.9871 1.9881
TM2ωρ 12.4809 1.6382 6.9119 1.3133 11.3180 0.8364 13.0174 1.7590 14.2803 3.3754 14.7323 2.7264 14.9386 2.0438

Hyperonic RMF EoS
DD2 12.4849 1.6373 6.9355 1.3108 11.4036 0.6167 12.3954 1.2856 13.7387 2.3656 14.4082 3.4499 14.7460 2.1317
DDME2 12.4797 1.6383 6.9258 1.3112 11.3963 0.6274 12.4257 1.3473 13.7718 2.1575 14.3628 3.6315 14.7501 2.1179
FSU2H 12.4855 1.6371 6.9377 1.3105 11.3993 0.7711 12.4958 1.3600 14.2574 4.1927 14.5282 3.6776 14.7324 1.9163
H3 12.7365 1.5950 7.1558 1.3021 11.5194 0.4741 12.2298 0.9455 13.7026 3.2473 14.3214 2.9180 14.6654 1.9421
H4 12.7332 1.5958 7.1362 1.3035 11.5018 0.4987 12.2443 0.9454 13.7026 3.2456 14.3267 2.9158 14.7047 2.1990
NL3 12.4804 1.6382 6.9277 1.3111 11.4092 0.6241 12.3368 0.9139 13.5225 2.8704 14.5487 3.4335 14.6612 2.1934
NL3ωρ 12.4666 1.6409 6.8926 1.3141 11.3219 0.7170 12.5349 1.3253 13.5939 2.0372 14.3365 3.8767 14.7107 2.1491

Hybrid EoS
DD2-B15-40-20 12.8916 1.5682 7.3053 1.3013 11.4524 0.5827 12.3650 1.2772 13.7478 2.3416 14.3675 3.3902 14.8872 1.2831
NL3ωρ-B20-50-0 12.6482 1.6090 7.0411 1.3126 11.1942 0.8373 13.0106 1.7766 14.2898 3.7905 14.6848 2.1843 15.0271 1.4575
NL3ωρ-B28-75-0 12.6539 1.6079 7.0516 1.3122 11.1957 0.8375 13.0148 1.7533 14.2720 3.8022 14.7582 1.8590 15.0730 1.4889
NL3ωρ-B0-50-0 12.6539 1.6079 7.0516 1.3122 11.1957 0.8375 13.0158 1.7541 14.2723 3.8042 14.8040 0.0344 14.9109 2.1239
NL3ωρ-B0-50-50 12.6539 1.6079 7.0557 1.3113 11.2603 0.7904 12.8250 1.5964 14.1493 3.0321 14.4147 3.9648 14.7511 3.1637
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TABLE V. Parameters of unified fits by 7 polytropes of 24 nucleonic Skyrme and 1 ab initio equations of state. The transition densities
ρi between the polytropes are given in g/cm3. For each polytrope i, the adiabatic index �i is presented. Only the first constant κ0 is presented
because all others can be calculated from pressure continuity.

EoS log10(κ0) �0 log10(ρ1) �1 log10(ρ2) �2 log10(ρ3) �3 log10(ρ4) �4 log10(ρ5) �5 log10(ρ6) �6

