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Effect of chiral nuclear forces on the neutrino mean free path in hot neutron matter
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We study the role of chiral nuclear forces on the propagation of neutrinos in hot neutron matter. In particular,
we analyze the convergence of the dynamical structure factor and the neutrino mean free path with the order
of the power counting of the chiral forces, as well as the role of the regulator cutoff of these forces in the
determination of these quantities. Single-particle energies and chemical potentials needed to calculate the
dynamical structure factor are obtained within the Brueckner-Hartree-Fock approximation extended to finite
temperature. Our results show that the dynamical structure factor and the neutrino mean free path depend on
the cutoff only when the chiral potential is considered at leading order (LO) and next-to-leading order (NLO),
with this dependence becoming strongly reduced at higher orders in the chiral power counting due to the role of
three-nucleon forces that start to contribute at next-to-next-to-leading order (N2LO) and being, in particular,
almost negligible at next-to-next-to-next-to-leading order (N3LO). The neutrino mean free path is found to
converge up to densities slightly below ≈0.15 fm−3 when increasing the order of the chiral power counting,
although no signal of convergence is found for densities above this value. The uncertainty associated with our
order-by-order nuclear many-body calculation of the neutrino mean free path is roughly estimated from the
difference between the results obtained at N2LO and N3LO, finding that it varies from about a few centimeters
at low densities up to a bit less than 2 m at the largest one considered in this work, 0.3 fm−3.

DOI: 10.1103/PhysRevC.106.035804

I. INTRODUCTION

Neutrinos and, particularly, the knowledge of their interac-
tions in hot and dense baryonic matter [1–50] are fundamental
to understand the physics of supernova explosions [51–53]
and the early evolution of their compact stellar remnants
[54,55]. The gravitational collapse of massive stars at the end
of their thermonuclear burning leads, by means of electron
capture processes, to the production of a large number of neu-
trinos which store and release most of the initial gravitational
binding energy. In the early stages following the formation of
neutron stars neutrinos are trapped because, above a critical
value of the density, their mean free path λ decreases and be-
comes much smaller than the stellar radius. This trapping has
a strong influence on the composition and on the overall stiff-
ness of the equation of state (EoS) of neutron stars [56–59],
with the physical conditions of hot and lepton-rich neutron
stars being in general substantially different from those of cold
and deleptonized ones. In particular, neutrino trapping keeps
the concentration of electrons so high that matter is more
proton rich in comparison with the case in which neutrinos
have diffused out. Neutrinos are also very important to under-
stand the merger [60–64] and the cooling [65–67] of neutron
stars. Cooling is driven first by neutrino emission mechanisms
such as direct and modified Urca processes, bremsstrahlung,
and Cooper pair formation, the last operating only when the

temperature of the star drops below the critical temperature for
neutron superfluidity or proton superconductivity. Numerical
simulations of supernova explosions and neutron star mergers,
as well as cooling calculations, require not only the knowledge
of the hot dense matter EoS but also a reliable description of
neutrino transport. Whereas the most detailed transport codes,
which solve the full Boltzmann transport equation, require
the knowledge of neutrino differential cross sections, sim-
pler transport codes only need angle averaged and/or energy
averaged neutrino opacities, usually expressed in the form
of neutrino mean free paths. Important sources of neutrino
opacities are neutrino-baryon scattering and neutrino-baryon
absorption reactions mediated, respectively, by the neutral
current and the charge current of the electroweak interaction.
The interested reader is referred to Refs. [68–71] for recent
progress in the study of neutrino opacities in hot and dense
nuclear matter.