(Nucleonic) Skyrme EoS
BSk20 12.4732 1.6396 6.9219 1.3117 11.3469 0.7499 12.4636 1.3408 14.1522 2.8323 14.4311 3.2096 14.8995 3.0780
BSk21 12.4958 1.6357 6.9433 1.3107 11.3651 0.7452 12.3329 1.2571 14.1610 3.4841 14.6921 3.1032 14.9021 2.8012
BSk22 12.5847 1.6208 7.0094 1.3087 11.3556 0.7443 12.5103 1.3024 14.0180 3.1330 14.6885 2.9089 14.8925 2.7427
BSk23 12.5847 1.6208 7.0094 1.3087 11.3556 0.7443 12.5103 1.3024 14.0180 3.1330 14.6885 2.9089 14.8925 2.7427
BSk24 12.5798 1.6215 7.0054 1.3093 11.3762 0.7402 12.3322 1.2579 14.1588 3.4628 14.7075 3.0922 14.9230 2.7773
BSk25 12.5907 1.6197 7.0119 1.3090 11.3885 0.7444 12.2107 1.2034 14.2131 3.7548 14.6893 3.1507 14.9108 2.6403
BSk26 12.4353 1.6458 6.9024 1.3126 11.3405 0.7526 12.4679 1.3404 14.1348 2.7472 14.4199 3.2064 14.9161 3.0628
DH 12.7007 1.6021 7.0898 1.3030 11.5622 0.6165 12.4163 1.3397 14.0053 2.1052 14.2804 3.0053 14.9602 2.8605
KDE0v1 14.7161 1.3184 10.1496 1.2477 11.5395 0.6476 12.4235 1.3753 14.0090 2.4045 14.4262 2.8665 15.0278 2.7822
Rs 14.7794 1.3089 10.2552 1.2161 11.7133 0.5642 13.0311 0.3835 13.3745 1.4335 13.5407 3.1815 14.2645 2.6712
Sk255 14.7118 1.3176 10.1273 1.2456 11.5501 0.5897 12.5538 1.2295 13.5409 2.4784 14.4910 2.7236 15.1723 2.6880
Sk272 14.7050 1.3188 10.1052 1.2497 11.5150 0.6131 12.4888 1.2939 13.6393 2.4588 14.4272 2.8096 15.1060 2.7603
Ska 14.7299 1.3149 10.1492 1.2381 11.5816 0.5908 12.4222 1.1598 13.5067 2.0177 14.0436 2.8420 15.0849 2.7774
Skb 14.7293 1.3142 10.1099 1.2372 11.5344 0.7113 13.2162 0.3365 13.7754 4.0702 14.2652 3.0945 14.7695 2.8537
SkI2 14.7376 1.3144 10.1308 1.2373 11.5685 0.6265 13.4248 1.7804 13.6041 3.2146 14.3183 2.6160 15.0811 2.6441
SkI3 14.7239 1.3164 10.1258 1.2435 11.5830 0.5858 12.3665 1.1000 13.7485 2.9839 14.4126 2.8078 14.6677 2.6923
SkI4 14.7263 1.3167 10.1323 1.2426 11.5727 0.5761 12.3014 1.1311 13.9299 3.1012 14.6916 2.9305 14.9658 2.7467
SkI5 14.7427 1.3139 10.2018 1.2345 11.6527 0.4384 12.0220 0.6561 13.5518 3.3975 14.2875 2.5666 14.9267 2.6828
SkI6 14.7290 1.3163 10.1451 1.2418 11.5705 0.5986 12.3258 1.1753 13.9557 3.0843 14.7293 2.9186 14.9817 2.7458
SkMP 14.7605 1.3113 10.1929 1.2251 11.6484 0.5811 12.6209 1.0106 13.6166 2.7978 14.4767 2.7814 14.9768 2.7302
SkOp 14.7348 1.3160 10.1478 1.2410 11.5968 0.5485 12.4485 1.0966 13.3943 1.8574 13.9326 2.6883 15.1036 2.6213
SLy230a 14.7200 1.3174 10.1478 1.2437 11.5337 0.6262 12.2329 1.2824 14.1720 3.1458 14.8556 2.9664 15.0878 2.7300
SLy2 14.7218 1.3170 10.1456 1.2429 11.5318 0.6369 12.3351 1.3217 14.0238 2.4088 14.3263 2.9840 14.9738 2.8379
SLy9 14.7253 1.3165 10.1345 1.2418 11.5328 0.6416 12.3443 1.3051 13.9715 2.5671 14.2802 2.9772 14.9302 2.7763

ab initio EoS
BCPM 12.4703 1.6383 6.9467 1.3136 11.3401 0.7181 12.4647 1.3333 14.0080 2.7194 14.0053 2.9133 14.9915 2.6914
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TABLE VI. Key macroscopic quantities calculated from the unified table of 15 nucleonic, 7 hyperonic, and 5 hybrid relativistic mean-field
models, and the relative errors � and δ (see Sec. IV A) in percent related to a unified piecewise polytropic fit. The maximum mass (in solar
mass) Mmax, the density (in fm−3) at maximum mass nmax, the radius (in km) for a 1M�NS R1.0, the radius for a 1.4M� NS R1.4, the radius at
maximum mass RMmax , the moment of inertia (in 1045g cm2) for a 1.338M� NS I1.338 as measured in the double pulsar PSR J0737 − 3039, the
moment of inertia at maximum mass IMmax , the tidal deformability for a 1.4M� NS �1.4, and the tidal deformability at maximum mass �Mmax

are presented. In red, we indicate the equations of state that gives the largest relative fit error in each category. The maximum mass of EoS H3
is indicated in blue, to emphasize that is not consistent with J1614 − 2230 mass measurement; results are shown only because this model is
used in Sec. III B.

Mmax � nmax δ R1.0 � R1.4 � RMmax δ I1.338 � IMmax δ �1.4 � �Mmax δ

Nucleonic RMF EoS

BSR2 2.383 −0.14 0.852 −0.25 13.30 −0.16 13.40 −0.19 11.96 −0.11 1.634 −0.28 3.149 −0.36 761.70 −1.00 6.72 0.45

BSR6 2.430 −0.21 0.827 0.00 13.77 0.12 13.73 0.06 12.13 −0.24 1.677 0.02 3.306 −0.77 836.16 0.01 6.28 −0.99

DD2 2.417 −0.20 0.851 0.63 12.99 0.22 13.16 −0.01 11.87 −0.47 1.593 −0.30 3.216 −1.14 697.89 −1.13 5.74 −3.81

DDHδ 2.138 −0.30 1.000 −0.00 12.40 −0.04 12.61 −0.04 11.14 −0.52 1.533 −0.37 2.376 −1.42 589.00 0.41 9.23 −2.72

DDME2 2.481 −0.24 0.817 −0.23 12.98 0.16 13.20 −0.07 12.06 −0.32 1.604 −0.41 3.456 −0.95 719.61 −1.56 5.39 −1.77

FSU2 2.071 −0.22 0.904 −0.00 14.18 −0.17 13.93 −0.16 12.08 −0.35 1.716 −0.10 2.441 −0.90 886.54 −0.56 20.11 −1.30

FSU2H 2.375 −0.25 0.802 −0.27 13.05 0.11 13.32 0.13 12.37 −0.23 1.638 0.17 3.306 −0.88 752.85 3.44 9.93 0.59

FSU2R 2.047 −0.30 0.943 −0.28 12.89 0.32 12.98 0.02 11.66 −0.30 1.552 −0.25 2.333 −1.16 608.63 1.61 18.35 0.03

GM1 2.361 −0.14 0.864 0.00 13.64 −0.08 13.72 −0.12 11.92 −0.20 1.729 −0.27 3.063 −0.52 922.33 −1.02 6.82 −0.82

NL3 2.773 −0.16 0.669 0.00 14.52 −0.32 14.61 −0.18 13.29 −0.23 1.898 −0.16 4.744 −0.57 1297.27 −0.48 4.71 −0.80

NL3ωρ 2.753 −0.08 0.688 0.00 13.42 −0.31 13.75 −0.26 13.00 −0.15 1.732 −0.13 4.612 −0.27 953.91 −0.62 4.47 −0.30

TM1 2.175 −0.17 0.856 0.00 14.36 0.17 14.24 −0.00 12.34 −0.26 1.798 −0.21 2.739 −0.80 1051.06 −0.73 16.70 −1.52

TM1ωρ 2.118 −0.36 0.908 −0.28 13.43 −0.37 13.41 −0.22 11.91 −0.34 1.607 −0.21 2.522 −1.08 712.90 −0.82 16.20 −0.01

TM2 2.270 −0.14 0.823 −0.00 14.44 −0.19 14.34 −0.12 12.50 −0.14 1.813 −0.22 3.010 −0.44 1087.63 −0.67 13.45 0.05

TM2ωρ 2.220 −0.34 0.869 0.00 13.43 −0.37 13.47 −0.24 12.08 −0.37 1.626 −0.32 2.803 −1.09 748.94 −0.98 12.99 −0.46