In this work we consider the propagation of neutrinos in
hot neutron matter and, therefore, we take into account only
the contribution of the scattering of neutrinos off neutrons in
the evaluation of the neutrino mean free path. The extension
of the present study to the case of hot asymmetric nuclear
matter, more relevant to describe the physical conditions of
newly born neutron stars, will be considered in the near future
[72]. Here, in particular, we study the effect of chiral nuclear
forces on the neutrino mean free path, our main focus being
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the analysis of the convergence of the dynamical structure
factor and the neutrino mean free path with the order of
the power counting of the chiral forces when going from
the leading order (LO) to the next-to-next-to-next-to-leading
order (N3LO), as well as the role played by the cutoff of
these forces in the determination of these quantities. A micro-
scopic framework based on an extension to finite temperature
of the Brueckner-Hartree-Fock (BHF) approximation of the
Brueckner-Bethe-Goldstone (BBG) theory is employed to de-
scribe in a consistent way both the EoS of pure neutron matter
and the dynamical structure factor. Whereas, in the past years,
nuclear forces derived within the framework of chiral effective
field theory (χEFT) have been largely used to determine the
nuclear EoS within different many-body techniques [73–87],
less attention has been paid to the role played by these forces
in calculations of neutrino processes in dense matter (see, e.g.,
Refs. [88–91]).

The paper is organized in the following way. The neutrino-
neutron scattering cross section is briefly reviewed in Sec. II.
The role of chiral forces in the dynamical structure factor
and neutrino mean free path is analyzed in Sec. III. Finally,
a summary and the main conclusions of this work are drawn
in Sec. IV.

II. NEUTRINO-NEUTRON SCATTERING CROSS SECTION

In this section we briefly review the expression for the
neutrino-neutron cross section scattering in hot neutron mat-
ter. Using the Fermi golden rule (see, e.g., Ref. [92]) the cross
section per unit volume (or equivalently the inverse collision
mean free path) for the scattering process, which is mediated
by the neutral current of the electroweak interaction, can be
written as

σ (Eν, T )

V
= 2

∫
d3 �pν ′

(2π )3

∫
d3 �pn

(2π )3

∫
d3 �pn′

(2π )3
(2π )4δ4(pν + pn − pν ′ − pn′ )(1 − fν ′ (Eν ′ , T )) fn(En, T )(1 − fn′ (En′ , T ))

× 〈|M|2〉
16E1E2E3E4

, (1)

where the invariant transition matrix M reads

M = GF

2
√

2
(ψ̄ν ′γ μ(1 − γ5)ψν )(ψ̄n′γμ(CV − CAγ5)ψn), (2)

with GF � 1.436 × 10−49 erg cm−1 being the Fermi weak
coupling constant, and CV = −1 and CA = −1.23 the vector
and axial-vector couplings. The symbol 〈·〉 denotes a sum over
final spins and an average over the initial ones, pi = (Ei, �pi )
is the four-momentum of particle i, and fi(Ei, T ) is its Fermi-
Dirac distribution,

fi(Ei, T ) = 1

1 + exp[(Ei(T ) − μi(T ))/T
, (3)

where Ei and μi are, respectively, the single-particle energy
and chemical potential of the corresponding particle. The
neutron single-particle energy and chemical potential are ob-
tained, as it is explained below, from an extension to finite
temperature of the nonrelativistic BHF approximation using
nuclear forces derived within the framework of χEFT.

In the limit of nonrelativistic neutrons and nondegenerate
neutrinos, the scattering cross section simplifies and reads [9]

σ (Eν, T )

V
= G2

F

32π2

∫
d3 �pν ′

[
C2

V (1 + cos θνν ′ )S(0)(q0, �q, T )

+C2
A(3 − cos θνν ′ )S(1)(q0, �q, T )

]
, (4)

where q = pν − pν ′ is the transferred four-momentum from
the neutrino to the neutron system, θνν ′ is the angle between
the incoming and outgoing neutrino, and S(S)(q0, �q, T ) is the
dynamical structure factor that describes the response of neu-
tron matter in the spin channel S = 0, 1 to the excitations
induced by neutrinos, and contains the relevant information of
the nuclear medium. The vector and axial parts of the neutral

current give rise, respectively, to density and spin-density
fluctuations, corresponding to the S = 0 and S = 1 spin chan-
nels. The dynamical structure factor can be obtained from
the imaginary part of the corresponding response function
χ (S)(q0, �q, T ) via the fluctuation-dissipation theorem [93],