Hyperonic RMF EoS

DD2 1.996 0.02 1.007 −1.48 12.99 0.37 13.15 0.15 11.38 0.72 1.592 −0.11 2.125 1.18 694.86 −0.50 17.14 6.50

DDME2 2.064 0.06 0.947 −1.20 12.98 −0.11 13.20 −0.15 11.65 0.45 1.604 −0.19 2.342 1.00 719.19 −0.66 16.70 4.76

FSU2H 1.991 −0.03 0.901 −0.99 13.05 0.02 13.32 −0.01 11.99 0.33 1.638 −0.14 2.310 0.60 752.79 2.57 27.96 5.22

H3 1.787 −0.54 0.993 −0.28 13.66 −0.04 13.61 0.04 11.75 −0.76 1.707 −0.03 1.839 −2.39 852.60 0.07 47.43 −3.58

H4 2.032 −0.38 0.964 −0.00 13.66 −0.06 13.72 −0.08 11.71 −0.53 1.730 −0.27 2.268 −1.57 920.95 −0.94 18.32 −2.48

NL3 2.232 0.02 0.737 0.00 14.52 −0.15 14.61 −0.10 12.90 0.34 1.898 −0.13 3.058 0.72 1297.07 −0.45 20.05 3.65

NL3ωρ 2.277 −0.08 0.751 0.00 13.42 0.50 13.75 0.23 12.69 0.23 1.732 −0.05 3.158 0.17 953.84 −0.34 16.87 2.30
Hybrid EoS

DD2-B15-40-20 2.153 0.04 0.771 −0.40 12.99 0.05 13.16 −0.14 12.65 0.02 1.593 −0.32 2.933 0.17 698.15 −1.35 28.25 0.13

NL3ωρB20-50-0 2.151 −0.29 0.812 −0.37 13.40 0.59 13.73 0.16 12.58 0.04 1.730 −0.32 2.836 −0.61 950.32 −1.54 24.32 1.39

NL3ωρ-B28-75-0 2.326 −0.23 0.729 −0.36 13.40 0.41 13.73 0.16 13.07 −0.02 1.730 0.09 3.450 −0.45 950.32 0.02 19.36 1.40

NL3ωρ-B0-50-0 2.241 −0.45 0.666 −0.23 13.40 0.41 13.73 0.17 13.44 −0.15 1.730 0.11 3.428 −1.10 950.28 0.09 34.19 1.32

NL3ωρ-B0-50-50 2.455 −0.17 0.443 0.00 13.40 −0.03 13.73 −0.07 13.96 −0.06 1.730 −0.10 4.297 −0.35 950.29 −0.45 25.97 0.79
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TABLE VII. Key macroscopic quantities calculated from the unified table of 24 Skyrme and 1 ab initio models, and the relative errors �

and δ (see Sec. IV A) in percent related to unified piecewise polytropic fit. The maximum mass (in solar mass) Mmax, the density (in fm−3) at
maximum mass nmax, the radius (in km) for a M� NS R1.0, the radius for a 1.4M� NS R1.4, the radius at maximum mass RMmax , the moment of
inertia (in 1045g cm2) for a 1.338M� NS I1.338 as measured in the double pulsar PSR J0737 − 3039, the moment of inertia at maximum mass
IMmax , the tidal deformability for a 1.4M� NS �1.4, and the tidal deformability at maximum mass �Mmax are presented. In red, we indicate the
equation of state that gives the largest relative fit error in each category.