S(S)(q0, �q, T ) = − g

π

1

1 − exp[−q0/T ]
Im χ (S)(q0, �q, T ),

(5)
where g = 2 is the spin degeneracy of the neutrons and the
factor (1 − exp[−q0/T ])−1 has the appearance of a step func-
tion except around q0 = 0 where it diverges as 1/q0. However,
the dynamical structure factor does not show any divergency
because the imaginary part of the response function behaves
as q0 around q0 = 0. The response function can be obtained
from the bare one χ0(q0, �q, T ) and the particle-hole residual
interaction V (S)

ph (q0, �q) within the random phase approxima-
tion (RPA) by solving the integral equation

χ (S)(q0, �q, T ) = χ0(q0, �q, T )

1 − V (S)
ph (q0, �q)χ0(q0, �q, T )

. (6)

In this work, however, we ignore the role played by the
long-range correlations induced from the particle-hole resid-
ual interaction (i.e., we take V (S)

ph (q0, �q) = 0) and, then, we
simply assume χ (S)(q0, �q, T ) = χ0(q0, �q, T ), independently
of the spin channel. Therefore, from now on, we will omit
the spin index in the dynamical structure factor. Nonetheless,
interactions among neutrons are taken into account at the
mean field level in the calculation of χ0(q0, �q, T ):

χ0(q0, �q, T )

=
∫

d3 �p
(2π )3

fn(En( �p, T ), T ) − fn(En( �p + �q, T ), T )

q0 − En( �p + �q, T ) + En(�q, T ) + iη
. (7)
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The neutron single-particle energy and chemical potential
needed to calculate χ0(q0, �q, T ) are obtained, as mentioned
before, from an extension to finite temperature of the nonrela-
tivistic BHF approximation with chiral forces. This extension
basically consists of replacing the zero temperature neutron
occupation number

n(�k) =
{

1 if |�k| � kF

0 otherwise
(8)

by the corresponding Fermi-Dirac momentum distribution
when calculating the BHF single-particle energy,

En(�k, T ) = h̄2k2

2m
+ ReUn(�k, T ). (9)

Here Un(�k, T ) is the neutron single-particle potential given at
finite temperature by

Un(�k, T ) =
∑

�k′

fn(En(�k′, T ), T )

×〈�k�k′|G(En(�k, T ) + En(�k′, T ), T )|�k�k′〉A, (10)

where the G matrix, describing the effective interaction be-
tween two neutrons in the presence of a surrounding medium,
is obtained by solving the Bethe-Goldstone equation which at
finite temperature reads schematically

G(ω, T ) = V

+
∑

i j

V
(1− fn(En(�ki, T ), T )(1− fn(En(�k j, T ), T )

ω − En(�ki, T ) − En(�k j, T ) + iη
G(ω, T ).

(11)

Here V is the bare nucleon-nucleon interaction of which we
give some details at the end of this section, and ω is the sum
of the nonrelativistic single-particle energies of the interacting
neutrons.

We note that the self-consistent solution of Eqs. (9)–(11)
requires to extract the neutron chemical potential at each step
of the iterative process from the normalization condition

ρ =
∑

�k
fn(En(�k, T ), T ), (12)

with ρ being the neutron density.
Before finishing this section we would like to say a few

words on the nuclear forces employed in this work. As al-
ready said, we make use of nuclear forces derived within the
framework of χEFT. In particular, we use the chiral nuclear
force of Entem and Machleidt [94] up to N3LO and con-
sider three values of the cutoff �, 450, 500, and 550 MeV.
The contribution from three-nucleon forces to the neutron
single-particle potentials and consequently to the dynamical
structure factor and the neutrino mean free path, which appear
at N2LO and higher orders [95,96], is introduced in our BHF
calculation by averaging over the coordinates of one of the
neutrons. This leads to an effective density dependent two-
body force which is added to the two-body one before solving
the Bethe-Goldstone equation. The interested reader can find

explicit expressions for this effective density dependent two-
body force, e.g., in Refs. [97–99].

In the next section we analyze the role of the cutoff de-
pendence of the forces on the determination of the dynamical
structure factor and the neutrino mean free path as well as
the convergence of these quantities when considering different
orders in the power counting of the chiral nuclear forces from
LO up to N3LO.