Mmax � nmax δ R1.0 � R1.4 � RMmax δ I1.338 � IMmax δ �1.4 � �Mmax δ

(Nucleonic) Skyrme EoS
BSk20 2.164 0.04 1.126 0.52 11.76 0.00 11.74 −0.00 10.17 −0.25 1.308 −0.06 2.176 −0.26 328.30 −0.19 3.53 −3.18
BSk21 2.274 0.06 0.975 0.77 12.47 0.04 12.59 −0.02 11.04 −0.31 1.484 −0.06 2.622 −0.34 533.99 −0.34 4.90 −3.93
BSk22 2.265 −0.12 0.969 0.24 13.03 −0.08 13.05 −0.08 11.19 −0.19 1.564 −0.13 2.622 −0.47 642.77 −0.52 5.39 −0.92
BSk23 2.265 −0.12 0.969 0.24 13.03 −0.08 13.05 −0.08 11.19 −0.19 1.564 −0.13 2.622 −0.47 642.77 −0.52 5.39 −0.92
BSk24 2.279 −0.15 0.978 0.24 12.47 −0.06 12.59 −0.07 11.05 −0.23 1.483 −0.11 2.637 −0.61 532.32 −0.53 4.84 −1.21
BSk25 2.225 −0.17 0.998 0.46 12.22 0.02 12.39 −0.07 10.99 −0.34 1.454 −0.16 2.516 −0.84 495.04 −0.74 5.86 −2.33
BSk26 2.169 −0.09 1.124 0.36 11.79 −0.05 11.78 −0.06 10.20 −0.25 1.314 −0.17 2.191 −0.51 333.57 −0.59 3.53 −2.01
DH 2.049 −0.04 1.207 0.00 11.90 −0.06 11.73 −0.03 9.99 −0.12 1.287 −0.08 1.904 −0.25 304.98 −0.20 4.64 −1.01
KDE0v1 1.969 −0.13 1.279 0.18 11.90 −0.07 11.61 −0.13 9.79 −0.18 1.255 −0.25 1.714 −0.47 274.01 −1.01 5.21 −0.72
Rs 2.116 −0.12 1.074 0.15 13.05 −0.09 12.91 −0.09 10.75 −0.15 1.547 −0.15 2.186 −0.42 605.14 −0.51 6.46 −0.47
Sk255 2.144 −0.15 1.057 0.19 13.42 0.11 13.12 0.08 10.84 −0.11 1.542 −0.01 2.248 −0.48 593.99 1.11 5.93 0.29
Sk272 2.231 −0.15 0.997 0.21 13.51 0.22 13.29 0.15 11.08 −0.11 1.577 0.07 2.495 −0.50 657.16 0.26 5.24 −0.28
Ska 2.208 −0.09 1.025 0.18 13.01 −0.21 12.89 −0.13 10.88 −0.17 1.522 0.05 2.409 −0.34 569.18 1.65 5.05 0.02
Skb 2.188 −0.13 1.060 0.69 12.05 −0.03 12.19 0.07 10.60 −0.49 1.449 0.17 2.333 −0.95 481.85 0.67 4.86 −4.29
SkI2 2.162 −0.07 1.015 0.01 13.58 −0.08 13.46 −0.15 11.11 −0.06 1.662 −0.31 2.354 −0.19 786.60 −1.07 6.95 0.20
SkI3 2.239 −0.10 0.967 0.08 13.59 0.00 13.53 −0.02 11.30 −0.08 1.666 −0.12 2.574 −0.30 801.58 −0.44 6.14 −0.04
SkI4 2.169 −0.13 1.061 0.24 12.31 −0.00 12.35 −0.07 10.66 −0.21 1.447 −0.16 2.297 −0.55 463.67 2.77 5.22 0.19
SkI5 2.240 −0.08 0.953 −0.05 14.16 −0.04 14.05 −0.10 11.46 −0.01 1.793 −0.25 2.598 −0.15 1029.71 −0.83 6.62 0.74
SkI6 2.189 −0.12 1.044 0.14 12.44 −0.06 12.47 −0.07 10.75 −0.17 1.464 −0.13 2.359 −0.47 501.68 −0.57 5.22 −0.70
SkMP 2.107 −0.11 1.107 0.15 12.58 0.02 12.48 −0.05 10.52 −0.13 1.459 −0.20 2.123 −0.40 489.63 −0.72 5.69 −0.49
SkOp 1.972 −0.13 1.224 0.19 12.41 −0.13 12.11 −0.17 10.12 −0.20 1.360 −0.18 1.781 −0.47 371.34 −0.83 6.76 −0.53
SLy230a 2.099 −0.08 1.145 0.08 11.86 −0.21 11.81 −0.13 10.24 −0.16 1.319 −0.09 2.063 −0.33 338.00 −0.35 4.92 −0.63
SLy2 2.053 −0.11 1.197 0.26 11.91 −0.13 11.76 −0.14 10.04 −0.25 1.301 −0.23 1.924 −0.52 318.13 −0.82 4.77 −1.62
SLy9 2.156 −0.12 1.074 0.38 12.54 −0.11 12.45 −0.15 10.63 −0.30 1.431 −0.29 2.249 −0.63 446.12 2.13 5.13 −0.85

(Nucleonic) ab initio EoS
BCPM 1.980 −0.09 1.241 −0.24 11.93 0.00 11.71 −0.08 9.96 −0.08 1.283 −0.21 1.773 −0.29 299.68 −0.76 5.97 −0.08

FIG. 10. Relative difference �C as a function of the tidal de-
formability � for EoS NL3 on the left and EoS DD2 on the right.

FIG. 11. Relative uncertainty �C as a function of the tidal de-
formability � for EOS H3 on the left and EOS H4 on the right.
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