III. DYNAMICAL STRUCTURE FACTOR AND
NEUTRINO MEAN FREE PATH

We start this section by showing in Fig. 1 the dynamical
structure factor S(q0, �q, T ) as a function of the transferred
energy q0 for several temperatures at a fixed value of the
density ρ = 0.16 fm−3 [Fig. 1(a)] and various densities for
T = 10 MeV [Fig. 1(b)]. The calculation is done using the
chiral potential at N3LO including two- and three-nucleon
forces with a cutoff � = 500 MeV. The three-momentum
transferred is fixed to the value | �q| = 15 MeV. In this fig-
ure and all the rest, the energy of the neutrino is assumed to
be Eν = 3T . As it can be seen in the figure, an increase of the
temperature or the density leads to a much broader dynamical
structure factor with a larger area under it. The reason is
simply due to the fact that the phase space of the integral in
Eq. (7) increases with the temperature and the density. Con-
sequently, an increase of the temperature or the density will
give rise to a larger cross section and, therefore, to a smaller
neutrino mean free path λ when integrating Eq. (4). This is
seen in Fig. 2, where λ is shown as a function of the baryon
number density for several temperatures. We notice that the
range of densities under consideration is such that the Fermi
momentum is keep smaller than the cutoff in all the cases.
Note, in particular, that the neutrino mean free path varies
dramatically with the temperature, decreasing about two or
three orders of magnitude when increasing the temperature
from 5 to 50 MeV. Since the typical radius of a neutron star is
of the order of 10–12 km, one can easily conclude from these
results that a neutrino is unlikely to interact with matter at
low temperatures. This conclusion is similar to those already
derived by other authors. Our interest here, as we have said, is
to analyze the convergence of the dynamical structure factor
and the neutrino mean free path with the order of the power
counting of the chiral forces, as well as their dependence on
the cutoff employed.

Let us analyze first the effect of the cutoff of the chiral
forces on the dynamical structure factor and the neutrino mean
free path. In Fig. 3 we show the energy dependence of the dy-
namical structure factor S(q0, �q, T ) evaluated at T = 10 MeV
and ρ = 0.16 fm−3 using the chiral potential at LO [Fig. 3(a)],
NLO [Fig. 3(b)], N2LO [Fig. 3(c)], and N3LO [Fig. 3(d)] for
three values of the cutoff � = 450, 500, and 500 MeV. The
density dependence of the neutrino mean free path for the
same values of the cutoff and temperature is reported in Fig. 4.
Note that whereas both S(q0, �q, T ) and λ show a dependence
on the cutoff � when the chiral potential is considered only
at LO and NLO, this dependence is strongly reduced when
higher-order contributions to the nuclear force are taken into
account, being almost negligible at N3LO. This reduction of
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FIG. 1. Energy dependence of the dynamical structure factor S(q0, �q, T ) for several temperatures at (a) a fixed density ρ = 0.16 fm−3 and
(b) various densities at a fixed temperature T = 10 MeV. The calculation is done using the chiral potential at N3LO including three-nucleon
forces with a cutoff � = 500 MeV. The transferred three-momentum is taken as | �q| = 15 MeV.

the cutoff dependence is due to the effect of three-nucleon
forces that start to contribute at N2LO. This result is in
agreement with the strong reduction of the cutoff dependence
found for the energy per particle of neutron matter when
including the contributions of three-body potentials (see, e.g.,
Ref. [100]). To illustrate it, in Figs. 4(c) and 4(d) we also
show (see thin lines) the results when only the contribution
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FIG. 2. Neutrino mean free path as a function of the baryon
number density for temperatures in the range from 5 to 50 MeV.
The calculation is done using the chiral potential at N3LO including
three-nucleon forces with a cutoff � = 500 MeV. The energy of the
neutrino is assumed to be Eν = 3T .

of two-body forces is taken into account. As it can be seen,
when the contribution of three-nucleon forces is ignored, the
neutrino mean free path shows a considerable dependence on
the cutoff still at N2LO and N3LO. We should note that to
restore properly the cutoff independence of the neutron matter
EoS and the neutrino mean free path is crucial to treat chiral
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ρ = 0.16 fm−3. Results using the chiral potential at different orders
are shown in the different panels. The transferred three-momentum
is taken as | �q| = 15 MeV. The energy of the neutrino is assumed to
be Eν = 3T .
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FIG. 4. Density dependence of the neutrino mean free path for
several values of the cutoff � at T = 10 MeV. Results using the
chiral potential at different orders are shown in the different panels.
The energy of the neutrino is assumed to be Eν = 3T . Thin lines in
(c) and (d) show the result when only the contribution of two-nucleon
forces is taken into account in the calculation.

two- and three-nucleon forces consistently, that is when the
same parameters are used for the same vertices that occur in
all diagrams involved, as it is the case of the chiral forces
employed in the present work.

Finally, we show in Fig. 5 the dependence of the neutrino
mean free path on the order of power counting of the chiral
forces for the three values of the cutoff considered in the
whole range of densities explored at T = 10 MeV. As it is
seen, the neutrino mean free path converges up to densities
slightly below ≈0.15 fm−3 when increasing the order of

TABLE I. Absolute value of the difference between the neutrino
mean free path obtained using chiral nuclear forces at N2LO and
N3LO at T = 10 MeV. Units are given in meters.

Density ρ (fm−3) � = 450 MeV � = 500 MeV � = 550 MeV

0.1 0.16 0.07 0.19
0.2 0.57 0.55 0.48
0.3 1.81 1.57 1.35

the chiral power counting, with the convergence being better
for the two larger values of the cutoff, � = 500 MeV and
� = 550 MeV. No signal of convergence, however, seems
to exist for densities above this value. The resulting lack of
a convergence pattern at densities larger than ≈0.15 fm−3

gives, nonetheless, an estimation of the theoretical uncertain-
ties associated with our order-by-order nuclear many-body
calculation of the dynamical structure factor and the neutrino
mean free path in hot neutron matter with chiral nuclear
forces. As we showed before, the results at N2LO and N3LO
are quite independent of the value of the cutoff �. Therefore,
the variation obtained by changing � does not seem to provide
a reliable representation of the uncertainty at a given order; a
better way to estimate such uncertainty is to consider instead
the difference between the predictions at two consecutive or-
ders. The difference between results for the neutrino mean free
path obtained using chiral nuclear forces at N2LO and N3LO
at T = 10 MeV is shown in Table I for the three values of the
cutoff considered and three representative densities, ρ = 0.1,
0.2, and 0.3 fm−3. As it is seen, in general this difference is
slightly smaller when a larger value of the cutoff is used, and
it varies from about a few centimeters up to a bit less than 2 m
in the whole range of densities considered.

IV. SUMMARY AND CONCLUSIONS

In this work we analyzed the role played by chiral nuclear
forces on the propagation of neutrinos in hot neutron matter.
In particular, we studied the convergence of the dynamical
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FIG. 5. Dependence of the neutrino mean free path on the order of power counting of the chiral forces for the three values of the cutoff
considered in the whole range of densities explored at T = 10 MeV. The energy of the neutrino is assumed to be Eν = 3T .
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structure factor and the neutrino mean free path when dif-
ferent orders in the chiral power counting are considered in
the description of neutron matter, as well as the role of the
regulator cutoff of these forces in the determination of these
quantities. The dynamical structure factor and the neutrino
mean free path were obtained using neutron single-particle
energies and chemical potentials determined within the mi-
croscopic BHF approximation extended to finite temperature.
We found that when the chiral force is considered at N2LO
the dependence of the dynamical structure factor and the
neutrino mean free path on the cutoff is strongly reduced and
becomes almost negligible at N3LO, with the three-nucleon
forces, that start to contribute at N2LO, being responsible
for the restoration of the cutoff independence. Finally, we

found that the neutrino mean free path converges up to den-
sities slightly below ≈0.15 fm−3 when increasing the order
of the chiral power counting, although no signal of con-
vergence is found for densities above this one. We roughly
estimated the uncertainty associated with our order-by-order
nuclear many-body calculation of the neutrino mean free path
by evaluating the difference between the results obtained at
N2LO and N3LO, finding that it varies from about a few
centimeters at low densities up to a bit less than 2 m at the
largest one considered in this work, 0.3 fm−3. The extension
of the present study to the case of hot asymmetric nuclear
matter, more relevant to describe the physical conditions of
newly born neutron stars, will be considered in the near
future [72].
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